
CSCI 4320 October 26, 2009

Slide 1

Administrivia

• (None.)

Slide 2

Paging — Review

• Recall basic ideas of paging:

– Divide address spaces into pages, memory into page frames; allocate

memory page (frame) by page (frame).

– Use page tables (one per process) to keep track of things.

– Use MMU to translate program (virtual) addresses into memory locations

— using page table for current process. Generate “page fault” interrupt if

impossible.

• Notice that we get memory protection for free; can also get memory sharing.



CSCI 4320 October 26, 2009

Slide 3

Page Table Entries

• Exactly what’s in a page table entry depends partly on hardware.

• Required(?) fields — page frame number, present/absent bit.

• Optional but useful fields — bits that can be used to track usage

(“referenced/modified”), bits indicating what access is allowed (e.g.,

read-only), etc.

Slide 4

Page Sizes and Other Details

• How big to make pages? compare extreme cases (really big, really small).

• If you know how big addresses are, what does that tell you about (maximum)

sizes of physical/virtual memory?

• How big are page tables . . .



CSCI 4320 October 26, 2009

Slide 5

Page Table Size — Example

• Given a page size of 64K (216), 64-bit addresses, and 4G (232) of main

memory, at least how much space is required for a page table? Assume that

you want to allow each process to have the maximum address space possible

with 64-bit addresses, i.e., 264 bytes.

• (Hints: How many entries? How much space for each one? and no, this is not

a very realistic system.)

Slide 6

Performance / Large Address Spaces

• Even with good choice of page size, serious performance implications —

page table can still be big, and every memory reference involves page-table

access — how to make this feasible/fast?

• Consider several options — compare access time, cost, context-switch time:

– Keep page table for current process in registers.

– Keep whole page table in main memory, pointed to by special register.

– Use multilevel page tables. (More about this later.)

– Use inverted page tables (one entry per page frame). (More about this

later.)

• If page tables are in memory, performance improves with “translation

lookaside buffer” (TLB) — special-purpose cache.



CSCI 4320 October 26, 2009

Slide 7

Large Address Spaces

• Clearly page tables can be big. How to make this feasible?

• One approach — multilevel page tables.

• Another approach — inverted page tables (one entry per page frame).

Slide 8

Paging and Virtual Memory

• Idea — if we don’t have room for all pages of all processes in main memory,

keep some on disk (“pretend we have more memory than we really do”).

• Or a simpler view: All address spaces live in secondary memory / swap space

/ backing store, and we “page in” as needed (demand paging).

• Making this work requires help from both hardware (MMU) and software

(operating system). To be continued . . .



CSCI 4320 October 26, 2009

Slide 9

Minute Essay

• None — sign in.


