CSCIT 4320 October 27, 2010

Administrivia

e (None.)

Slide 1

Paging — Review/Recap

e Simple schemes for memory management, in which each process’s address
space is mapped to a single single contiguous block of physical memory, are
simple but not very flexible. Paging is one way to do better.

e |dea — divide both address spaces and memory into fixed-size blocks

Slide 2 (“pages” and “page frames”), allow non-contiguous allocation.

e Consider tradeoffs yet again — complexity versus flexibility, efficient use of

memory.

CSCIT 4320 October 27, 2010

Paging — Mapping Program to Physical Addresses

e One consequence — mapping from program addresses to physical

addresses is much more complicated.

e How? “page table” for each process maps pages of address space to page
frames; use this to calculate physical address from program address.

Slide 3 (Are there page sizes for which this is easier?)

e As with base/limit scheme, makes more sense to implement this in MMU.

(Notice again interaction between hardware design and o/s design.)

e Could let page table size vary, but easier to make them all the same (i.e., each
process has the same size address space), have a bit to indicate valid/invalid
for each entry. Attempt to access page with invalid bit — “page fault”.

Paging and Virtual Memory

e |dea — extend this scheme to provide “virtual memory” — keep some pages

on disk. Allows us to pretend we have more memory than we really do.

e (Compare to swapping. Details later.)

Slide 4

CSCI 4320

October 27, 2010

Slide 5

Paging and Memory Protection

e This scheme also provides memory protection. (How?)

e We could also use it to allow processes to share memory. (How?)

Slide 6

Page Table Entries

e Exactly what's in a page table entry depends partly on hardware.
e Required(?) fields — page frame number, present/absent bit.

e Optional but useful fields — bits that can be used to track usage
(“referenced/modified”), bits indicating what access is allowed (e.g.,
read-only), etc.

CSCIT 4320 October 27, 2010

Page Sizes and Other Details

o How big to make pages? compare extreme cases (really big, really small).

e |f you know how big addresses are, what does that tell you about (maximum)

sizes of physical/virtual memory?

e How big are page tables ...
Slide 7

Page Table Size — Example

e Given a page size of 64K (216), 64-bit addresses, and 4G (232) of main
memory, at least how much space is required for a page table? Assume that
you want to allow each process to have the maximum address space possible
with 64-bit addresses, i.e., 264 bytes.

Slide 8 e (Hints: How many entries? How much space for each one? and no, this is not

a very realistic system.)

CSCIT 4320 October 27, 2010

Page Table Size — Example Continued

e Number of entries is 264 /216 e, 248,

e Size of each entry — at least enough for page frame number. There are 216
of them, so we need 16 bits for that. Probably should also include a
valid/invalid bit, for a total of 17 bits. Rounding up to a multiple of 8 bits (one

Slide 9 byte), that's 3 bytes per entry.

e Total space is 248 % 3 — bigger than main memory!! so, not realistic.

Performance / Feasibility Concerns

e Clearly page tables can be impractically large. What to do?

e Also, every memory reference involves page-table access — how to make

this feasible/fast?

® (To be continued)
Slide 10

CSCIT 4320 October 27, 2010

e To do its job the MMU must have access to the current process’s page table.
The textbook mentions two simple schemes for doing this:

— Keep the entire table in (processor) registers.

— Keep the table in memory and have a particular processor register point to
Slide 11 its starting location.

e \What advantages/disadvantages can you think of for each of these? (Think
about context switching between processes and also about how quickly the
MMU will be able to translate each address.)

e The first scheme almost surely makes for faster translations, but for a large
page table it will require a lot of registers, which would make context switches
slow. The second scheme won't slow down context switches, but as stated it
isn’t going to make for fast translation.

Slide 12

