
CSCI 4320 September 14, 2009

Slide 1

Administrivia

• Homework 1 to be on Web later today. Due in a week.

Slide 2

System Calls

• Recall that some things can/should only be done by o/s (e.g., I/O), and

hardware can help enforce that.

• But application programs need to be able to request these services. How can

we make this work? System calls . . .



CSCI 4320 September 14, 2009

Slide 3

System Calls — Mechanism

• Library routine (running in user mode) sets up parameters and issues TRAP

instruction or similar. A key parameter says which system call is being made

(to create a process, open a file, etc.).

• TRAP instruction switches to kernel mode and transfers control to a fixed

address.

• At that address is code for “handler” that uses parameters set up by library

routine to figure out which system call is being invoked and call appropriate

code.

• When processing of system call is finished, control returns to calling program

— if appropriate. (What are other possibilities? Consider situations involving

waiting, errors.) Return to calling program also switches back to user mode.

Slide 4

System Calls — Services Provided

• Typical services provided include creating processes, creating files and

directories, etc., etc. — details depend on (and in some ways define, from

application programmer’s perspective) operating system.

• Examples discussed in textbook:

– POSIX (Portable Operating System Interface (for UNIX)) — about 100

calls.

– Win32 API (Windows 32-bit Application Program Interface) — thousands

of calls.

Worth noting that the actual number of system calls is likely smaller —

interface may contain function calls that are implemented completely in user

space (no TRAP to kernel space).



CSCI 4320 September 14, 2009

Slide 5

Interrupts

• Processing of TRAP instructions is similar to interrupts, so worth mentioning

here:

• Very useful to have a way to interrupt current processing when an unexpected

or don’t-know-when event happens — error occurs (e.g., invalid operation),

I/O operation completes.

• On interrupt, goal is to save enough of current state to allow us to restart

current activity later:

– Save old value of program counter.

– Disable interrupts.

– Transfer control to fixed location (“interrupt handler” or “interrupt vector”) —

normally o/s code that saves other registers, re-enables interrupts, decides

what to do next, etc.

Slide 6

Operating System Structures

• Clearly o/s could involve a whole lot of code (e.g., second edition of textbook

says 29M lines of code for Windows 2000). How to structure?

• Choices include:

– Monolithic systems.

– Layered systems.

– Microkernels.

– Client-server model.

– Virtual machines.

– Exokernels.



CSCI 4320 September 14, 2009

Slide 7

Monolithic Systems

• Tanenbaum’s description in the previous edition of the textbook — “The Big

Mess”. Maybe an exaggeration, since there can be some structure.

• Examples include MS-DOS, early UNIX.

• Arguments for this approach — “works, sort of”?

• Arguments against — easier for one malfunctioning component to crash

others.

Slide 8

Layered Systems

• Idea — use layers of abstraction, just as one structures application programs.

• Examples include THE, MULTICS, OS/2, Windows NT (more so in early

releases).

• Arguments for — nice separation of concerns, modularity.

• Arguments against — tricky to plan layers, performance can be slow.



CSCI 4320 September 14, 2009

Slide 9

Microkernel Systems

• Idea — make kernel itself as small as possible, package other services

separately, as independent processes.

• Examples include MINIX (written by Tanenbaum).

• Arguments for — modularity, reliability.

• Arguments against — tricky to plan layers, performance might be reduced.

Slide 10

Virtual Machines

• Idea — o/s provides a simulation of the actual physical machine, this “virtual

machine” then runs another o/s – or several of them.

• Examples include VM/370, Windows support for old MS-DOS programs,

VMware, Mac-on-Linux, Java Virtual Machine.

• Arguments for — separates multiprogramming from other concerns,

emulation aspect can be useful, useful in o/s development.

• Arguments against — another layer, so can be slower. Also, may not be

possible for some hardware — e.g., if privileged instructions executed in user

mode are simply ignored.

• (Notice how this is an idea that fell out of favor for a while, then came back.)



CSCI 4320 September 14, 2009

Slide 11

VM/370

• Idea — provide multiple “virtual machines”, each running its own o/s, which

could be:

– “Real” o/s such as MVS (another mainframe o/s) — in turn running many

processes.

– Not-quite-real o/s CMS — interactive single-user system rather like

MS-DOS, runs under VM/370 only (not on real hardware).

• Allows sharing of physical resources among multiple “client” o/s’s:

– CPU sharing — similar to multitasking.

– I/O device sharing — share physical devices, or allow exclusive use.

Slide 12

VM/370, Continued

• How does this work? briefly:

– Client o/s’s run native code, request o/s services in the usual way

(interrupt or system call).

– Interrupt handler is part of VM/370 — so it processes I/O

requests/interrupts, errors, etc.

– Client o/s system code runs in simulated supervisor mode (really user

mode).

• Successors to VM/370 (VM/ESA, z/VM) currently being used to run many

copies of Linux on a mainframe (!).



CSCI 4320 September 14, 2009

Slide 13

Minute Essay

• There is an old adage that says that any programming problem can be solved

by adding a layer of abstraction, while any performance problem can be

solved by removing a layer of abstraction.

How (if at all) does this apply to operating systems and how they are

structured?

Slide 14

Minute Essay Answer

• Based on the descriptions of the various operating-system structures, it looks

like the general principle applies here too — adding layers of abstraction can

improve correctness and reliability, but there is likely to be a performance

cost.


