
CSCI 4320 (Principles of Operating Systems), Fall 2010

Homework 4

Credit: 20 points.

1 Reading

Be sure you have read Chapter 3, sections 3.1 through 3.3.

2 Problems

Answer the following questions. You may write out your answers by hand or using a word processor
or other program, but please submit hard copy, either in class or in my mailbox in the department
office.

1. (5 points) Consider a computer system with 10,000 bytes of memory whose MMU uses
the simple base register / limit register scheme described in section 3.2 of the textbook, and
suppose memory is currently allocated as follows:

• Locations 0–1999 are reserved for use by the operating system.

• Process A occupies locations 5000–6999.

• Process B occupies locations 7000–8999.

• Other locations are free.

Answer the following questions about this system.

(a) What value would need to be loaded into the base register if we performed a context
switch to restart process A?

(b) What memory locations would correspond to the following virtual (program) addresses
in process A?

• 100

• 4000

2. (5 points) Consider a computer system using paging to manage memory; suppose it has
64K (216) bytes of memory and a page size of 4K bytes, and suppose the page table for some
process (call it process A) looks like the following.

Page number Present/absent bit Page frame number

0 1 5

1 1 6

2 1 2

3 0 ?

4 0 ?

5 1 7

6 0 ?

. . . 0 ?

15 0 ?

1



CSCI 4320 Homework 4 Fall 2010

Answer the following questions about this system.

(a) How many bits are required to represent a physical address (memory location) on this
system? If each process has a maximum address space of 64K bytes, how many bits are
required to represent a virtual (program) address?

(b) What memory locations would correspond to the following virtual (program) addresses
for process A? (Here, the addresses will be given in hexadecimal, i.e., base 16, to make
the needed calculations simpler. Your answers should also be in hexadecimal. Notice
that if you find yourself converting between decimal and hexadecimal, you are doing the

problem the hard way. Stop and think whether there is an easier way!)

• 0x1420

• 0x2ff0

• 0x4008

• 0x0010

(c) If we want to guarantee that this system could support 16 concurrent processes and give
each an address space of 64K bytes, how much disk space would be required for storing
out-of-memory pages? Explain your answer (i.e., show/explain how you calculated it).
Assume that the first page frame is always in use by the operating system and will never
be paged out. You may want to make additional assumptions; if you do, say what they
are.

3. (5 points) Now consider a bigger computer system, one in which addresses (both physical
and virtual) are 32 bits and the system has 232 bytes of memory. Answer the following
questions about this system. (You can express your answers in terms of powers of 2, if that
is convenient.)

(a) What is the maximum size in bytes of a process’s address space on this system?

(b) Is there a logical limit to how much main memory this system can make use of? That
is, could we buy and install as much more memory as we like, assuming no hardware
constraints? (Assume that the sizes of physical and virtual addresses don’t change.)

(c) If page size is 4K (212) and each page table entry consists of a page frame number and four
additional bits (present/absent, referenced, modified, and read-only), how much space is
required for each process’s page table? (You should express the size of each page table
entry in bytes, not bits, assuming 8 bits per byte and rounding up if necessary.)

(d) Suppose instead the system uses a single inverted page table (as described in section 3.3.4
of the textbook), in which each entry consists of a page number, a process ID, and
four additional bits (free/in-use, referenced, modified, and read-only), and at most 64
processes are allowed. How much space is needed for this inverted page table? (You
should express the size of each page table entry in bytes, not bits, assuming 8 bits per
byte and rounding up if necessary.) How does this compare to the amount of space
needed for 64 regular page tables?

4. (5 points) Tanenbaum says, in one of the questions at the end of the chapter, that although
the 8086 processor provided no support for virtual memory, there were companies that sold
computer systems that used an unmodified 8086 processor and did paging. How do you think
they managed this? (Hint: Think about the logical location of the MMU.)

2


