
CSCI 4320 October 13, 2010

Slide 1

Administrivia

• Reminder: Homework 3 due today. Homework 2 past due.

• Reminder: Midterm Monday. Review sheet on Web. Campus network may

not be available Saturday night / Sunday.

• Sample solutions for written problems available in hardcopy only (outside my

office door). Sample solutions for programming problems on the Web (early

tomorrow).

Slide 2

Evaluating Scheduling Algorithms

• How to decide which scheduling algorithm to use?

• One way — evaluate several choices, see which one best meets system

goal(s). E.g., if the goal is minimum turnaround time, try to come up with an

average turnaround time for each proposed choice.

• Several approaches possible . . . (This discussion is from another operating

systems textbook, by Silberschatz and Galvin.)



CSCI 4320 October 13, 2010

Slide 3

Deterministic Modeling

• Idea — use a predetermined workload, compute values of interest (e.g.,

average turnaround time, as in Homework 3 problem).

• How well does it work?

Slide 4

Deterministic Modeling, Continued

• Simple, fast, gives exact numbers.

• Requires exact numbers as input, and only applies to them.



CSCI 4320 October 13, 2010

Slide 5

Queueing Models

• Idea — use “queueing theory” to model system as a network of “servers”,

each with a queue of waiting processes. (E.g., CPU is a server, with input

queue of ready processes.)

• Input to model — distribution of process arrival times, CPU and I/O bursts for

processes, as mathematical formulas. (Base this on measuring,

approximating, or estimating.) In queueing-theory terms, “arrival rates” and

“service rates”.

• Queueing theory lets you then compute utilization, average queue length,

average wait time, etc.

• How well does it work?

Slide 6

Queueing Models, Continued

• Seems more general than deterministic modeling.

• But can be tricky to set up model correctly, and need to approximate / make

assumptions may be a problem.



CSCI 4320 October 13, 2010

Slide 7

Simulations

• Idea — program a model of the computer system, simulating everything,

including hardware.

• Two ways to get input for simulation:

– Generate processes, burst times, arrivals, departures, etc., using

probability distributions and random-number generation.

– Create “trace tape” from running system.

• How well does it work?

Slide 8

Simulations, Continued

• Potentially very accurate.

• Time-consuming to program and to run!



CSCI 4320 October 13, 2010

Slide 9

Implementation

• Idea — code it up and try it!

• How well does it work?

Slide 10

Implementation, Continued

• Seems like potentially the most accurate approach.

• Requires a lot of work, resources.

• Involves implicit assumption that users’ behavior is fairly constant.

(So it’s good to build into the algorithm some parameters that can be changed

at run time, by users and/or sysadmin. In textbook’s phrase, “separate

mechanism from policy”. Notice, though, users are apt to figure out how to

game any system.)



CSCI 4320 October 13, 2010

Slide 11

Recap — Scheduling Algorithms

• Main idea — decide which process to run next (when running process exits,

becomes blocked, or is interrupted).

• Many possibilities, ranging from simple to complex. Real systems seem to

use hybrid strategies.

• How to choose one?

– Be clear on goals.

– Maybe evaluate some possibilities to see which one(s) meet goals —

analytic or experimental evaluation.

– Build in some tuning knobs — “separate policy from mechanism”.

Slide 12

About the Midterm

• Review class notes and minute essays, readings. If I didn’t mention it in class,

odds are I won’t ask about it on the exam.

• Questions will be a mix of problems similar to those in homework (but

shorter), mini-essay, and multiple choice.

• Open book, open notes. Okay to point a browser at the course Web site, but

no other Web access.

• (Topic by topic through the review sheet.)

• (Review homework solutions.)

• (Review minute essays.)



CSCI 4320 October 13, 2010

Slide 13

Quotes of the Day/Week/?

• From a key figure in the early days of computing:

“As soon as we started programming, we found to our surprise that it wasn’t

as easy to get programs right as we had thought. Debugging had to be

discovered. I can remember the exact instant when I realized that a large part

of my life from then on was going to be spent finding mistakes in my own

programs.” (Maurice Wilkes: 1948)

• From someone in a discussion group for the Java programming language:

“Compilers aren’t friendly to anybody. They are heartless nitpickers that enjoy

telling you about all your mistakes. The best one can do is to satisfy their

pedantry to keep them quiet :)”

Slide 14

Minute Essay

• What have you found interesting/educational about the homework?


