
CSCI 4320 November 5, 2010

Slide 1

Administrivia

• Reminder: Homework 4 due today (5pm).

• Homework 5 on the Web, due next Friday.

• (Review minute essay from last time.)

Slide 2

Paging — Review

• Recall basic ideas (divide address spaces and memory into fixed-size

chunks, optionally-but-usually use disk to hold what we hope are less-used

parts of processes’ address spaces).

• One key issue in making this all work acceptably is how we choose which

pages to keep in memory (page replacement algorithm).

• A few more things to consider . . .



CSCI 4320 November 5, 2010

Slide 3

Demand Paging Versus Prepaging

• The purest form of paging is “demand paging” — processes are started with

no pages in memory, and pages are loaded into memory on demand only.

• An alternative is “prepaging” — try to load pages in advance of demand.

How?

Slide 4

Global Versus Local Allocation

• In deciding which page to replace, consider all pages (“global allocation”), or

just those that belong to the current process (“local allocation”)?

• Generally, global approach works better, but not all page replacement

algorithms can work that way (e.g., WSClock). Hybrid strategy — combine

local approach with some way to vary processes’ allocations.



CSCI 4320 November 5, 2010

Slide 5

Thrashing and Load Control

• What happens if combined working sets of all processes don’t fit into

memory? “Thrashing”. (See minute essay from last time!)

• What to do? temporarily “swap out” some processes, or other forms of “load

control”.

Slide 6

Sharing Pages

• Shared pages can be useful, but can also present problems.

• Multiple processes running the same program is relatively easy (why?) but

has one potential downside (what?)

• UNIX fork system call is — interesting in this context. POSIX definition

says that child process’s address space is basically a copy of the parent’s

address space. What’s the easy-to-implement way to do this? What downside

does that have in current systems? Is there a way to reduce its impact? And

why duplicate in the first place?



CSCI 4320 November 5, 2010

Slide 7

Sharing Pages and fork

• Duplicating pages is easy but inefficient, especially if the child process is

going to call execve or something similar right away. Some systems use

“copy-on-write” to improve efficiency.

• Why did the people who designed UNIX require this duplication . . . Possibly

because it makes some things easy (such as setting up parent/child pipes)

and wasn’t very costly when designed. Windows’ system call for creating

processes takes a different approach. Maybe that’s better!

Slide 8

Sharing Pages, Continued

• One use for shared pages is multiple processes running the same program.

• What about sharing code at a level below whole programs (UNIX “shared

libraries”, Windows DLLs)? Seems attractive; are there potential problems?

(To be continued . . . )



CSCI 4320 November 5, 2010

Slide 9

Minute Essay

• None — sign in.


