
CSCI 4320 October 30, 2009

Slide 1

Administrivia

• Corrected version of sample solution for Homework 2 available in hardcopy.

Ask me. Or I’ll send a mass mail with corrections?

• Homework 3 coming soon, probably Monday, to be due in a week.

Slide 2

Page Replacement Algorithms, Continued

• Recall context — we want to move (or copy) a page from disk to memory, but

all page frames in memory are in use. So we have to “steal” a page frame.

How to choose?

• Other things being equal, the fewer page faults the better.

• We looked at several “page replacement algorithms” last time. More today.

But first . . .



CSCI 4320 October 30, 2009

Slide 3

Sidebar: Demand Paging, Prepaging, and Working Sets

• The purest form of paging is “demand paging” — processes are started with

no pages in memory, and pages are loaded into memory on demand only.

• An alternative is “prepaging” — try to load pages in advance of demand.

How?

• Most programs exhibit “locality of reference”, so a process usually isn’t using

all its pages.

• A process’s “working set” is the pages it’s using. Changes over time, with size

a function of time and also of how far back we look.

Slide 4

“Working Set” Algorithm

• Idea — steal / replace page not in recent working set. Define working set by

looking back τ time units (w.r.t. process’s virtual time). Value of τ is a tuning

parameter, to be set by o/s designer or sysadmin.

• Implementation:

– For each entry in page table, keep track of time of last reference.

– When we need to choose a page to replace, scan through page table and

for each entry:

If R = 1, update time of last reference.

Compute time elapsed since last use. If more than τ , page can be

replaced.

– If we don’t find a page to replace that way, pick the one with oldest time of

last use. If a tie, pick at random.

• How good is this? Good, but could be slow.



CSCI 4320 October 30, 2009

Slide 5

“WSClock” Algorithm

• Idea — efficient-to-implement variation of previous algorithm, based on

circular list of pages-in-memory for process. (Carr and Hennessy.)

• Implementation — like previous algorithm, but when we need to pick a page

to replace, go around the circle and:

– If R = 1, update time of last use. Compute time since last use.

– If time since last use is more than τ and M = 1, schedule I/O to write this

page out (so it can maybe be replaced next time — M bit will be cleared

when I/O completes). No need to block yet, though.

– If time since last use is more than τ and M = 0, replace this page.

The idea is to go around the circle until we find a page to replace, then stop.

(If we get all the way around the circle, we’ll pick some page with M = 0.)

• How good is this? Makes good choices, practical to implement, apparently

widely used in practice.

Slide 6

Modeling Page Replacement Algorithms

• Intuitively obvious that more memory leads to fewer page faults, right? Not

always!

• Counterexample — “Belady’s anomaly”, sparked interest in modeling page

replacement algorithms.

• Modeling based on simplified version of reality — one process only, known

inputs. Can then record “reference string” of pages referenced.

• Given reference string, p.r.a., and number of page frames, we can calculate

number of page faults.

• How is this useful? can compare different algorithms, and also determine if a

given algorithm is a “stack algorithm” (more memory means fewer page

faults).



CSCI 4320 October 30, 2009

Slide 7

Page Replacement Algorithms — Recap

• Nice summary in textbook (table at end of section 3.4).

• Tanenbaum says best choices are aging, WSClock.

• Now move on to other issues to consider . . .

Slide 8

Global Versus Local Allocation

• In deciding which page to replace, consider all pages (“global allocation”), or

just those that belong to the current process (“local allocation”)?

• Generally, global approach works better, but not all page replacement

algorithms can work that way (e.g., WSClock). Hybrid strategy — combine

local approach with some way to vary processes’ allocations.



CSCI 4320 October 30, 2009

Slide 9

Thrashing and Load Control

• What happens if combined working sets of all processes don’t fit into

memory? “Thrashing”. (See minute essay from last time!)

• What to do? temporarily “swap out” some processes, or other forms of “load

control”.

Slide 10

Sharing Pages

• Shared pages can be useful, but can also present problems.

• Multiple processes running the same program is relatively easy (why?) but

has one potential downside (what?)

• UNIX fork system call is — interesting in this context. POSIX definition

says that child process’s address space is basically a copy of the parent’s

address space. What’s the easy-to-implement way to do this? What downside

does that have in current systems? Is there a way to reduce its impact? And

why duplicate in the first place?



CSCI 4320 October 30, 2009

Slide 11

Sharing Pages and fork

• Duplicating pages is easy but inefficient, especially if the child process is

going to call execve or something similar right away. Some systems use

“copy-on-write” to improve efficiency.

• Why did the people who designed UNIX require this duplication . . . Possibly

because it makes some things easy (such as setting up parent/child pipes)

and wasn’t very costly when designed. Windows’ system call for creating

processes takes a different approach. Maybe that’s better!

Slide 12

Minute Essay

• None — sign in.


