CSCI 4320 December 5, 2008

Administrivia

o Reminder: Homework 6 due today, Homework 7 Monday. Both accepted a
little late without penalty. (But there will be a “not accepted past” date for all

homeworks — probably end of reading days.)

Slide 1
Security — Overview
e Goals:
— Data confidentiality — prevent exposure of data.
— Data integrity — prevent tampering.
— System availability — prevent DOS.
Slide 2

e What can go wrong:
— Deliberate intrusion — from casual snooping to “serious” intrusion.

— Accidental data loss — “acts of God”, hardware or software error, human

error.

CSCI 4320 December 5, 2008

User Authentication

® Based on “something the user knows” — e.g., passwords. Problems include
where to store them, whether they can be guessed, whether they can be

intercepted.

e Based on “something the user has” — e.g., key or smart card. Problems
Slide 3 include loss/theft, forgery.

e Based on “something the user is” — biometrics. Problems include
inaccuracy/spoofing.

Attacks From Within

Trojan horses (and how this relates to $PATH).

Login spoofing.

Logic bombs and trap doors.

Slide 4 Buffer overflows (and how this relates to, e.g, get s).

And many more ...

CSCI 4320 December 5, 2008

Buffer Overflows

e How many times, when you read the technical description of a security flaw,

do you notice the phrase “buffer overflow”? (For me — often.)

e You already know what a buffer overflow is, from writing programs in C, and

how it can lead to interesting(?) bugs.

Slide 5 e How can this be turned to advantage by crackers? Tanenbaum provides a

brief description. A frequently-mentioned paper is called “Smashing the Stack

for Fun and Profit”.

Attacks From Outside

e Can categorize as viruses (programs that reproduce themselves when run)
and worms (self-replicating) — similar ideas, though.

e Many, many ways such code can get invoked — when legit programs are run,
at boot time, when file is opened by some applications (“macro viruses”), etc.

Slide 6 e Also many ways it can spread — once upon a time floppies were vector of
choice, now networks or e-mail. Common factors:

— Executable content from untrustworthy source.

— Human factors.

“Monoculture” makes it easier!

e Virus scanners can check all executables for known viruses (exact or fuzzy

matches), but hard/impossible to do this perfectly.

e Better to try to avoid viruses — some nice advice in textbook.

CSCI 4320 December 5, 2008

Safe Execution of “Mobile” Code

e |s there a way to safely execute code from possibly untrustworthy source?

Maybe — approaches include sandboxing, interpretation, code signing.

e Example — Java’'s designed-in security:

— At source level, very type-safe — no way to use VOi d* pointers to

Slide 7 access random memory.

— When classes are loaded, “verifier” checks for potential security problems

(not generated by normal compilers, but could be done by hand).

— At runtime, security manager controls what library routines are called —
e.g., applets by default can't do file operations, many kinds of network

access.

Designing a Secure System

e “Security through obscurity” isn't very.

e Better to give too little access than too much — give programs/people as little
as will work.

e Security can't be an add-on.
Slide 8
e “Keep it simple, stupid.”

CSCI 4320 December 5, 2008

Trusted Systems

e |s it possible to write a secure O/S? Yes (says Tanenbaum).
o Why isn’t that done?
— People want to run existing code.

— People prefer (or are presumed to prefer) more features to more security.

Slide 9
o Over the course of the semester I've told several “war stories” — tales of woe
that taught me (or someone) something. Do you have a favorite war story to
tell?
Slide 10

