
CSCI 4320 October 6, 2010

Slide 1

Administrivia

• Reminder: Homework 2 due Friday.

• (Review minute essay from last time.)

Slide 2

Classical IPC Problems

• Literature (and textbooks) on operating systems talk about “classical

problems” of interprocess communication.

• Idea — each is an abstract/simplified version of problems o/s designers

actually need to solve. Also a good way to compare ease-of-use of various

synchronization mechanisms.

• Examples so far — mutual exclusion, bounded buffer.

• Other examples sometimes described in silly anthropomorphic terms, but

underlying problem is a simplified version of something “real”.



CSCI 4320 October 6, 2010

Slide 3

Dining Philosophers Problem

• Scenario (originally proposed by Dijkstra, 1972):

– Five philosophers sitting around a table, each alternating between thinking

and eating.

– Between every pair of philosophers, a fork; philosopher must have two

forks to eat.

– So, neighbors can’t eat at the same time, but non-neighbors can.

• Why is this interesting or important? It’s a simple example of something more

complex than mutual exclusion — multiple shared resources (forks),

processes (philosophers) must obtain two resources together. (Why five?

smallest number that’s “interesting”.)

Slide 4

Dining Philosophers — Naive Solution

• Naive approach — we have five mutual-exclusion problems to solve (one per

fork), so just solve them.

• Does this work?



CSCI 4320 October 6, 2010

Slide 5

Dining Philosophers — Simple Solution

• Another approach — just use a solution to the mutual exclusion problem to let

only one philosopher at a time eat.

• Does this work?

Slide 6

Dining Philosophers — Dijkstra Solution

• Another approach — use shared variables to track state of philosophers and

semaphores to synchronize.

• I.e., variables are

– Array of five state variables (states[5]), possible values

thinking, hungry, eating. Initially all thinking.

– Semaphore mutex, initial value 1, to enforce one-at-a-time access to

states.

– Array of five semaphores self[5], initial values 0, to allow us to make

philosophers wait.

• And then the code is somewhat complex . . .



CSCI 4320 October 6, 2010

Slide 7

Dining Philosophers — Code

• Shared variables as on previous slide.

Pseudocode for philosopher i:
while (true) {

think();

down(mutex);

state[i] = hungry;

test(i);

up(mutex);

down(self[i]);

eat();

down(mutex);

state[i] = thinking;

test(right(i));

test(left(i));

up(mutex);

}

Pseudocode for function:
void test(i)

{

if ((state[left(i)] != eating) &&

(state[right(i)] != eating) &&

(state[i] == hungry))

{

state[i] = eating;

up(self[i]);

}

}

Slide 8

Dining Philosophers — Dijkstra Solution Works?

• Could there be problems with access to shared state variables?

• Do we guarantee that neighbors don’t eat at the same time?

• Do we allow non-neighbors to eat at the same time?

• Could we deadlock?

• Does a hungry philosopher always get to eat eventually?



CSCI 4320 October 6, 2010

Slide 9

Dining Philosophers — Chandy/Misra Solution

• Original solution allows for scenarios in which one philosopher “starves”

because its neighbors alternate eating while it remains hungry.

• Briefly, we could improve this by maintaining a notion of “priority” between

neighbors, and only allow a philosopher to eat if (1) neither neighbor is eating,

and (2) it doesn’t have a higher-priority neighbor that’s hungry. After a

philosopher eats, it lowers its priority relative to its neighbors.

Slide 10

Other Classical Problems

• Readers/writers (in textbook).

• Sleeping barber, drinking philosophers, . . .

• Advice — if you ever have to solve problems like this “for real”, read the

literature . . .



CSCI 4320 October 6, 2010

Slide 11

Homework 1 Program — A Short(?) Rant

• Most programs compiled, but many gave warnings. (Why not fix?)

• Less than half the programs submitted actually worked! (Why?)

Slide 12

Minute Essay

• What did you find interesting/useful about the programming problem for

Homework 1? What did you find difficult/annoying?


