
CSCI 4320 November 11, 2009

Slide 1

Administrivia

• Reminder: Homework 3 due Monday (extended by request). Small

corrections/clarifications about programming problems sent by e-mail earlier

today.

• (E-mail about class before holiday sent . . . )

Slide 2

Minute Essay From Last Lecture — Some Responses

• Different requirements — based on hardware, what the system is used for,

etc. Different goals.

• “Better ideas”.

• Lots of design choices, so people have tried out different ones.

• No one filesystem will be good for all uses.

• Everybody likes his/her ideas best (companies too).

• Avoidance of copyright infringement (?).

• Sometimes have to keep old ones around for compatibility.

• (Also review added slide — filesystem quotas.)



CSCI 4320 November 11, 2009

Slide 3

Filesystem Performance

• Access to disk data is much slower than access to memory — seek time plus

rotational delay plus transfer time.

• So, file systems include various optimizations . . .

Slide 4

Improving Filesystem Performance — Caching

• Idea — keep some disk blocks in memory; keep track of which ones are there

using hash table (base hash code on device and disk address).

• When cache is full and we must load a new block, which one to replace?

Could use algorithms based on page replacement algorithms, could even do

LRU accurately — though that might be wrong (e.g., want to keep data blocks

being filled).

• When should blocks be written out?

– If block is needed for file system consistency, could write out right away. If

block hasn’t been written out in a while, also could write out, to avoid data

loss in long-running program.

– Two approaches: “Write-through cache” (Windows) — always write out

modified blocks right away. Periodic “sync” to write out (UNIX).



CSCI 4320 November 11, 2009

Slide 5

Improving Filesystem Performance — Block
Read-Ahead

• Idea — if file is being read sequentially, can read some blocks “ahead”. (Of

course, doesn’t help if file is being read non-sequentially. Decide based on

recent access patterns.)

Slide 6

Improving Filesystem Performance — Reducing Disk
Arm Motion

• Group blocks for each file together — easier if bitmap is used to keep track of

free space. If not grouped together — “disk fragmentation” may affect

performance.

• If i-nodes are being used, place them so they’re fast to get to (and so maybe

we can read an i-node and associated file block together).



CSCI 4320 November 11, 2009

Slide 7

Disk Fragmentation

• Idea — if blocks that make up a file are (mostly) contiguous, faster to read

them all. If not, “disk fragmentation”.

• How likely is disk fragmentation? Depends on filesystem, strategy for

allocating space for files.

• “Defragmenter” utility can be run to correct it. Windows comes with one.

Linux doesn’t. The claim is that UNIX and Linux filesystems typically don’t

become fragmented unless the disk is close to full.

Slide 8

Example Filesystem — Unix V7

• Filename restriction — each part of path name at most 14 characters.

• So, directory entry is just 14-byte name and i-node number.

• I-nodes are all stored in a contiguous array at the start of the file system (right

after boot block and a “superblock” containing additional parameters).

• What’s in each i-node? attributes (permission bits, numeric owner and group

ID, timestamps, links count) and list of blocks — last is pointer to more blocks.

• To find a file:

– Start with root directory — its i-node is in a known place.

– Scan directory for first part of path, get its i-node, read it, scan for next part

of path, etc.

– Relative path names are handled by including “.” and “..” in each directory,

so no special code needed.



CSCI 4320 November 11, 2009

Slide 9

Minute Essay

• This wraps up the planned lectures on filesystems. Anything you’d like to hear

more about?


