
CSCI 4320 November 4, 2009

Slide 1

Administrivia

• Summary of grade information mailed Friday. Letter grades are conservative.

• Homework 3 to be on Web soon. Due in a week.

Slide 2

Sharing Pages, Continued

• Shared pages can be useful, but can also present problems.

• Examples discussed last time: processes sharing all of “code” part of address

space, optimization for fork system call.

• And what about sharing code at a level below whole programs (UNIX “shared

libraries”, Windows DLLs)? Seems attractive; are there potential problems?



CSCI 4320 November 4, 2009

Slide 3

Shared Libraries

• One attraction is somewhat obvious — if code for library functions (e.g.,

printf) is statically linked into every program that uses it, programs need

more memory — seems wasteful if processes can share one copy of code in

memory.

• Another attraction is that library code can be updated independently of

programs that use it. (Is there a downside to that?)

• How to make this happen . . . At link time, programs get “stub” versions of

functions. References to real versions resolved at load time. Does this remind

you of anything? and suggest a possible problem? how to fix?

Slide 4

Shared Libraries, Continued

• Downside of replacing shared libraries — may break applications that call

their function. UNIX provides a way around this.

• Resolving references to shared code at load time — finer-grained version of

“relocation problem”, no? and fixable by making sure library contains only

“position-independent code”.



CSCI 4320 November 4, 2009

Slide 5

Memory-Mapped File I/O

• Worth mentioning here that some systems also provide a mechanism (e.g.,

via system calls) to allow reading/writing whole files into/from memory. If

there’s enough memory, this could improve performance.

• Example of how this works in Linux — man page for mmap.

Slide 6

One More Design Issue

• Page replacement algorithms as discussed all seem based on the idea that

we let memory fill up, and then “steal” page frames as needed. Is that really

the best way . . .

• An alternative — background process (“paging daemon”) that tries to keep a

supply of free page frames, or at least ones that can be stolen without

needing to write out their contents. Can use algorithms similar to page

replacement algorithms to do this.



CSCI 4320 November 4, 2009

Slide 7

Paging — Operating System Versus MMU

• Some aspects of paging are dealt with by hardware (MMU) — translation of

program addresses to physical addresses, generation of page faults, setting

of R and M bits.

• Other aspects need o/s involvement. What/when?

Slide 8

Paging — Operating System Involvement

• Process creation requires setting up page tables and other data structures.

Process termination requires freeing them.

• Context switches require changing whatever the MMU uses to find the current

page table.

• And of course it’s the operating system that handles page faults!

• Some details . . .



CSCI 4320 November 4, 2009

Slide 9

Processing Memory References — MMU

• Does cache contain data for (virtual) address? If so, done.

• Does TLB contain matching page table entry? If so, generate physical

address and send to memory bus.

• Does page table entry (in memory) say page is present? If so, put PTE in TLB

and as above.

• If page table entry says page not present, generate page fault interrupt.

Transfers control to interrupt handler.

Slide 10

Processing Memory References — Page Fault Interrupt
Handler

• Is page on disk or invalid (based on entry in process table, or other o/s data

structure)? If invalid, error — terminate process.

• Is there a free page frame? If not, choose one to steal. If it needs to be saved

to disk, start I/O to do that. Update process table, PTE, etc., for “victim”

process. Block process until I/O done.

• Start I/O to bring needed page in from swap space (or zero out new page). If

I/O needed, block process until done.

• Update process table, etc., for process that caused the page fault, and restart

it at instruction that generated page fault.



CSCI 4320 November 4, 2009

Slide 11

Paging — One More Hardware Issue

• What if page to be replaced is waiting for I/O? probably trouble if we replace it

anyway.

• One solution — allow pages to be “locked”.

• Another solution — do all I/O to o/s pages, then move to user pages.

Slide 12

Processing Memory References — Details Still To Fill In

• How to keep track of pages on disk.

• How to keep track of which page frames are free.

• How to “schedule I/O” (but that’s later).



CSCI 4320 November 4, 2009

Slide 13

Keeping Track of Pages on Disk

• To implement virtual memory, need space on disk to keep pages not in main

memory. Reserve part of disk for this purpose (“swap space”); (conceptually)

divide it into page-sized chunks. How to keep track of which pages are

where?

• One approach — give each process a contiguous piece of swap space.

Advantages/disadvantages?

• Another approach — assign chunks of swap space individually.

Advantages/disadvantages?

• Either way — processes must know where “their” pages are (via page table

and some other data structure), operating system must know where free slots

are (in memory and in swap space).

Slide 14

One More Memory Management Strategy —
Segmentation

• Idea — make program address “two-dimensional” / separate address space

into logical parts. So a virtual address has two parts, a segment and an offset.

• To map virtual address to memory location, need “segment table”, like page

table except each entry also requires a length/limit field. (So this is like a

cross between contiguous-allocation schemes and paging.)



CSCI 4320 November 4, 2009

Slide 15

Segmentation, Continued

• Benefits?

– Nice abstraction; nice way to share memory.

– Flexible use of memory — can have many areas that grow/shrink as

required, not just heap and stack — especially if we combine with paging.

• Drawbacks?

– External fragmentation possible (can offset by also paging).

– More complex.

– “Paging” in/out more complex — issues similar to with

contiguous-allocation.

Slide 16

Memory Management in Windows

• Apparently very complex, but basic idea is paging.

• Intraprocess memory management is in terms of code regions (some shared

— DLLs), data regions, stack, and area for o/s. “Virtual Address Descriptor”

for each contiguous group of pages tracks location on disk, etc.

• Memory-mapped files can make I/O faster and allow processes to (in effect)

share memory.

• Demand-paged, with six (!) background threads that try to maintain a store of

free page frames. Page replacement algorithm is based on idea of working

set.



CSCI 4320 November 4, 2009

Slide 17

Memory Management in UNIX/Linux

• Very early UNIX used contiguous-allocation or segmentation with swapping.

Later versions use paging. Linux uses multi-level page tables; details depend

on architecture (e.g., three levels for Alpha, two for Pentium).

• Intraprocess memory management is in terms of text (code) segment, data

segment, and stack segment. Linux reserves part of address space for o/s.

For each contiguous group of pages, “vm area struct” tracks location on disk,

etc.

• Memory-mapped files can make I/O faster and allow processes to (in effect)

share memory.

• Demand-paged, with background process (“page daemon”) that tries to

maintain a store of free page frames. Page replacement algorithms are

mostly variants of clock algorithm.

Slide 18

Minute Essay

• At least one early mainframe operating system supported virtual memory

(i.e., keeping some pages on disk), but provided only a single address space

that all processes shared. How does this compare with giving each process

its own address space — with respect to simplicity, efficiency, anything else

you can think of? (There appears to be active research into reviving this idea.

Hm!)

• Anything about memory management you’d like to hear more about / have

clarified?



CSCI 4320 November 4, 2009

Slide 19

Minute Essay Answer

• A single address space seems like it might be simpler and more efficient —

could have a single page table. Also it would be easier for processes to share

memory. But it seems potentially less secure — how to protect one process’s

memory for another? — and probably would make it very difficult to

implement fork. (You may think of other considerations!)


