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Administrivia

• (None.)
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Paging — Review/Recap

• Simple schemes for memory management, in which each process’s address

space is mapped to a single single contiguous block of physical memory, are

simple but not very flexible. Paging is one way to do better.

• Idea — divide both address spaces and memory into fixed-size blocks

(“pages” and “page frames”), allow non-contiguous allocation.

• Consider tradeoffs yet again — complexity versus flexibility, efficient use of

memory.
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Paging — Mapping Program to Physical Addresses

• One consequence — mapping from program addresses to physical

addresses is much more complicated.

• How? “page table” for each process maps pages of address space to page

frames; use this to calculate physical address from program address.

(Are there page sizes for which this is easier?)

• As with base/limit scheme, makes more sense to implement this in MMU.

(Notice again interaction between hardware design and o/s design.)

• Could let page table size vary, but easier to make them all the same (i.e., each

process has the same size address space), have a bit to indicate valid/invalid

for each entry. Attempt to access page with invalid bit — “page fault”.
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Paging and Virtual Memory

• Idea — extend this scheme to provide “virtual memory” — keep some pages

on disk. Allows us to pretend we have more memory than we really do.

• (Compare to swapping. Details later.)



CSCI 4320 October 27, 2010

Slide 5

Paging and Memory Protection

• This scheme also provides memory protection. (How?)

• We could also use it to allow processes to share memory. (How?)
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Page Table Entries

• Exactly what’s in a page table entry depends partly on hardware.

• Required(?) fields — page frame number, present/absent bit.

• Optional but useful fields — bits that can be used to track usage

(“referenced/modified”), bits indicating what access is allowed (e.g.,

read-only), etc.
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Page Sizes and Other Details

• How big to make pages? compare extreme cases (really big, really small).

• If you know how big addresses are, what does that tell you about (maximum)

sizes of physical/virtual memory?

• How big are page tables . . .
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Page Table Size — Example

• Given a page size of 64K (216), 64-bit addresses, and 4G (232) of main

memory, at least how much space is required for a page table? Assume that

you want to allow each process to have the maximum address space possible

with 64-bit addresses, i.e., 264 bytes.

• (Hints: How many entries? How much space for each one? and no, this is not

a very realistic system.)
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Page Table Size — Example Continued

• Number of entries is 264/216, i.e., 248.

• Size of each entry — at least enough for page frame number. There are 216

of them, so we need 16 bits for that. Probably should also include a

valid/invalid bit, for a total of 17 bits. Rounding up to a multiple of 8 bits (one

byte), that’s 3 bytes per entry.

• Total space is 248
× 3 — bigger than main memory!! so, not realistic.
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Performance / Feasibility Concerns

• Clearly page tables can be impractically large. What to do?

• Also, every memory reference involves page-table access — how to make

this feasible/fast?

• (To be continued . . . )
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Minute Essay

• To do its job the MMU must have access to the current process’s page table.

The textbook mentions two simple schemes for doing this:

– Keep the entire table in (processor) registers.

– Keep the table in memory and have a particular processor register point to

its starting location.

• What advantages/disadvantages can you think of for each of these? (Think

about context switching between processes and also about how quickly the

MMU will be able to translate each address.)
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Minute Essay Answer

• The first scheme almost surely makes for faster translations, but for a large

page table it will require a lot of registers, which would make context switches

slow. The second scheme won’t slow down context switches, but as stated it

isn’t going to make for fast translation.


