
CSCI 4320 December 5, 2008

Slide 1

Administrivia

• Reminder: Homework 6 due today, Homework 7 Monday. Both accepted a

little late without penalty. (But there will be a “not accepted past” date for all

homeworks — probably end of reading days.)

Slide 2

Security — Overview

• Goals:

– Data confidentiality — prevent exposure of data.

– Data integrity — prevent tampering.

– System availability — prevent DOS.

• What can go wrong:

– Deliberate intrusion — from casual snooping to “serious” intrusion.

– Accidental data loss — “acts of God”, hardware or software error, human

error.

CSCI 4320 December 5, 2008

Slide 3

User Authentication

• Based on “something the user knows” — e.g., passwords. Problems include

where to store them, whether they can be guessed, whether they can be

intercepted.

• Based on “something the user has” — e.g., key or smart card. Problems

include loss/theft, forgery.

• Based on “something the user is” – biometrics. Problems include

inaccuracy/spoofing.

Slide 4

Attacks From Within

• Trojan horses (and how this relates to $PATH).

• Login spoofing.

• Logic bombs and trap doors.

• Buffer overflows (and how this relates to, e.g, gets).

• And many more . . .

CSCI 4320 December 5, 2008

Slide 5

Buffer Overflows

• How many times, when you read the technical description of a security flaw,

do you notice the phrase “buffer overflow”? (For me — often.)

• You already know what a buffer overflow is, from writing programs in C, and

how it can lead to interesting(?) bugs.

• How can this be turned to advantage by crackers? Tanenbaum provides a

brief description. A frequently-mentioned paper is called “Smashing the Stack

for Fun and Profit”.

Slide 6

Attacks From Outside

• Can categorize as viruses (programs that reproduce themselves when run)

and worms (self-replicating) — similar ideas, though.

• Many, many ways such code can get invoked — when legit programs are run,

at boot time, when file is opened by some applications (“macro viruses”), etc.

• Also many ways it can spread — once upon a time floppies were vector of

choice, now networks or e-mail. Common factors:

– Executable content from untrustworthy source.

– Human factors.

“Monoculture” makes it easier!

• Virus scanners can check all executables for known viruses (exact or fuzzy

matches), but hard/impossible to do this perfectly.

• Better to try to avoid viruses — some nice advice in textbook.

CSCI 4320 December 5, 2008

Slide 7

Safe Execution of “Mobile” Code

• Is there a way to safely execute code from possibly untrustworthy source?

Maybe — approaches include sandboxing, interpretation, code signing.

• Example — Java’s designed-in security:

– At source level, very type-safe — no way to use void* pointers to

access random memory.

– When classes are loaded, “verifier” checks for potential security problems

(not generated by normal compilers, but could be done by hand).

– At runtime, security manager controls what library routines are called —

e.g., applets by default can’t do file operations, many kinds of network

access.

Slide 8

Designing a Secure System

• “Security through obscurity” isn’t very.

• Better to give too little access than too much — give programs/people as little

as will work.

• Security can’t be an add-on.

• “Keep it simple, stupid.”

CSCI 4320 December 5, 2008

Slide 9

Trusted Systems

• Is it possible to write a secure O/S? Yes (says Tanenbaum).

• Why isn’t that done?

– People want to run existing code.

– People prefer (or are presumed to prefer) more features to more security.

Slide 10

Minute Essay

• Over the course of the semester I’ve told several “war stories” — tales of woe

that taught me (or someone) something. Do you have a favorite war story to

tell?

