
CSCI 4320 (Principles of Operating Systems), Fall 2010

Homework 3

Credit: 30 points.

1 Reading

Be sure you have read Chapter 2, sections 2.4 through 2.5.

2 Problems

Answer the following questions. You may write out your answers by hand or using a word processor
or other program, but please submit hard copy, either in class or in my mailbox in the department
office.

1. (5 points) Five batch jobs (call them A through E) arrive at a computer center at almost
the same time. Their estimated running times (in minutes) and priorities are as follows, with
5 indicating the highest priority:

job running time priority

A 10 3

B 6 5

C 2 2

D 4 1

E 8 4

For each of the following scheduling algorithms, determine the turnaround time for each job
and the average turnaround time. Assume that all jobs are completely CPU-bound (i.e., they
do not block). (Before doing this by hand, decide how much of programming problem 1 you
want to do.)

• First-come, first-served (run them in alphabetic order by job name).

• Shortest job first.

• Round robin, using a time quantum of 1 minute.

• Round robin, using a time quantum of 2 minutes.

• Preemptive priority scheduling.

2. (5 points) Suppose that a scheduling algorithm favors processes that have used the least
amount of processor time in the recent past. Why will this algorithm favor I/O-bound
processes yet not permanently starve CPU-bound processes, even if there is always an I/O-
bound process ready to run?

3. (5 points) Solve the dining philosophers problem with monitors rather than semaphores.
(Do this yourself, though, rather than looking for a solution online or in another book!)

1



CSCI 4320 Homework 3 Fall 2010

4. (5 points) Restrooms are usually designated as men-only or women-only, but this requires
having two restrooms if everyone is to be accommodated. A less expensive approach consistent
with cultural norms in the U.S. would be to have one restroom with a sign on the door that
indicates its current state — empty, in use by at least one woman, or in use by at least one
man. If it is empty, either a man or a women may enter; if it is occupied, a person of the same
sex may enter, but a person of the opposite sex must wait until it is empty. Write pseudocode
for four functions to implement this approach: woman enter, man enter, woman leave, and
man leave, to be used by the following pseudocode:

/* woman process */

while (TRUE) {

woman_enter();

use_restroom();

woman_leave();

do_other_stuff();

}

/* man process */

while (TRUE) {

man_enter();

use_restroom();

man_leave();

do_other_stuff();

}

You can use any of the synchronization mechanisms we have talked about (shared variables,
semaphores, monitors, or even message passing).

3 Programming Problems

Do the following programming problems. You will end up with at least one code file per prob-
lem. Submit your program source (and any other needed files) by sending mail to bmassing@cs.

trinity.edu, with each file as an attachment. Please use a subject line that mentions the course
number and the assignment (e.g., “csci 4320 homework 3”). You can develop your programs on
any system that provides the needed functionality, but I will test them on one of the department’s
Fedora Linux machines, so you should probably make sure they work in that environment before
turning them in.

1. (10 points) The starting point for this problem is a Java program that simulates execution
of a scheduler, i.e., generates solutions to problem 1. Currently the program simulates only
the FCFS algorithm. Your mission is to make it simulate one or more of the other algorithms
mentioned in problem 1. You will get full credit for simulating one algorithm, extra points
for simulating additional algorithms. The program consists of several classes, collected in a
package called scheduler:

• API documentation1.

1http://www.cs.trinity.edu/~bmassing/Classes/CS4320_2010fall/Homeworks/HW03/Problems/scheduler/

docs/

2



CSCI 4320 Homework 3 Fall 2010

• Code2. (Class SchedulerTest contains the main method of interest.)

• Sample input3.

Feel free to rewrite anything about this program, including starting over in a language of your
choice. Just remember that the program has to run on one of the department Linux machines,
and it needs to accept input from command-line arguments and files — i.e., no GUIs, Web-
based programs, etc. The latter requirement is to make it easier for me to automate testing
your code. If you make changes to the format of the input — and I prefer that you don’t —
change the comments so they describe the changed requirements.

2. (Optional — up to 5 extra-credit points) Write a program to test your solution to either
problem 3 or problem 4. If you want to do this using C and POSIX threads, you could start
with the code for the programming problem in Homework 2. Or you could write in Java
and use its monitor-based synchronization (synchronized methods/blocks plus wait, notify,
and notifyAll) and/or features of the java.util.concurrent library package (which has,
among many other things, a Semaphore library class). You can find some simple examples of
multithreaded Java programs on the “Sample programs” page for my parallel programming
class: http://www.cs.trinity.edu/ bmassing/CS3366/SamplePrograms/4. The bounded buffer
example may be useful if you want to use monitor-based synchronization.

2http://www.cs.trinity.edu/~bmassing/Classes/CS4320_2010fall/Homeworks/HW03/Problems/scheduler/

source/scheduler
3http://www.cs.trinity.edu/~bmassing/Classes/CS4320_2010fall/Homeworks/HW03/Problems/scheduler/

sample.in
4http://www.cs.trinity.edu/~bmassing/CS3366/SamplePrograms/

3


