
CSCI 4320 September 29. 2010

Slide 1

Administrivia

• (None.)

Slide 2

Review — Mutual Exclusion Problem

• In many situations, we want only one process at a time to have access to

some shared resource.

• Generic/abstract version — multiple processes, each with a “critical region”

(“critical section”):
while (true) {

// wait here if not "safe" to proceed

do_cr(); // must be "finite"

do_non_cr(); // need not be "finite"

}

• Goal is to add something to this code such that:

1. No more than one process at a time can be “in its critical region”.

2. No process not in its critical region can block another process.

3. No process waits forever to enter its critical region.

4. No assumptions are made about how many CPUs, their speeds.



CSCI 4320 September 29. 2010

Slide 3

Proposed Solution — Peterson’s Algorithm

• Shared variables:
int turn = 0; // "who tried most recently"

bool interested0 = false, interested1 = false;

Pseudocode for process p0:
while (true) {

interested0 = true;

turn = 0;

while ((turn == 0)

&& interested1);

do_cr();

interested0 = false;

do_non_cr();

}

Pseudocode for process p1:
while (true) {

interested1 = true;

turn = 1;

while ((turn == 1)

&& interested0);

do_cr();

interested1 = false;

do_non_cr();

}

• Does it work? Yes.

Slide 4

Peterson’s Algorithm, Continued

• Intuitive idea — p0 can only start do cr() if either p1 isn’t interested, or p1

is interested but it’s p0’s turn; turn “breaks ties”.

• Semi-formal proof using invariants is a bit tricky. Proposed invariant: “If p0 is

in its critical region, interested0 is true and either interested1 is

false or turn is 1”; similarly for p1.

If we can show this is an invariant, first requirement is met. Others are too.

But a fiddly detail — the invariant can be false if p0 is in its critical region

when p1 executes the lines interested1 = true; turn = 1;.

See next slide for revision.



CSCI 4320 September 29. 2010

Slide 5

Peterson’s Algorithm, Continued

• Shared variables:
int turn = 0; // "who tried most recently"

bool interested0 = false, interested1 = false;

Pseudocode for process p0:
while (true) {

interested0 = true; // L1

turn = 0; // L2

while ((turn == 0)

&& interested1);

do_cr();

interested0 = false;

do_non_cr();

}

Pseudocode for process p1:
while (true) {

interested1 = true; // L1

turn = 1; // L2

while ((turn == 1)

&& interested0);

do_cr();

interested1 = false;

do_non_cr();

}

• Revised invariant: “If p0 is in its critical region, interested0 is true and

one of the following is true: interested1 is false, turn is 1, or p1 is

between L1 and L2”, and similarly for p1. Ugly but works.

Slide 6

Peterson’s Algorithm, Continued

• Requires essentially no hardware support (aside from “no two simultaneous

writes to memory location X” – pretty much a given). Can be extended to

more than two processes.

• But complicated and not very efficient.



CSCI 4320 September 29. 2010

Slide 7

Sidebar: TSL Instruction

• A key problem in concurrent algorithms is the idea of “atomicity” (operations

guaranteed to execute without interference from another CPU/process).

Hardware can provide some help with this.

• E.g., “test and set lock” (TSL) instruction:

TSL registerX, lockVar

(1) copies lockVar to registerX and (2) sets lockVar to non-zero,

all as one atomic operation.

How to make this work is the hardware designers’ problem!

Slide 8

Proposed Solution Using TSL Instruction

• Shared variables:
int lock = 0;

Pseudocode for each process:
while (true) {

enter_cr();

do_cr();

leave_cr();

do_non_cr();

}

Assembly-language routines:
enter_cr:

TSL regX, lock

compare regX with 0

if not equal

jump to enter_cr

return

leave_cr:

store 0 in lock

return

• Does it work? Yes. (Proposed invariant: “lock is 0 exactly when no

processes in their critical regions, and nonzero exactly when one process in

its critical region.”)



CSCI 4320 September 29. 2010

Slide 9

Solution Using TSL Instruction, Continued

• Proposed invariant: “lock is 0 exactly when no processes in their critical

regions, and nonzero exactly when one process in its critical region.”

• Invariant holds.

This means first requirement is met. Others met too — well, except that it

might be “unfair” (some process waits forever).

• Is this a better solution? Simpler than Peterson’s algorithm, but still involves

busy-waiting, and depends on hardware features that might not be present.

Slide 10

Mutual Exclusion Solutions So Far

• Solutions so far have some problems: inefficient, dependent on whether

scheduler/etc. guarantees fairness.

(It’s worth noting too that for the simple ones needing no special hardware —

e.g., Peterson’s algorithm — whether they work on real hardware may depend

on whether values “written” to memory are actually written right away or

cached.)

• Also, they’re very low-level, so might be hard to use for more complicated

problems.

• So, people have proposed various “synchronization mechanisms” . . . (to be

continued).



CSCI 4320 September 29. 2010

Slide 11

Minute Essay

• (By request — would it be okay to reschedule the midterm? for October 18 or

20?)


