
CSCI 4320 October 21, 2009

Slide 1

Administrivia

• Summary of grades will be mailed when I get Homework 2 graded. I based

midterm grades (for the registrar) on the midterm, Homework 1, and a

conservative estimate of Homework 2.

Slide 2

Memory Management, Introduction

• One job of operating system is to “manage memory” — assign sections of

main memory to processes, keep track of who has what, protect processes’

memory from other processes.

• As with CPU scheduling, we’ll look at several schemes, starting with the very

simple. For each scheme, think about how well it solves the problem, how it

compares to others.

• As with processes, there’s a tradeoff between simplicity and providing a nice

abstraction to user programs.



CSCI 4320 October 21, 2009

Slide 3

Simple Schemes — No Abstraction

• Memory (a.k.a. “RAM”) can be thought of as a very long list of numbered cells

(usually bytes).

• Simplest schemes for managing it don’t try to hide that view. (Name for these

come from older edition of Tanenbaum’s book.)

Slide 4

Monoprogramming

• Idea — only one user program/process at a time, no swapping or paging.

Only decision to make is how much memory to devote to o/s itself, where to

put it.

• Consider tradeoffs — complexity versus flexibility, efficient use of memory.

• Used in very early mainframes, MS-DOS; still used in some embedded

systems.



CSCI 4320 October 21, 2009

Slide 5

Multiprogramming With Fixed Partitions

• Idea — partition memory into fixed-size “partitions” (maybe different sizes),

one for each process. Possibly also add the ability to “swap” programs (write

their memory to disk, read back in later).

• Limits “degree of multiprogramming” (how many processes can run

concurrently).

• Probably necessitates admissions scheduling — either one input queue per

partition, or one combined queue.

If one combined queue, how to choose from it when a partition becomes

available? first job that fits? largest job that fits? etc.

• Consider tradeoffs — complexity versus flexibility, efficient use of memory.

• Used in early mainframes.

Slide 6

Sidebar: Three-Level Scheduling

• Basic idea — break up problem of scheduling (batch) work into three parts:

– Admissions scheduling — choose from input queue which jobs to “let into

the system” (create processes for).

– Memory scheduling — choose from among processes in system which to

keep in memory, which to “swap out” to disk.

– CPU scheduling — choose from among processes in memory which to

actually run.

• Points to consider:

– Are there advantages to limiting how many processes, how many in

memory? What criteria could we use?

– Are there advantages to the explicit three-level scheme?

– Would this (or a variant) work for interactive systems?

– Do all three schedulers have to be efficient?



CSCI 4320 October 21, 2009

Slide 7

Multiprogramming With Variable Partitions

• Idea — separate memory into partitions as before, but allow them to vary in

size and number.

I.e., “contiguous allocation” scheme.

• Like previous scheme, necessitates admissions scheduling.

• Requires that we keep track of locations and sizes of processes’ partitions,

free space. Notice potential for memory fragmentation.

• Consider tradeoffs — complexity versus flexibility, efficient use of memory.

• Used in early mainframes.

Slide 8

Program Relocation and Memory Protection

• At the machine-instruction level, references to memory are in terms of an

absolute number. Some references are made relative to the program counter,

but others may be absolute — i.e., generated when the program is translated

to machine language. Compilers/assemblers can generate these only by

making assumption about where program will reside in memory.

• In the very early days, all programs were loaded at address 0, so no problem.

With monoprogramming, too, all programs reside at the same address, so no

problem.

• What happens, though, if you want to have multiple programs in memory?

compilers/assemblers can’t generate correct absolute addresses, plus there’s

the problem of protecting each program’s memory from other programs.



CSCI 4320 October 21, 2009

Slide 9

Program Relocation and Memory Protection, Continued

• One solution to the relocation problem — generate, as part of the executable,

a list of locations where there’s an absolute address, and modify it as the

program is loaded into memory. (What implications does this have for being

able to do swapping?)

• One solution to the memory-protection problem — storage-protection keys

(IBM 360, an early mainframe).

• A better solution to both problems involves translating addresses “on the

fly” . . .

Slide 10

Sidebar: The “Address Space” Abstraction

• Basic idea is somewhat analogous to process abstraction, in which each

process has its own simulated CPU. Here, each process has its own

simulated memory.

• As with processes, implementing this abstraction is part of what an operating

system can/should do.

• Usually, though, o/s needs help from hardware . . .



CSCI 4320 October 21, 2009

Slide 11

Dynamic Address Translation

• Underlying idea — separate program addresses (relative to start of program’s

“address space”) from physical addresses (memory locations), and map

program addresses to physical addresses. Also try to identify out-of-bounds

addresses.

• Simplest such map based on base and limit addresses (B and L):

Program address p maps to memory location B + p.

If B + p > L, invalid (out of bounds).

If B and L are different for each process — solves both problems.

• Only practical way to implement — hardware “memory management unit” that

logically sits between the CPU and memory.

Simplifying, CPU references program addresses, MMU turns them into

physical addresses, generates interrupt if invalid.

Slide 12

A Simple MMU

• Idea — map each process’s address space to a contiguous chunk of real

memory, using base and limit registers.

• Solves both the relocation and protection problems, though may not be

especially fast.

• Consider tradeoffs — complexity versus flexibility.

• Used in some early mainframes and PCs.



CSCI 4320 October 21, 2009

Slide 13

Minute Essay

• How did the midterm compare to your expectations?


