
CSCI 4320 October 20, 2010

Slide 1

Administrivia

• Midterm grade information sent by e-mail yesterday. (Discuss briefly.)

• (Brief discussion of midterm exam questions/solutions.)

Slide 2

Memory Management, Introduction

• One job of operating system is to “manage memory” — assign sections of

main memory to processes, keep track of who has what, protect processes’

memory from other processes.

• As with CPU scheduling, we’ll look at several schemes, starting with the very

simple. For each scheme, think about how well it solves the problem, how it

compares to others.

• As with processes, there’s a tradeoff between simplicity and providing a nice

abstraction to user programs.



CSCI 4320 October 20, 2010

Slide 3

Simple Schemes — No Abstraction

• Memory (a.k.a. “RAM”) can be thought of as a very long list of numbered cells

(usually bytes).

• Simplest schemes for managing it don’t try to hide that view. (Name for these

come from older edition of Tanenbaum’s book.)

Slide 4

Monoprogramming

• Idea — only one user program/process at a time, no swapping or paging.

Only decision to make is how much memory to devote to o/s itself, where to

put it.

• Consider tradeoffs — complexity versus flexibility, efficient use of memory.

• Used in very early mainframes, MS-DOS; still used in some embedded

systems.



CSCI 4320 October 20, 2010

Slide 5

Multiprogramming With Fixed Partitions

• Idea — partition memory into fixed-size “partitions” (maybe different sizes),

one for each process. Possibly also add the ability to “swap” programs (write

their memory to disk, read back in later).

• Limits “degree of multiprogramming” (how many processes can run

concurrently).

• Probably necessitates admissions scheduling — either one input queue per

partition, or one combined queue.

If one combined queue, how to choose from it when a partition becomes

available? first job that fits? largest job that fits? etc.

• Consider tradeoffs — complexity versus flexibility, efficient use of memory.

• Used in early mainframes.

Slide 6

Sidebar: Three-Level Scheduling

• Basic idea — break up problem of scheduling (batch) work into three parts:

– Admissions scheduling — choose from input queue which jobs to “let into

the system” (create processes for).

– Memory scheduling — choose from among processes in system which to

keep in memory, which to “swap out” to disk.

– CPU scheduling — choose from among processes in memory which to

actually run.

• Points to consider:

– Are there advantages to limiting how many processes, how many in

memory? What criteria could we use?

– Are there advantages to the explicit three-level scheme?

– Would this (or a variant) work for interactive systems?

– Do all three schedulers have to be efficient?



CSCI 4320 October 20, 2010

Slide 7

Multiprogramming With Variable Partitions

• Idea — separate memory into partitions as before, but allow them to vary in

size and number.

I.e., “contiguous allocation” scheme.

• Like previous scheme, necessitates admissions scheduling.

• Requires that we keep track of locations and sizes of processes’ partitions,

free space. Notice potential for memory fragmentation.

• Consider tradeoffs — complexity versus flexibility, efficient use of memory.

• Used in early mainframes.

Slide 8

Program Relocation and Memory Protection

• At the machine-instruction level, references to memory are in terms of an

absolute number. Some references are made relative to the program counter,

but others may be absolute — i.e., generated when the program is translated

to machine language. Compilers/assemblers can generate these only by

making assumption about where program will reside in memory.

• In the very early days, all programs were loaded at address 0, so no problem.

With monoprogramming, too, all programs reside at the same address, so no

problem.

• What happens, though, if you want to have multiple programs in memory?

compilers/assemblers can’t generate correct absolute addresses, plus there’s

the problem of protecting each program’s memory from other programs.



CSCI 4320 October 20, 2010

Slide 9

Program Relocation and Memory Protection, Continued

• One solution to the relocation problem — generate, as part of the executable,

a list of locations where there’s an absolute address, and modify it as the

program is loaded into memory. (What implications does this have for being

able to do swapping?)

• One solution to the memory-protection problem — storage-protection keys

(IBM 360, an early mainframe).

• A better solution to both problems involves translating addresses “on the

fly” . . .

Slide 10

Sidebar: The “Address Space” Abstraction

• Basic idea is somewhat analogous to process abstraction, in which each

process has its own simulated CPU. Here, each process has its own

simulated memory.

• As with processes, implementing this abstraction is part of what an operating

system can/should do.

• Usually, though, o/s needs help from hardware . . .



CSCI 4320 October 20, 2010

Slide 11

Dynamic Address Translation

• Underlying idea — separate program addresses (relative to start of program’s

“address space”) from physical addresses (memory locations), and map

program addresses to physical addresses. Also try to identify out-of-bounds

addresses.

• Simplest such map based on base and limit addresses (B and L):

Program address p maps to memory location B + p.

If B + p > L, invalid (out of bounds).

If B and L are different for each process — solves both problems.

• Only practical way to implement — hardware “memory management unit” that

logically sits between the CPU and memory.

Simplifying, CPU references program addresses, MMU turns them into

physical addresses, generates interrupt if invalid.

Slide 12

A Simple MMU

• Idea — map each process’s address space to a contiguous chunk of real

memory, using base and limit registers.

• Solves both the relocation and protection problems, though may not be

especially fast.

• Consider tradeoffs — complexity versus flexibility.

• Used in some early mainframes and PCs.



CSCI 4320 October 20, 2010

Slide 13

Minute Essay

• How did the midterm compare to your expectations? with regard to length,

difficulty, topics, or another else.

Now that you know how you did, are there topics we should review in class

soon?

• Anything you care to share about what I could do to make this class better?


