CSCIT 4320 September 29. 2010

Administrivia

e (None.)

Slide 1

Review — Mutual Exclusion Problem

e |n many situations, we want only one process at a time to have access to

some shared resource.

e Generic/abstract version — multiple processes, each with a “critical region”

(“critical section”):

. while (true) {

S“de 2 Il wait here if not "safe" to proceed
do_cr(); /1 nust be "finite"
do_non_cr(); /1 need not be "finite"

}

e Goal is to add something to this code such that:
1. No more than one process at a time can be “in its critical region”.
2. No process not in its critical region can block another process.
3. No process waits forever to enter its critical region.
4

. No assumptions are made about how many CPUs, their speeds.

. J

CSCIT 4320 September 29. 2010

Proposed Solution — Peterson’s Algorithm

e Shared variables:

int turn = 0; Il "who tried nost recently"
bool interested0 = false, interestedl = fal se;

Pseudocode for process pO: Pseudocode for process p1:
while (true) { while (true) {
interested0 = true; interestedl = true;
turn = 0; turn = 1;
Slide 3 while ((turn == 0) while ((turn == 1)
& interestedl); && interestedo);
do_cr(); do_cr();
interested0 = fal se; interestedl = fal se;
do_non_cr(); do_non_cr();

} }
e Does it work? Yes.

4)

Peterson’s Algorithm, Continued

e Intuitive idea — p0 can only start do_cr () if either p1 isn’t interested, or p1

is interested but it's pO’s turn; t Ur n “breaks ties”.

e Semi-formal proof using invariants is a bit tricky. Proposed invariant: “If pO is
in its critical region, i Nt er est edO is true and either i nt er est edlis

Slide 4 false or t ur n is 1”; similarly for p1.

If we can show this is an invariant, first requirement is met. Others are too.

But a fiddly detail — the invariant can be false if p0 is in its critical region

when p1 executes the linesi nterestedl = true; turn = 1;.

See next slide for revision.

CSCIT 4320 September 29. 2010

Peterson’s Algorithm, Continued

e Shared variables:

int turn = 0; Il "who tried nost recently"
bool interested0 = false, interestedl = fal se;

Pseudocode for process pO: Pseudocode for process p1:
while (true) { while (true) {

interested0 = true; // L1 interestedl = true; // L1

turn = 0; L2 turn = 1; L2

Slide 5 while ((turn == 0) while ((turn == 1)
& interestedl); && interestedo);

do_cr(); do_cr();

interested0 = fal se; interestedl = fal se;

do_non_cr(); do_non_cr();
} }

e Revised invariant: “If p0 is in its critical region, i nt er est edO is true and
one of the following is true: i Nt er est edl isfalse,t urnis 1, orplis
between L1 and L2", and similarly for p1. Ugly but works.

Peterson’s Algorithm, Continued

e Requires essentially no hardware support (aside from “no two simultaneous
writes to memory location X" — pretty much a given). Can be extended to

more than two processes.

e But complicated and not very efficient.

Slide 6

CSCIT 4320 September 29. 2010

Sidebar: TSL Instruction

e A key problem in concurrent algorithms is the idea of “atomicity” (operations
guaranteed to execute without interference from another CPU/process).
Hardware can provide some help with this.

e E.g., “test and set lock” (TSL) instruction:

Slide 7 TSL registerX, |ockVar

(1) copies | ockVar tor egi st er Xand (2) sets | ockVar to non-zero,
all as one atomic operation.

How to make this work is the hardware designers’ problem!

-

Proposed Solution Using TSL Instruction

e Shared variables:

int lock = 0;

Pseudocode for each process: Assembly-language routines:

while (true) { enter_cr:
enter_cr(); TSL regX, |ock
do_cr(); conpare regX with 0

) leave_cr(); if not equal
Sllde 8 do_non_cr(); junp to enter_cr
} return

| eave_cr:
store 0 in lock
return

e Does it work? Yes. (Proposed invariant: “| 0cK is 0 exactly when no
processes in their critical regions, and nonzero exactly when one process in

its critical region.”)

CSCIT 4320 September 29. 2010

4)

Solution Using TSL Instruction, Continued

e Proposed invariant: “| 0cKk is 0 exactly when no processes in their critical
regions, and nonzero exactly when one process in its critical region.”

e |nvariant holds.
This means first requirement is met. Others met too — well, except that it

Slide 9 might be “unfair’ (some process waits forever).

e |s this a better solution? Simpler than Peterson’s algorithm, but still involves

busy-waiting, and depends on hardware features that might not be present.

Mutual Exclusion Solutions So Far

e Solutions so far have some problems: inefficient, dependent on whether
scheduler/etc. guarantees fairness.
(It's worth noting too that for the simple ones needing no special hardware —
e.g., Peterson’s algorithm — whether they work on real hardware may depend

Slide 10 on whether values “written” to memory are actually written right away or
cached.)

e Also, they're very low-level, so might be hard to use for more complicated
problems.

e So, people have proposed various “synchronization mechanisms” ... (to be

continued).

CSCIT 4320 September 29. 2010

4)

e (By request — would it be okay to reschedule the midterm? for October 18 or
20?)

Slide 11

