
CSCI 4320 (Principles of Operating Systems), Fall 2009

Homework 2

Credit: 50 points.

1 Reading

Be sure you have read Chapter 2.

2 Problems

Answer the following questions. You may write out your answers by hand or using a word processor
or other program, but please submit hard copy, either in class or in my mailbox in the department
office.

1. (5 points) If you were designing data structures for a process table and a thread table, say
whether you would include the following in the process table, the threads table, or both, and
briefly explain why.

• A place to save CPU registers.

• A place to save information about what memory is owned by the process or thread.

2. (5 points) When a computer is being designed, it is common to first simulate it using a
program that runs one (simulated) instruction at a time. Even computers with more than
one processor are simulated strictly sequentially like this. Is it possible for a race condition
to occur when, as in this situation, there are no truly simultaneous events? Why or why not?

3. (5 points) In class we discussed a proposed solution to the mutual-exclusion problem based
on disabling interrupts, and rejected it because it doesn’t work for systems with more than one
CPU. For a system with a single CPU, however, this could be an acceptable solution, especially
if the critical region is short. Write pseudocode for an implementation of semaphores for a
single-CPU system that might not have a TSL instruction but does have library functions
enable int() and disable int() to enable and disable interrupts respectively. (I.e., say
what variables you would need for each semaphore, and give pseudocode for up() and down().)

4. (5 points) Restrooms are usually designated as men-only or women-only, but this requires
having two restrooms if everyone is to be accommodated. A less expensive approach consistent
with cultural norms in the U.S. would be to have one restroom with a sign on the door that
indicates its current state — empty, in use by at least one woman, or in use by at least one
man. If it is empty, either a man or a women may enter; if it is occupied, a person of the same
sex may enter, but a person of the opposite sex must wait until it is empty. Write pseudocode
for four functions to implement this approach: woman enter, man enter, woman leave, and
man leave, to be used by the following pseudocode:

/* woman process */

while (TRUE) {

woman_enter();

1



CSCI 4320 Homework 2 Fall 2009

use_restroom();

woman_leave();

do_other_stuff();

}

/* man process */

while (TRUE) {

man_enter();

use_restroom();

man_leave();

do_other_stuff();

}

You can use any of the synchronization mechanisms we have talked about (shared variables,
semaphores, monitors, or even message passing). (If you’d rather write real code, do optional
programming problem 2 instead.)

5. (5 points) Five batch jobs (call them A through E) arrive at a computer center at almost
the same time. Their estimated running times (in minutes) and priorities are as follows, with
5 indicating the highest priority:

job running time priority

A 10 3

B 6 5

C 2 2

D 4 1

E 8 4

For each of the following scheduling algorithms, determine the turnaround time for each job
and the average turnaround time. Assume that all jobs are completely CPU-bound (i.e., they
do not block). (Before doing this by hand, decide how much of programming problem 3 you
want to do.

• First-come, first-served (run them in alphabetic order by job name).

• Shortest job first.

• Round robin, using a time quantum of 1 minute.

• Round robin, using a time quantum of 2 minutes.

• Priority scheduling.

6. (5 points) Suppose that a scheduling algorithm favors processes that have used the least
amount of processor time in the recent past. Why will this algorithm favor I/O-bound
processes yet not permanently starve CPU-bound processes, even if there is always an I/O-
bound process ready to run?

3 Programming Problems

Do the following programming problems. You will end up with at least one code file per prob-
lem. Submit your program source (and any other needed files) by sending mail to bmassing@cs.

trinity.edu, with each file as an attachment. Please use a subject line that mentions the course

2



CSCI 4320 Homework 2 Fall 2009

number and the assignment (e.g., “csci 4320 homework 2”). You can develop your programs on
any system that provides the needed functionality, but I will test them on one of the department’s
Fedora 11 Linux machines, so you should probably make sure they work in that environment before
turning them in.

1. (10 points) The starting point for this problem is a simple implementation of the mutual
exclusion problem in C with POSIX threads m-e-problem.c1. Each thread executes a loop
similar to the one presented in class for this problem, except that:

• Rather than looping forever, each thread makes a finite number of trips through the
loop.

• The critical region is represented by code to print some messages and sleep for a random
interval.

• The non-critical region is represented by code to sleep for a random interval.

Currently no attempt is made to ensure that only one thread at a time is in its critical region,
and if you run it you will see that in fact it frequently happens that all the threads are in
their critical region at the same time. Your mission is to correct this.

Start by compiling the program, running it, and observing its behavior. To compile with gcc,
you will need the extra flag -pthread, e.g.

gcc -o m-e-problem -pthread m-e-problem.c

The program requires several command-line arguments, described in comments at the top
of the code. (If you have trouble remembering the order, notice that the program prints a
meant-to-be-helpful usage message if run with no arguments.)

You are to produce two corrected versions of this program:

• The first version should use shared variables only (declare them volatile so the compiler
knows that it should access them in memory every time rather than keeping them in
registers) and one of the following algorithms:

– Strict alternation, extended to work for an arbitrary number of threads. (No, this
isn’t a perfect solution, but it does enforce the “one at a time” condition.)

– Peterson’s algorithm, for two threads only. (For extra credit, research and implement
a variation that works for more than two threads. Cite a source for your solution
if appropriate — e.g., “I found pseudocode for this solution at the following Web
site.” Or look up and implement Leslie Lamport’s bakery algorithm.)

• The second version should use one of the following sets of library functions:

– The POSIX threads mutex functions. man pthread mutex init is a good starting
point for finding out about these functions.

– The POSIX threads semaphore functions. man sem init is a good starting point
for finding out about these functions.

Places in the program that should change are marked with “TODO” comments. You should
not need to add much code. Confirm that your two improved versions behave as expected,
i.e., when one thread starts its critical region no other thread can start its critical region until
the first one finishes.

1http://www.cs.trinity.edu/~bmassing/Classes/CS4320_2009fall/Homeworks/HW02/Problems/

m-e-problem.c

3



CSCI 4320 Homework 2 Fall 2009

2. (Optional — up to 10 extra-credit points) Write a program to test your solution to problem 4.
If you want to do this using C and POSIX threads, you could start with the code for pro-
gramming problem 1. Or you could rewrite in Java and use either its monitor-based synchro-
nization (synchronized methods/blocks plus wait, notify, and notifyAll) or features of the
java.util.concurrent library package (which has, among many other things, a Semaphore

library class). You can find some simple examples of multithreaded Java programs on the
“Sample programs” page for my parallel programming class: http://www.cs.trinity.edu/ bmassing/CS3366/SamplePrograms/
The bounded buffer example may be useful if you want to use monitor-based synchroniza-
tion.

3. (10 points) The starting point for this problem is a Java program that simulates execution
of a scheduler, i.e., generates solutions to problem 5. Currently the program simulates only
the FCFS algorithm. Your mission is to make it simulate one or more of the other algorithms
mentioned in problem 5. You will get full credit for simulating one algorithm, extra points
for simulating additional algorithms. The program consists of several classes, collected in a
package called scheduler:

• API documentation3.

• Code4. (Class SchedulerTest contains the main method of interest.)

• Sample input5.

Feel free to rewrite anything about this program, including starting over in a language of your
choice. Just remember that the program has to run on one of the department Linux machines,
and it needs to accept input from command-line arguments and files — i.e., no GUIs, Web-
based programs, etc. The latter requirement is to make it easier for me to automate testing
your code. If you make changes to the format of the input — and I prefer that you don’t —
change the comments so they describe the changed requirements.

2http://www.cs.trinity.edu/~bmassing/CS3366/SamplePrograms/
3http://www.cs.trinity.edu/~bmassing/Classes/CS4320_2009fall/Homeworks/HW02/Problems/scheduler/

docs/
4http://www.cs.trinity.edu/~bmassing/Classes/CS4320_2009fall/Homeworks/HW02/Problems/scheduler/

source/scheduler
5http://www.cs.trinity.edu/~bmassing/Classes/CS4320_2009fall/Homeworks/HW02/Problems/scheduler/

sample.in

4


