
CSCI 4320 September 2, 2009

Slide 1

Administrivia

• (None.)

Slide 2

Operating System Functionality — Overview

• Provide a “virtual machine”:

– Filesystem abstraction — files, directories, ownership, access rights, etc.

– Process abstraction — “process” is a name for one of a collection of

“things happening at the same time” (multiple users, multiple applications,

background activities such as print spooling, etc.).

• Manage resources (probably on behalf of multiple users/applications):

– Memory.

– CPU cycles (one or more CPUs).

– I/O devices.



CSCI 4320 September 2, 2009

Slide 3

Overview of Hardware

• Simplified view of hardware (as it appears to programmers) — processor(s),

memory, I/O devices, bus.

• Figure on p. 19 shows simplified view of overall organization — components

connected to a single bus. (Actual processors may have more than one bus.)

Slide 4

Processors

• “Instruction set” of primitive operations — load/store, arithmetic/logical

operations, control flow.

• Basic CPU cycle — fetch instruction, decode, execute. (Again, this is

simplified — pipelined or “superscalar” architectures overlap these steps.)

• Registers — “local memory” for processor; general-purpose registers for

arithmetic and other operations, special registers (program counter, stack

pointer, program status word (PSW)).

• Not shared among processes in the sense of simultaneous use (but context

switches “fake it”).

• Typically also include features useful in writing an operating system . . .



CSCI 4320 September 2, 2009

Slide 5

Dual-Mode Operation, Privileged Instructions

• Useful to have mechanism to keep application programs from doing things

that should be reserved for o/s.

• Usual approach — in hardware, define two modes for processor

(supervisor/kernel and user), privileged instructions.

– Privileged instructions — things only o/s should do, e.g., enable/disable

interrupts.

– Bit in PSW indicates kernel mode (o/s only, privileged instructions okay) or

user mode (application programs, privileged instructions not allowed).

– When to switch modes? when o/s starts application program, when

application program requests o/s services, on error.

– How to switch? kernel to user seems straightforward, but how about the

other way? Usually handled via TRAP or similar instruction, which

generates an interrupt (more about interrupts later).

Slide 6

Multithreaded and Multicore Chips

• For many years (at least 20, to my knowledge) advocates of parallel

programming have been saying that eventually hardware designers would run

out of ways to make single processors faster — and finally it seems to be

happening.

• Basic idea — number of transistors one can put on a chip is still increasing,

but how to use them to make single processors faster isn’t clear. So, instead,

hardware designers have chosen to provide (more) hardware support for

parallelism. Two basic approaches:

– Multithreading — e.g., Intel’s “hyperthreading” basically allows fast

switching between two threads, but not true parallel execution.

– Multicore — multiple independent CPUs on a chip, possibly sharing cache.



CSCI 4320 September 2, 2009

Slide 7

Memory Hierarchy

• In a perfect world — fast, big, cheap, as permanent as desired.

• In this world — hierarchy of types, from fast but expensive to slow but cheap:

registers, cache, RAM, magnetic disk, magnetic tape. (See picture, p. 23.)

• Note also — some types volatile, some non-volatile.

Slide 8

Registers and Caches

• Registers — part of processor, fastest to access but most expensive to build.

Managed explicitly in software.

• Caches (possibly multiple levels) — less fast, less expensive, bigger. Mostly

managed by hardware.

• Aside: Caching is a widely used strategy in computing! virtual memory, disk

blocks in memory, etc., etc.



CSCI 4320 September 2, 2009

Slide 9

Main Memory (RAM)

• Still less fast, less expensive, bigger.

• Shared among processes — which presents some interesting challenges . . .

Slide 10

Memory Protection

• Very useful to have a way to give each process (including o/s) its own

variables that other processes can’t alter.

• Usual approach — provide a hardware mechanism such that attempting to

access memory out of ranges generates exception/interrupt; several ways,

including:

– Limit each process to a range of memory locations; hold starting and

ending addresses in special registers.

– Partition memory into blocks, give each block a numeric key, give each

process a key, and only allow processes to access blocks if keys match.



CSCI 4320 September 2, 2009

Slide 11

Minute Essay

• I once had a learning experience about “how DOS is different from a real o/s”.

Summary version: A program using pointers (possibly uninitialized) caused

the whole machine to lock up, so thoroughly that the only recovery was to

power-cycle.

What do you think went wrong?

Slide 12

Minute Essay Answer

• The program changed memory at the addresses pointed to by the uninitialized

pointers — and this memory was being used by the o/s, possibly to store

something related to interrupt handling. A “real” o/s wouldn’t allow this!

(Then again, the version of MS-DOS in question was supposedly written to

run on hardware that didn’t provide memory protection, so maybe it’s not

DOS’s fault.)


