
CSCI 4320 November 17, 2010

Slide 1

Administrivia

• (Review minute essay from last time.)

Slide 2

I/O Management

• Operating system as resource manager — share I/O devices among

processes/users.

• Operating system as virtual machine — hide details of interaction with

devices, present a nicer interface to application programs.



CSCI 4320 November 17, 2010

Slide 3

I/O Hardware, Revisited

• First, a review of I/O hardware — simplified and somewhat abstract view,

mostly focusing on how low-level programs communicate with it.

• Many, many kinds of I/O devices — disks, tapes, mice, screens, etc., etc. Can

be useful to try to classify as “block devices” versus “character devices”.

• Many/most devices are connected to CPU via a “device controller” that

manages low-level details — so o/s talks to controller, not directly to device.

• Interaction between CPU and controllers is via registers in controller (write to

tell controller to do something, read to inquire about status), plus (sometimes)

data buffer.

Example — parallel port (connected to printers, etc.) has control register

(example bit — linefeed), status register (example bit — busy), data register

(one byte of data). These map onto the wires connecting the device to the

CPU.

Slide 4

Accessing Device Controller Registers

• Two basic approaches:

– Define “I/O ports” and access via special instructions.

– “Memory-mapped I/O” — map some (real) addresses to device-controller

registers.

Some systems use hybrid approach.

• Making either one work requires some hardware complexity, and there are

tradeoffs; memory-mapped I/O currently more common.



CSCI 4320 November 17, 2010

Slide 5

Direct Memory Access (DMA)

• When reading more than one byte (e.g., from disk), device controller typically

reads into internal buffer, checking for errors. How to then transfer to

memory?

• One way — CPU makes transfer, byte by byte.

• Another way — DMA controller makes transfer, having been given a target

memory location and a count.

• Which is better? consider speed of DMA versus speed of CPU, potential for

overlapping data transfer and computation. DMA is extra hardware and could

be slower than CPU, but would appear to offer potential to overlap transfer

and computation.

Slide 6

Interrupts

• When I/O device finishes its work, it generates interrupt, and then —

something happens. What?

• Hardware and software aspects . . .



CSCI 4320 November 17, 2010

Slide 7

Interrupts, Continued

• I/O device “interrupts” by signalling interrupt controller.

• Interrupt controller signals CPU, with indication of which device caused

interrupt, or ignores interrupt (so device controller keeps trying) if interrupt

can’t be processed right now.

• Processing is then similar to what happens on traps (interrupts generated by

system calls, page faults, other errors) . . .

Slide 8

Interrupts, Continued

• On interrupt, hardware locates proper interrupt handler (probably using

interrupt vector), saves critical info such as program counter, and transfers

control (switching into supervisor/kernel mode).

• Interrupt handler saves other info needed to restart interrupted process, tells

interrupt controller when another interrupt can be handled, and performs

minimal processing of interrupt.



CSCI 4320 November 17, 2010

Slide 9

Interrupts, Continued

• Worth noting that pipelining (very common in current processors) complicates

interrupt handling — when an interrupt happens, there could be multiple

instructions in various stages of execution. What to do?

• “Precise interrupts” are those that happen logically between instructions. Can

try to build hardware so that this happens always, or sometimes.

• “Imprecise interrupts” are — the other kind. Hardware that generates these

may provide some way for software to find out status of instructions that are

partially complete. Tanenbaum says this complicates o/s writers’ jobs.

Slide 10

Polling Versus Interrupts

• Three basic approaches to writing programs to do I/O — “programmed”,

“interrupt-driven”, and using DMA.

• Which to use — it depends. (No surprise, right?)



CSCI 4320 November 17, 2010

Slide 11

Programmed I/O

• Basic idea: Program tells controller what to do and busy-waits until it says it’s

done.

• Simple but potentially inefficient — for the system as a whole, anyway.

Slide 12

Interrupt-Driven I/O

• Basic idea: Program tells controller what to do and then blocks. While it’s

blocked, other processes run. When requested operation is done, controller

generates interrupt. Interrupt handler unblocks original program (which, on a

read operation, would then obtain data from device controller).

• More complex, but allows other processing to happen while waiting, so

potentially more efficient for system as a whole. Could, however, result in lots

of interrupts. (Tanenbaum says one per character/byte. Can that be true for

disks?? Open question . . . )



CSCI 4320 November 17, 2010

Slide 13

I/O Using DMA

• Basic idea: Similar to interrupt-driven I/O, but transfer of data to memory done

by DMA controller, only one interrupt per block of data.

• Complexity versus efficiency tradeoffs similar to interrupt-driven I/O, but may

result in fewer interrupts and allow overlap of computation and I/O.

Slide 14

Goals of I/O Software

• Device independence — application programs shouldn’t need to know what

kind of device.

• Uniform naming — conventions that apply to all devices (e.g., UNIX path

names, Windows drive letter and path name).

• Error handling — handle errors at as low a level as possible, retry/correct if

possible.

• “Synchronous interface to asynchronous operations.”

• Buffering.

• Device sharing / dedication.



CSCI 4320 November 17, 2010

Slide 15

Minute Essay

• We talked about two approaches to communicating with I/O devices —

special I/O instructions, and “memory-mapped I/O” (reading/writing particular

memory locations). What implications do you think the two choices have for

programmers’ ability to write device drivers in a (moderately) high-level

language such as C?

Slide 16

Minute Essay Answer

• With memory-mapped I/O it should be possible to write device drivers entirely

in C; with special I/O instructions this would not be possible without compiler

modifications or some amount of assembly-language code.


