
CSCI 4320 September 13, 2010

Slide 1

Administrivia

• Reminder: Homework 1 due Wednesday.

(A request: When you turn in homework by e-mail — as you will for programs

— please put something in the subject line that identifies the course and the

assignment!)

Slide 2

Process Abstraction

• We want o/s to manage “things happening at the same time” — applications,

hidden tasks such as managing a device, etc.

• Key abstraction for this — “process” — program plus associated data,

including program counter.

• True concurrency (“at the same time”) requires more than one CPU (more

properly now, “more than one CPU/core”?). Can get apparent concurrency

via interleaving — model one virtual CPU per process and have the real

processor switch back and forth among them (“context switch”).

(Aside: In almost all respects, this turns out to be indistinguishable from true

concurrency. “Hm!”?)

• Can also associate with process an “address space” — range of addresses

the program can use. Simplifying a little, this is “virtual memory” (like the

virtual CPU) that only this process can use.



CSCI 4320 September 13, 2010

Slide 3

Context Switches

• What is it? switch from one process to another.

• When should this happen?

Slide 4

Context Switches, Continued

• Should happen

– when a process’s “time slice” is up.

– when there’s an unrecoverable error.

– when there’s something that needs to be done right away (e.g., deal with

input/output).

– maybe other times? (when a process has to wait for something, e.g.).

All signalled by some kind of interrupt.

• Goal is to suspend work on a process such that we can later pick up exactly

where we left off. How do we make that happen?

(Think about what the hardware does when an interrupt happens, what’s

included in that “virtual CPU”.)



CSCI 4320 September 13, 2010

Slide 5

Context Switches, Continued

• On interrupt, hardware saves program counter (at least — why?), transfers

control to fixed location — which contains o/s code.

• That O/S code has to

– Save CPU state (program counter, registers, etc.) for the current process.

– Deal with interrupt (details depend on type — I/O versus timer versus . . . ).

– Restore CPU state for “next” process (previously saved), thereby restarting

it.

(“Next” process? yes, o/s might have to choose — more about that later.)

Slide 6

Process Creation and Termination

• When are processes created?

– At system startup.

– When another process makes a “create process” system call — e.g., to

start a new application.

• When are processes destroyed?

– At program exit.

– After some kinds of errors.

– When another process makes a “kill process” system call.



CSCI 4320 September 13, 2010

Slide 7

Process States

• Can think of processes as being in one of three states:

– “Running” — being executed by a CPU.

– “Blocked” — waiting for something to happen (I/O to complete, another

process to do something, etc.) and unable to do anything useful until it

does.

– “Ready” — not blocked, but waiting because all CPUs are currently

executing other processes.

• Possible transitions? Which ones require decision-making?

Slide 8

Process States, Continued

• Possible transitions (figure in textbook, p. 90):

– Running to blocked — happens when, e.g., a process makes an I/O

request and can’t continue until it’s complete.

– Blocked to ready — happens when the event the blocked process is

waiting for occurs.

– Running to ready, ready to running — needed if we want some sort of

time-sharing (give all non-blocked processes “a turn” frequently).

• Notice that moving to and from “blocked” state doesn’t involve

decision-making, but ready/running transitions do.

• The decision-maker — “scheduler” (to be discussed later). Often “running to

ready” is triggered by an interrupt (I/O, timer, etc.), and “ready to running”

involves this scheduler.



CSCI 4320 September 13, 2010

Slide 9

Implementing Processes

• Think about how you would implement this abstraction . . .

• First, you’d want a data structure to represent each process, to include —

what?

Slide 10

Implementing Processes, Continued

• Data structure to represent each process would include some way to

represent such things as:

– Process ID.

– Process state (running / ready / blocked).

– Information needed for context switch — a place to save program counter,

registers, etc.

– Other stuff as needed — e.g., a list of open files.

• Then you’d collect these into a table (or some similar structure) — “process

control table”, with individual data structures being “entries in the process

control table” or “process control blocks”.



CSCI 4320 September 13, 2010

Slide 11

Implementing Processes, Example — Linux

• Each process (“task”) is represented by a C struct containing information

similar to what we described.

• These structs are chained as a doubly-linked list; there is also a hash

table keyed by PID.

• (This is according to online information about the 2.4 kernel.)

Slide 12

Minute Essay

• In a system with 8 CPUs and 100 processes, what are the maximum and

minimum number of processes that can be running? ready? blocked?



CSCI 4320 September 13, 2010

Slide 13

Minute Essay Answer

• Blocked: Maximum of 100 (unless you assume that there’s an “idle” operating

system process that runs when nothing else does and never blocks, and

maybe one of these is needed for every CPU). Minimum of 0.

• Running: Maximum of 8, because there are 8 CPUs. Minimum of 0 (again

unless you assume that there’s an o/s process that runs when nothing else

does).

• Ready: Maximum of 92, since all CPUs will be running processes if there are

any that can be run. (Depending on details, you might have to add “except

during context switches, when the scheduler is choosing the next process to

run on a CPU”.) Minimum of 0, since they could all be blocked or running.


