
CSCI 4320 (Principles of Operating Systems), Fall 2010

Homework 5

Credit: 40 points.

1 Reading

Be sure you have read Chapter 3, sections 3.4 through 3.9.

2 Problems

Answer the following questions. You may write out your answers by hand or using a word processor
or other program, but please submit hard copy, either in class or in my mailbox in the department
office.

1. (5 points) The operating system designers at Acme Computer Company have been asked
to think of a way of reducing the amount of disk space needed for paging. One person
proposes never saving pages that only contain program code, but simply paging them in
directly from the file containing the executable. Will this work always, never, or sometimes?
If “sometimes”, when will it work and when will it not? (Hint: Search your recollections of
CSCI 2321 — or another source — for a definition of “self-modifying code”.)

2. (5 points) How long it takes to access all elements of a large data structure can depend on
whether they’re accessed in contiguous order (i.e., one after another in the order in which
they’re stored in memory), or in some other order. The classic example is a 2D array, in
which performance of nested loops such as

for (int r = 0; r < ROWS; ++r)

for (int c = 0; c < COLS; ++c)

array[r][c] = foo(r,c);

can change drastically for a large array if the order of the loops is reversed. Give an expla-
nation for this phenomenon based on what you have learned from our discussion of memory
management. For extra credit, give another explanation that is actually probably likelier to
be true of current systems.

3. (5 points) Consider (imagine?) a very small computer system with only four page frames.
Suppose you have implemented the aging algorithm for page replacement, using 4-bit counters
and updating the counters after every clock tick, and suppose the R bits for the four pages
are as follows after the first four clock ticks.

Time R bit (page 0) R bit (page 1) R bit (page 2) R bit (page 3)

after tick 1 0 1 1 1

after tick 2 1 0 1 1

after tick 3 1 0 1 0

after tick 4 1 1 0 1

1



CSCI 4320 Homework 5 Fall 2010

What are the values of the counters (in binary) for all pages after these four clock ticks? If a
page needed to be removed at that point, which page would be chosen for removal?

4. (5 points) A computer at Acme Company used as a compute server (i.e., to run non-
interactive jobs) is observed to be running slowly (turnaround times longer than expected).
The system uses demand paging, and there is a separate disk used exclusively for paging.
The sysadmins are puzzled by the poor performance, so they decide to monitor the system.
It is discovered that the CPU is in use about 20% of the time, the paging disk is in use about
98% of the time, and other disks are in use about 5% of the time. For each of the following,
say whether it would be likely to increase CPU utilization (i.e., the percentage of time the
CPU is in use) and why.

(a) Installing a faster CPU.

(b) Installing a larger paging disk.

(c) Increasing the number of processes (degree of multiprogramming).

(d) Decreasing the number of processes (degree of multiprogramming).

(e) Installing more main memory.

(f) Installing a faster paging disk.

3 Programming Problems

Do the following programming problems. You will end up with at least one code file per prob-
lem. Submit your program source (and any other needed files) by sending mail to bmassing@cs.

trinity.edu, with each file as an attachment. Please use a subject line that mentions the course
number and the assignment (e.g., “csci 4320 homework 5”). You can develop your programs on
any system that provides the needed functionality, but I will test them on one of the department’s
Fedora Linux machines, so you should probably make sure they work in that environment before
turning them in.

1. (10 points) Write a program or programs to demonstrate the phenomenon described in
problem 2. Turn in your program(s) and output showing differences in execution time. (It’s
probably simplest to just put this output in a text file and send that together with your source
code file(s).) Try to do this in a way that shows a non-trivial difference in execution time (so
you will likely need to make the arrays or other data structures large). I’d prefer programs
in C, C++, or Java, but anything that can be compiled and executed on one of the Fedora
lab machines is fine, as long as you tell me how to compile and execute what you turn in, if
it’s not C/C++ or Java. You don’t have to develop and run your programs on one of the lab
machines, but if you don’t, (1) tell me what system you used instead, and (2) be sure your
programs at least compile and run on one of the lab machines, even if they don’t necessarily
give the same timing results as on the system you used.

Possibly helpful hints:

• An easy way to measure how long program mypgm takes on a Linux system is to run it by
typing time mypgm. Another way is to run it with /usr/bin/time mypgm. (This gives
more/different information — try it.) If you’d rather put something in the program
itself to collect and print timing information, for C/C++ programs you could use the

2



CSCI 4320 Homework 5 Fall 2010

function in timer.h1 to obtain starting and ending times for the section of the code you
want to time, or for Java programs you could use System.currentTimeMillis.

• Your program doesn’t have to use a 2D array (you might be able to think of some other
data structure that produces the same result). If you do use a 2D array, though, keep
in mind the following:

– To the best of my knowledge, C and C++ allocate local variables on the stack,
which may be limited in size. Dynamically allocated variables (i.e., those allocated
with malloc or new) aren’t subject to this limit.

– Dynamic allocation of 2D arrays in C is full of pitfalls. It may be easier to just
allocate a 1D array and fake accessing it as a 2D array (e.g., the element in x[i][j],
if x is a 2D array, is at offset i*ncols+j).

2. (10 points) The starting point for this problem is a Java program that simulates execution
of a page replacement algorithm. Currently the program simulates only the FIFO algorithm.
Your mission is to make it simulate one or more of the other algorithms mentioned in the
text (and listed in commented-out code in the main program). You will get full credit for
simulating one algorithm, extra points for simulating additional algorithms. The program
consists of several classes collected in a package called pagingsimulator.

• API documentation2.

• Code3. (Class PageReplacerTest contains a main method to test all algorithms.)

• Sample input4. (Output from my sample solution5.)

• Another sample input6. (Output from my sample solution7.)

Feel free to rewrite anything about this program, including starting over in a language of
your choice. Just remember that the program has to run on one of the department Linux
machines, and it needs to accept input from command-line arguments and files — no GUIs,
Web-based programs, etc. The latter requirement is to make it easier for me to automate
testing your code. If you make changes to the format of the input — and I prefer that you
don’t — change the comments so they describe the changed requirements.

Make the following assumptions:

• Initially memory is empty.

• All memory references are valid — if the page is not in memory, it can be read in from
disk. (You don’t have to simulate that part, just count how often it happens.)

1http://www.cs.trinity.edu/~bmassing/Classes/CS4320_2010fall/Homeworks/HW04/Problems/timer.h
2http://www.cs.trinity.edu/~bmassing/Classes/CS4320_2010fall/Homeworks/HW04/Problems/

pagingsimulator/docs/
3http://www.cs.trinity.edu/~bmassing/Classes/CS4320_2010fall/Homeworks/HW04/Problems/

pagingsimulator/source/pagingsimulator/
4http://www.cs.trinity.edu/~bmassing/Classes/CS4320_2010fall/Homeworks/HW04/Problems/

pagingsimulator/sample.in
5http://www.cs.trinity.edu/~bmassing/Classes/CS4320_2010fall/Homeworks/HW04/Problems/

pagingsimulator/sample.out
6http://www.cs.trinity.edu/~bmassing/Classes/CS4320_2010fall/Homeworks/HW04/Problems/

pagingsimulator/another.in
7http://www.cs.trinity.edu/~bmassing/Classes/CS4320_2010fall/Homeworks/HW04/Problems/

pagingsimulator/another.out

3


