
Using J as an Expository Language in the

Teaching of Computer Science to Liberal Arts

Students

John E. Howland
Department of Computer Science

Trinity University
715 Stadium Drive

San Antonio, Texas 78212-7200
Voice: (210) 736-7480
Fax: (210) 736-7477

Internet: jhowland@ariel.cs.trinity.edu

June, 1996

Abstract

APL and J are seldom, if ever, used in the teaching of college or univer-

sity courses. Recently, the author has developed a new laboratory based

computer science course for liberal arts students in which students are

introduced to 13 core computer science topics. Programming language is

used in an expository fashion to describe each topic by building simple

working models of each topic. These models are then used as the basis

of laboratory experiments in a co-requisite laboratory course. Students

are not taught programming in this course, but rather, are taught just

enough of the syntax and semantics of the language to be able to read

and understand the exposition and models. Initially, Scheme was used in

the lecture notes and laboratory materials developed for this course. Re-

cently, however, an experiment is under way to replace the use of Scheme

in this course by J. The development of this course and laboratory was

funded by the Meadows Foundation and NSF grant DUE 9452050.1

Subject Areas: Computer Science Education, J, Arts and Humanities, Exposi-
tion.
Keywords: computer science laboratory course, J, exposition.

1This paper appears in ACM Quote Quad, Volume 26, Number 4, Pages 55-62, June 1996.
Copyright c©1996, ACM. Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commercial advantage, the
ACM copyright notice and the title of the publication and its date appear, and notice is given
that copying is by permission of the Association for Computing Machinery. To copy otherwise,
or to republish, requires a fee and/or specific permission. The paper was presented at the
APL 96 Conference at Lancaster University, UK, July 29, 1996.

1



1 Introduction

At my university there was a need for new laboratory science courses which
would partially satisfy a student’s common curriculum requirement. Each stu-
dent is required to complete two or three science courses. Two courses suffice
when one of the two courses is a laboratory science course, so there is some
incentive to take a laboratory course because the common curriculum require-
ment is reduced by one course. Traditionally, laboratory science courses had
been selected from the natural science disciplines of biology, geology, physics
or chemistry. The author developed a new introductory computer science lab-
oratory course (and co-requisite lecture course) in which students are gathered
together in a workstation laboratory at the same time to work in pairs perform-
ing a prepared laboratory experiment.

One feature of this course is that it covers a variety of computer science
topics at about the rate of one new topic per week. Consequently, only an
introduction to each topic can be presented during the two or three lectures on
each topic. As a result, the course emphasizes a breadth of understanding at
the expense of depth of understanding of any single topic.

Another feature of this course is that, while it uses the J programming nota-
tion extensively to describe and model each topic, the course does not attempt
to teach students to become effective programmers. Students are taught just
enough J syntax and semantics to be able to read and understand J expressions
and programs written by the instructor. Such programs form the basis of models
of various computational structures such as computer circuits, arithmetic units,
data structures, processors, processes, etc. Since these models are expressed in
J, the models can be executed on a workstation and form the basis of laboratory
experimentation in the course.

2 J as an Expository Language for Computer

Science

The philosophical motivation for the choice of J as an expository notation
for computer science is derived from its natural language sentence-like syn-
tax [Kon 94, Rie 93]. Since the majority of the students enrolling in this course
are likely to be fine arts and humanities students who are generally less oriented
towards technology and science, it was thought to be useful to use a notation
which could be easily related to the structure and form of natural language.

3 Lecture Topics

The lecture course consists of about three lectures on each of the following
topics:

1. Introduction to reading the J notation

2



2. Computer organization

3. Computer arithmetic

4. Computer circuits

5. Algorithms

6. Data structures

7. Programming methodology

8. Software engineering

9. Language translation

10. Program execution time

11. Computer networks

12. Parallel processing

13. Computability

14. Artificial intelligence

Covering this many topics in a three credit hour course requires adhering
rather rigidly to a schedule. Fortunately, many of the topics are inter-related so
that knowledge gained in one topic is immediately used in a following topic. For
example, the logical organization of a computer is expanded on when discussing
computer arithmetic. The modeling of computer circuits fills in some detail
purposely left out of the computer organization topic.

This fast paced presentation of topics leaves little time for discussion of
topics in the lecture setting. Some discussion of each topic is done during the
weekly meetings of the laboratory course. Recently, an experiment involving
required out of class discussion of topics on a local USENET discussion group
for the class, has been started. Each student is required to contribute one new
discussion thread each week and respond to two or three threads per week. The
news group is not moderated, but is archived. Other members of the university
community have been invited to read and/or join the discussion of these topics.

A set of lecture notes has been constructed which use J as an expository
notation for computer science topics. Each topic has one or more J based de-
scriptive models which is human readable by the students and executable by
the laboratory workstation. These models form the basis of laboratory experi-
mentation as well as providing an interactive working model of the topic under
discussion so that students may obtain hands-on experience with each topic.

The lecture notes are available to students via a world wide web server and
the instructor can use the WWW presentation during lecture presentations. A
discussion of how this is accomplished is presented in Section 5.

3



4 Laboratory Experiments

The one credit laboratory course meets once each week for three hours. Students
work in pairs to perform a prepared laboratory experiment. Each pair of lab
students has its own laboratory workstation where the experimental work is
performed. Currently, the laboratory course consists of twelve experiments. All
experiments, except the first, require the students to formulate a conjecture to be
verified, gather experiment data, analyze the results and write a brief laboratory
report which must be turned in at the beginning of the next laboratory class
period. With each offering of the course we have attempted to modify and
improve the experiments as well as devise new experiments.

The following are representative titles and purpose of experiments used in
the course.

• Getting Started with the J Notation.

In this lab, students familiarize themselves with the lab workstations,
editor and J notation. No lab report is required for this lab session.

• Using Computer Science Department Laboratory Facilities.

In this lab, students learn the format of a lab report and perform the first
simple experiment which is to determine how fast the workstation can
add numbers. Students are introduced to the problem of experimental
sampling.

• How Fast Do Computers Perform Arithmetic.

The purpose of this laboratory experiment is to determine the relative
performance of different arithmetic types on a lab workstation.

• Designing and Verifying a 4 bit Binary Adder.

The purpose of this laboratory is to build a working model of a 4 bit binary
adder from modeled circuit elements and verify its correct operation.

• Implementation of an Algorithm.

This experiment involves the experimental estimation of the time required
to evaluate (fibonacci 100) using a recursive implementation of the fi-
bonacci function. This experiment requires an understanding of recursive
and iterative implementations of the fibonacci function.

• Choosing a Data Structure.

The purpose of this laboratory experiment is to examine and compare
two implementations of an abstract data structure for a stack. The first
implementation uses functions to implement a constructor, predicates and
accessors for stacks. The second uses an object oriented approach to
implement stacks.

4



• Programming Methodology.

In this laboratory problem students are given three different implemen-
tations of a system for performing exact rational arithmetic. The imple-
mentation has been carefully designed and layered so that operations are
separated from data representations by using abstract constructors and
accessors. They are asked to predict relative performance of each sys-
tem, comment on the quantitative aspects of each implementation, gather
experimental data and draw conclusions in a written laboratory report.

• Software Prototypes.

In this laboratory problem students work with a prototype implementa-
tion of rational arithmetic operations which allow rational numbers to be
combined with other types of numbers in arithmetic expressions. They
are asked to evaluate the performance of the prototype implementation
and write a laboratory report.

• Recognizing Syntactic Elements of a Language.

In this laboratory experiment, students are asked to design a recognizer for
a syntactic element of the J notation, given the BNF syntax description.

• Recursive Processes, Iterative Processes and Compiling.

In this laboratory problem students analyze a function which is evaluated
using both a recursive and an iterative process. Interpreted and compiled
versions of each are analyzed.

• Evaluating Parallel Performance.

The purpose of this laboratory problem is to evaluate the performance of
a network computation in which two networked workstations cooperate to
perform a calculation in parallel.

• Expert Systems: A Rule Interpreter.

In this laboratory problem students try to discover the behavior of a rule
system by tracing the execution of that rule based system as it interprets
different rule sets.

This course is the first course in our computer science department which
attempts to utilize the traditional closed science laboratory approach to teach
computer science concepts. The effort required to design a successful laboratory
experiment is much higher than anticipated, but the benefits can be rewarding
in that successful experiments seem to convey the concept being taught more
efficiently and forcefully than the more traditional kinds of programming prob-
lems we have assigned in other introductory courses. Our department plans to
introduce closed laboratories for other introductory computer science courses as
a result of our experience with this course.

5



5 Laboratory Hardware

The J notation plays a fundamental role both in the exposition of computer
science topics and in the laboratory experiments. Because of this, an effort was
made to design a laboratory facility which could be used for lecture exposition
as well as laboratory experimentation.

For a number of reasons, including using this laboratory/teaching facility
for a variety of other courses, we made a decision to base this laboratory on
machines which run the UNIX operating system. J 2.06 is used on the lab
machines.

Grant proposals to the Meadows Foundation and the National Science Foun-
dation (grant DUE-9452050) were prepared. Each organization agreed to fund
50% of the cost of laboratory equipment. A vendor competition involving Ap-
ple, IBM, Sun, SGI and HP was designed which involved running certain bench-
marks and meeting a color graphics requirement of at least 8 bits per pixel on
a display of at least 1024 by 768 pixels. Each vendor also had to meet other
requirements involving memory capacity, UNIX operating system, disk capacity
and networking.

One additional requirement, to be used in the lecture course, was the ability
for a lecturer to be able to use a machine for presentations and demonstrations
and have these presentations be visible on the screens of each of the student
workstations. We proposed that this could be accomplished either by using a
video amplifier/switching system fed by the instructor’s workstation monitor or
a network based software video feed.

HP won the vendor competition with 17 HP 712 machines of varying con-
figuration. There are 15 HP 712/60 16M student workstations, 1 HP 712/60
32M instructor workstation and 1 HP 712/80 32M server machine providing
login id’s and home directories to each student workstation. HP also supplied
an X windows based software package, SharedX, which allows the instructor
machine to share any of its windows with any of the student lab workstations.
In addition, SharedX also allows the instructor to turn over control of any of its
windows to any of the student workstations. This means that students can, at
the discretion of the instructor, provide responses to instructor queries which
can be seen at all of the other student workstations. We are conducting a variety
of experiments on how to use this facility in a lecture and lab environment.

When used either as a lecture room or as a lab room we seat two students
in front of each workstation. This limits class size to 30 students per section
which is an appropriate maximum size for this kind of course.

6 Examples of J in Exposition

A small subset of J suffices when used as an expository notation in a course like
this. In this section a few examples of the expository use of J are given. A few
helping definitions are needed. Except for a few primitives such as addition,
subtraction and catenation, English words are used in place of the primitive J

6



spellings to improve readability. Usually, the English word used is taken from
the J Dictionary [Ive 95].

from =. {

amend =. }

take =. {.

drop =. }.

rep =. #:

base =. #.

time =. 6 !: 2

display =. 1 !: 2 & 2

format =. ":

The following words are defined for the primitive circuit gates.

or =. +.

and =. *.

not =. -.

The circuit elements and, or and not can be modeled as:

bitOr =. 3 : 0

(’a’ ; ’b’) =. y.

a or b

)

bitAnd =. 3 : 0

(’a’ ; ’b’) =. y.

a and b

)

bitNot =. not

A half-adder can be modeled using these elements as:

halfAdder =. 3 : 0

(’a’ ; ’b’) =. y.

bitOr (bitAnd a , bitNot b) , bitAnd (bitNot a) , b

)

Next we can build a 1 bit adder using two half-adders as:

bitAdder =. 3 : 0

(’a’ ; ’b’ ; ’cin’) =. y.

t =. bitHalfAdder a , b

g =. bitAnd a , b

p =. bitAnd t , cin

(bitOr g , p) , bitHalfAdder t , cin

)

7



If a language feature is not in the student’s current vocabulary when a
particular model is described, then that feature would be introduced as a part
of the explanation of the model. The idea is that certain language features
are introduced when there is an expository need for them so that the focus
is mainly on the topic being described rather than the programming notation.
Also, notice that explicit definition, except in the simplest cases, rather than
tacit definition is used because it is felt that students find it easier to understand
explicit references to function arguments. The arguments passed to many of
these functions are assigned, indirectly, to local names in an attempt to improve
readability. Finally, the above models are monadic since bitAdder requires three
arguments; the two summands and a carry input.

Next we can model a wire for connecting circuit elements as:

wireOutput =. 3 : 0

(’pin’ ; ’outputs’) =. y.

pin from outputs

)

We can use two bit-adders and some wire to build a 2 bit adder as:

twoBitAdder =. 3 : 0

(’a1’ ; ’a0’ ; ’b1’ ; ’b0’) =. y.

t0 =. bitAdder a0 , b0 , 0

t1 =. bitAdder a1 , b1 , wireOutput 0 ; t0

(wireOutput 0 1 ; t1) , wireOutput 1 ; t0

)

It needs to be emphasized that while students find such descriptions read-
able, they may also be used to provide an interactive working model which can
be explored during a lecture using the classroom workstation and display sys-
tem. These descriptions also constitute part of the prepared laboratory software
for simple experiments involving computer circuit elements. In one laboratory
experiment, students are asked to design and build a model of a 4-bit adder.
The lab suggests that they verify experimentally that this adder performs 2’s
complement arithmetic and asks them to suggest a modification of their design
which would allow the adder to subtract as well as add. The above models for
adder circuits can be installed in a model of a simple CPU which is used in the
lectures describing the organization of a simple computer.

In the lectures on software design and engineering principles, when dis-
cussing techniques of modularization and layering of software, the routines for
rational arithmetic found in Structure and Interpretation of Computer Pro-
grams [Abel 85] have been used. One can demonstrate that it is possible to
change the implementation of rational numbers without changing any code in
layers above the implementation layer. The benefits of abstraction barriers is
explored experimentally in a lab which asks students to form hypotheses con-
cerning three different rational number implementations (don’t remove common

8



factors from numerator and denominator, remove common factors at construc-
tion and remove common factors at access), gather data, analyze results and
draw conclusions. This experimentation involves comparisons based on speed
or space used.

In the lectures on computer organization, a very simple one accumulator
computer, having four instructions (load, store, add and subtract) is described.
A J working model of this computer is given which allows students to not only
see, in precise terms, the organization of this machine, but also run a few simple
programs on this machine.

The memory of this machine is modeled as a J vector. For example,

mem =: 0 0 0 0 307 108 409 22 3 0

models a memory containing a machine language program, starting in loca-
tion 4, for the following J expression.

c =: a + b

A memory system has two operations, access and store. These are modeled
in J as:

access =. 3 : 0

y. from mem

)

store =. 3 : 0

mem =: (1 from y.) (0 from y.) amend mem

)

A processor is modeled by a J function named proc. The processor contains
three registers which are modeled by global variables ac, the accumulator, pc,
the program counter and ir, the instruction register. The processor is modeled
in J as:

proc =. 3 : 0

whilst. y. do.

NB. show registers and memory if tracing

displayRegisters ’’

NB. fetch instruction

ir =: access pc

NB. increment pc

pc =: pc + 1

NB. decode instruction

(’opCode’ ; ’address’) =. 100 100 rep ir

NB. interpret instruction

if. opCode = 1

do. ac =: ac + access address continue. end.

9



if. opCode = 2

do. ac =: ac - access address continue. end.

if. opCode = 3

do. ac =: access address continue. end.

if. opCode = 4

do. store address , ac continue.

else. ’invalid operation code’ break. end.

end.

)

The processor is started with an argument of zero to execute a single in-
struction at a time, while running the processor with an argument of 1 causes
continuous operation of the machine. A global variable, trace controls whether
or not the registers and memory are displayed before each machine cycle as
shown in the displayRegisters function.

displayRegisters =. 3 : 0
if. trace

do.
display ’pc= ’ , (format pc) , ’, ir= ’ , (format ir) , ’, ac= ’ , format ac
display ’mem= ’ , format mem

else. 0
end.

)

Here, again, the point of such descriptions is that they are readable by
humans, yet each such description is also a working model which can be explored
in the laboratory.

7 Student Response to the Course

Generally, student response to this course has been enthusiastic. They seem to
be relieved that they can learn computer science concepts and have hands on
experience conducting experiments of various types without learning to write
their own programs. Even though learning to program is not one of the course
goals, many of the students find that they can write their own simple programs
and seem to be pleased with this knowledge even though most of them will never
find an occasion to program computers later in life. Since teaching programming
is not the focus of this course, students tend to be casual rather than expert
readers of the programs used in this course. J’s readability could be improved
for this type of user. For example, one nice feature of J is that one can use
alternate spellings for words. This is useful when natural language readability
is preferred over the more terse J spelling, for example, using the word or rather
than +..

However, some words have an interaction side effect which preclude use of
an alternate spelling such as define for 3 : 0.

Also, casual readers of the language seem to prefer arbitrary pronouns to
name function arguments rather than the fixed pronouns x. and y..

10



An example of this style of expression can be found in the definitions of
many of the functions given in Section 6. J users may find it preferable to have
a definition syntax which would allow indirect specification of argument names
a, b and cin in a more convenient form than (’a’ ; ’b’ ; ’cin’) =. y..

Each offering of this course causes a few students to consider majoring in
computer science. Hopefully some of those students will have learned enough J
to realize the advantages of continued use of a language such as J.

The first few offerings of this course occurred before the acquisition of the
laboratory equipment described in Section 5. The course was run in a makeshift
lab of borrowed, out-of-date, Sun and Apple UNIX workstations. The lab work-
stations were under-powered for some of the experiments and presented different
user interfaces at student workstations. Student response to laboratory experi-
ments is much more positive with the HP workstations.

8 Distribution of Course Materials

Preliminary versions of the course notes and laboratory experiments are avail-
able via the department’s web server,

http://www.cs.trinity.edu/About/The_Courses/

Students can use a web browser such as NCSA Mosaic or Netscape to view
these materials. The instructor can share a Mosaic window on his machine with
each student workstation and use Mosaic as a presentation program. Expository
J can be copied from the web browser presentation window and pasted into an
instructor’s Xterm window running a J interpreter which is also shared with
the student workstations to provide interactive demonstrations of a working J
model during lecture presentations.

The course materials are also freely available to anyone else via the Internet.
Other distribution of course materials are available by contacting the author.

References

[Abel 85] Abelson, Harold and Sussman, Gerald with Sussman, Julie., Structure
and Interpretation of Computer Programs, MIT Press, 1985.

[Bla 76] Blaauw, Gerrit, Digital System Implementation, Prentice-Hall, Inc.,
1976.

[Ive 95] Iverson, Kenneth E., J Dictionary, Iverson Software, 1995.

[Kon 74] Konstam, Aaron and Howland, John, “APL as a Lingua Franca in the
Computer Science Curriculum”, SIGCSE Bulletin, Volume 6, Number
1, February 1974.

11



[Kon 94] Konstam, Aaron and Howland, John, “Teaching Computer Science
Principles to Liberal Arts Students Using Scheme”, SIGCSE Bulletin,
Volume 26, Number 4, December 1994.

[How 95] Howland, John, “A Laboratory Computer Science Course for Liberal
Arts Students”, The Journal of Computing in Small Colleges, Volume
10, Number 5, May 1995.

[Rie 93] Riehl, Arthur, moderator, “Using Scheme in the Introductory Com-
puter Science Curriculum”, Panel, SIGCSE Bulletin, Volume 25,
Number 1, March 1993.

12


