
APROL
A Hybrid Language

Dennis Holmes
IBM Corporation

5600 Cottle Road, D25/513
San Jose, California 95193 USA

(408) 256-4516
dholmes@netcom.com

John E. Howland
Department of Computer Science

Trinity University
715 Stadium Drive

San Antonio, Texas 78212-7200 USA
(210) 736-7480

FAX: (210) 736-7477
jhowland@ariel.cs.trinity.edu

Abstract

This paper describes the design of a hybrid language which
combines the features of an array processing language and
lisp dialect in a consistent and useful manner. This
language, APROL (Array PROcessing Lisp) is derived
from the J dialect of APL and the Scheme dialect of Lisp.
The base syntactic structure is taken from Scheme, while
the array processing features are based on the J
programming language. A prototype implementation has
been made and some experiences with this implementation
are described. This implementation uses J as an imbedded
array processing engine in a Scheme intrepreter/compiler.

The language as specified provides a set of data types and
manipulation tools which is more diverse than found in
either Scheme or J. APROL allows the programmer to
apply array processing functions to lists of arrays in the
Scheme style and list processing functions to arrays of lists
in typical J style. The result is a language which not only
brings array processing capabilities to Scheme, but also
significantly extends the functionality of the Scheme
language.

Keywords: APL, J, LISP, Functional Programming,
Lists, Arrays

1 Introduction

1.1 Functional Languages
A functional programming language has as its basis the
mathematical concept of a function. One basic

characteristic of mathematical functions is abstraction, the
practice of separating the details of a process from the
conceptual representation of the process. We abstract a
function by giving it a name such as f (x); in some cases,
we may further abstract the function by assigning a
symbol, as with addition (+) or integration (∫). While a
symbol is in one respect just another name, the association
of a symbolic character rather than a word with a function
can serve to remove any detrimental connotations or
preconceptions which an English name may cause one to
associate with the function. The same technique of
abstraction applies in a programming language, where the
details of a process are replaced at higher levels within a
program by a function or procedure call denoted by
something as simple as calculate_result . In the same
way, data types in a programming language are given
names to hide their internal representations.

Modern functional languages carry this concept of data
abstraction further, allowing multiple objects of
unspecified types to coexist as elements of a single data
structure similar to an n-tuple in mathematics. Thus, in
addition to the abstraction technique of naming procedures
described above, functional languages exhibit a high
degree of data abstraction, where the specific
characteristics of data objects are replaced at high levels by
simplified conceptual descriptions of the objects.

The basic algorithmic constructs of sequence, condition,
and repetition are generally implied in or understood from
mathematical notation of functions. Consider integration
as an example. By definition, an integration function is the
limit of the sum of a series as the number of terms
approaches infinity. The sequence implied is to sum the
series and then evaluate the limit, while taking the sum of
the series is an iterative process. Yet we manage to convey
all this information as

 n
 lim S f (xi)Dix,
n®¥ i = 0

or more simply,

ób

ô f (x)dx.
õa

Conversely, most imperative programming languages
(such as C or BASIC) have structures or commands of an
explicit nature for implementing sequence, condition, and
iteration. The notation of functional languages, however,
is more closely tied to mathematical notation, and these
constructs are similarly implied by the notation.

Functional languages are also known as applicative
languages due to the nature of their operation. In
mathematics, we say that a function is applied to its
arguments. In a composite function such as f (g (x)), one
function is applied to the result of another; in this case, the
function f is applied to the result obtained by applying g to
the argument x. Functional languages operate in exactly
the same way; an entire program is built up from the
composition of functions. This style helps to eliminate the
"side effects" that occur with imperative languages in
which preliminary results are often assigned to an auxiliary
variable or procedure parameters are manipulated in place.
Functional language notation is usually much more
compact than imperative notation as well, a direct result of
the similarity to mathematical notation.

1.2 Scheme

The Scheme programming language is a dialect of Lisp
(from "LISt Processor") based on Alonzo Church's lambda
calculus. The base data structure in Scheme is the list.
The notation of a list is that of an ordered n-tuple, but in
fact the object is treated as an ordered pair. Each member
of the pair may be a fundamental type, such as a number or
string, or another list. Strictly speaking, the second
member of a list is also a list, but note that pairs which are
not lists are perfectly permissible and may not have this
property. If a list appears to have only one member, the
second member is the empty list; considered
independently, the empty list is denoted by () . The two
parts of a list are accessed by the functions car and cdr ,
which return the first and second parts of the list argument,
respectively. The car of a list is always the first element
appearing in the list; the cdr is a list containing the
remainder of the members of the list argument. Because of
the nature of lists, a technique frequently used in Scheme
for processing the elements of a list is to create a function
to process the car of the list and then recurse on the cdr of
the list.

A powerful and attractive property of the Scheme language
is that program code looks, behaves, and can be used as
data; thus, functions are handled as first class objects. This

property allows one to write functions which might take
functions as arguments, return functions as results, and
even construct new functions and add them to the
environment. To differentiate a literal list from a
procedure application in program code, Scheme employs a
method known as quoting in which a single quotation mark
is placed immediately before a literal list or the Scheme
function quote is applied to the list. These characteristics
provide an ideal set of tools for implementing a system
which exhibits a high degree of data and procedural
abstraction.

Another data structure available in Scheme is the vector,
essentially an array data structure of one dimension. The
notation of a Scheme vector is identical to a list preceded
by the number or pound sign (#). (Note that the current
Scheme specification indicates that vector expressions
must be quoted within program code [CLIN91,Ê26].)
However, Scheme does not provide any extended array
processing facilities, and the recursive techniques used
when approaching problems in Scheme do not always lend
themselves easily to performing the kinds of iterative
operations typically used in array processing. While the
list is a powerful structure, Scheme is simply impractical
for many mathematical applications involving arrays.

1.3 J

The J programming language is Dr. Kenneth Iverson's
recent derivative of APL, a language which he developed
and which was first implemented on a computer in 1966.
APL is based on standard mathematical notation; the
syntax utilizes infix notation and even the same symbols
used in mathematics. J retains this concept but uses the
ASCII character set for greater portability and user ease.
In addition, J offers significant improvements and
capabilities over the original APL.

As in APL, the base data structure in J is the array,
representing the mathematical concept of a vector or
matrix. Two important concepts in J are the shape and
rank of an array. The shape of an array is a vector
containing the number of elements in each axis of the
array. The rank of an array is the number of elements in
the array's shape vector, or the number of axes the array
has.

The J environment offers an extremely powerful set of
array processing tools. Matrix arithmetic operations are
fundamental; several common matrix functions, such as
inverse and transpose, are provided and even extended to
apply over arrays of rank greater than two.

One disadvantage of J is that it can be a very difficult
language to learn. Although it uses the ASCII character
set, the notation is very symbolic and requires much time
to master. The programming techniques used and
procedural abstraction facilities employed in J are powerful
and innovative, but somewhat different from other
languages and can seem rather formidable to the beginner.

1.4 Array PROcessing Lisp

It seems that a new language is desirable which would
combine the characteristics of both of these languages,
utilizing Scheme's simplicity and intuitive procedural
abstraction techniques and J's powerful array processing
capabilities. Such a language would allow one to make
full use of the list processing features and powerful
recursive nature of Scheme while retaining the ability to
easily and efficiently manipulate complex mathematical
and tabular data. This language currently has a working
name of Array Processing Lisp, or APROL.

The Scheme syntax offers one advantage with respect to
this goal that J does not. With the vector data structure,
Scheme has an existing representation for a basic array
type. J, however, has no representation suitable for a list;
one could implement lists or an equivalent using arrays,
but significant syntactic extensions must be made to the
language in order to avoid losing much of the intuitive
benefits of the list data structure. In addition, the
simplicity and clarity of Scheme seems to make it the
better basis for the new language.

The importance of this decision concerning the basic
syntactic structure of the language should not be
underemphasized. One might at first be inclined to suggest
that a hybrid syntax be developed which could use
Scheme's prefix notation for list processing and J's infix
notation for array processing. While this idea has some
appealing aspects, it does not lend itself well to a full
integration of Scheme and J characteristics. We wish to do
much more than simply give Scheme the capability to
manipulate arrays; we wish to extend the operations of
Scheme to apply to arrays and the operations of J to apply
to lists in a consistent manner. A hybrid syntax would
simply confuse the user, complicate the language
implementation, and increase the potential for ambiguities
in the language.

The APROL language has several potential applications.
Existing Scheme and J programs could be ported quickly
and easily to this environment; ideally, existing Scheme
programs would run on this system with no modification.
There may conceivably exist applications which seem to be
suited to functional language solutions but require slightly
more capability for a practical implementation than either
Scheme or J offers. In addition, other applications may be
discovered or invented which favor implementation in
APROL.

Furthermore, the APROL environment would make a
powerful educational tool. Since Scheme programming is
relatively easy to learn, APROL can provide novice
programmers a powerful array processing package without
the complexity of the J syntax. Additionally, APROL can
be used to introduce J to students who are familiar with
Scheme. Working in APROL would teach them the
concepts, functions, and techniques of J programming
quickly; all that remains then is to associate the J symbols

with the function names and change from prefix to infix
notation. Such a technique could greatly reduce the J
learning curve.

2 Project Objectives

The purpose of the APROL language is to bring together
the list data structure and processing functions from
Scheme and the array structure and operations from J in a
single, unified programming environment. The Scheme
syntax will provide the basic structure of APROL, and
adherence to the Scheme specification [CLIN91] will help
to maintain consistency in the language, provide a basis for
making decisions concerning the language design, and aid
in gaining acceptance for the language in the programming
community. As such, Array Processing Lisp can be
classified as an extension to the Scheme language, and also
as a dialect of Scheme or Lisp.

3 Underlying Basis of APROL

It is important to examine the underlying model of any new
programming language. The Scheme language is firmly
based on the lambda calculus developed by the
mathematician Alonzo Church and published in 1941
[CHUR59]. The notation used in Scheme to build the
lambda constructs (functions) and function applications
which make up the language is taken directly from
Church's work.

J is built on an extended model of matrix arithmetic. This
language has a strong relationship to the lambda calculus
as well, however. Although the notation is somewhat
different from that used by Church, careful examination
shows that the same techniques of function abstraction are
used. In Scheme (and the lambda calculus), one has the
ability to define a new function by applying a function to
primitive object parameters which define an instance of the
function. One may also apply a function to a set of other
functions, producing a new function which performs some
composition of the parameter functions. Such constructor
functions may be said to define a class of operations; the
functions resulting from their application are the instances
of the class.

J accomplishes the same functionality with symbols known
as conjunctions. A conjunction is a function which
operates on two verbs (functions) or on a verb and a
primitive or array object. For example, consider the
conjunction & ("with" or "compose"). If we execute the
phrase ^&2 , we obtain the square function [IVER91B, 5].
Likewise, (+/).* provides the inner product of addition
over multiplication, or matrix multiplication, by composing
the operations of multiplication and inserted addition using
the conjunction . ("dot product") to form an inner product
function.

One can easily see how the Scheme syntax provides the
tools to construct equivalent mechanisms to the J
conjunctions. The J function ^ ("power") is a function of

two arguments, requiring a base and an exponent. With the
construct ^&2 , we apply this function to a single argument,
the exponent, and obtain a function of one argument, the
base, in return. Similarly, the . ("dot product") operator is
a function over a domain of functions and defines a new
operation based on its arguments. Both of these cases
correspond precisely to the previously described facilities
of the Scheme language; one can simply create a function
which operates on a domain of other functions.

It therefore seems safe to say that the underlying models of
Scheme and J are not incompatible. What remains to be
examined is the issue of smoothly integrating the array
data structure and operations into the Scheme environment.
Through abstraction, Scheme has the capability to
manipulate several primitive data types within the list and
vector structures. Some basic array handling can then be
obtained simply by defining an array as yet another
primitive type.

However, considering the vector, Scheme already
possesses a structure which is functionally equivalent to
the array of rank one. In J, all higher order arrays are
constructed from rank one arrays by the application of a
shape function, an instance of a class of functions defined
as the application of a shape vector. A shape function
applies its associated shape vector to an array argument to
obtain an array consisting of the same elements but
rearranged to fit the applied shape vector. Arrays of any
rank and shape can therefore be represented in Scheme
simply by associating a shape vector and an element vector
together in a data structure such as a list. Once the array
data structure has been represented, one should then be
able to implement functions to perform recursive or
iterative manipulations on the array and its elements.

Although many of the algorithms for array operations one
might implement in Scheme would not be very efficient, it
is nonetheless possible to bring J arrays and operations to
Scheme simply by implementing them in the Scheme
language itself. With this knowledge of the basic
compatibility of the concepts, it becomes desirable to
provide within the system a more efficient set of array
manipulation tools and extend the operations of the
combined languages to allow efficient new methods of
processing combined structures of lists within arrays and
arrays within lists.

3.2 Data Abstraction

Data abstraction is an important feature of modern
programming techniques; it allows maximum flexibility of
program design and permits modifications and
enhancements to be added to a program relatively easily
when necessary. In J, data abstraction is provided by the
functions < ("box") and > ("open"). When the box function
is applied to an array object, the object is metaphorically
sealed in a box, transforming the object into a rank zero
(primitive) object. This box can be used as an element of
an array of boxed items, even if the other boxed objects are

of varying types, as i l lustrated below:

1 2 3
4 5 6
7 8 9

127hello

...

Figure 3.2.1: An array of boxes

To access the contents of a box, the open function is
applied to the box. Thus the expression ><A obtains the
object denoted by A, and the function denoted by the
sequence >< represents an identity function for all objects
in the J environment. If A represents an array of boxed
numbers, then 2+>A evaluates to an array in which each
element is equal to two plus the value of the unboxed
corresponding element of A.

The Scheme language has no functions corresponding to
the box and open operations of J, as the abstraction and
referencing operations are handled automatically by the
Scheme environment. Each member of a list exists within
the list as simply an abstracted "list member" object. Thus
the user may freely insert objects of any primitive or
structured type into the list with a cons or append
function. The user never needs to apply any explicit
abstraction function. If deeper levels of abstraction are
needed, however, the item or items can easily be enclosed
in another list within the list.

Boxing is necessary in J because of the parallel nature of
the way the language operates. When a simple arithmetic
operator is applied to an array in J, the result is the effect of
applying the function across the entire array. 2+A results in
an array which is the result of adding two to every element
of A; A+B performs the matrix addition of A and B (an
element of the result is equal to the corresponding element
of A added to the corresponding element of B).

If elements of an array were permitted to have rank greater
than zero, ambiguities would run rampant in the language.
For example, consider a rank two array C with elements of
rank two (a matrix of matrices). Also consider, for this
example, the function {. ("take"), which in the form N{.A
evaluates to the first N items (elements, rows, matrices,
etc.) of A; the rank of an item of A is one less than the rank
of A. If we execute the sentence 1{.C ("Take one from
C."), two reasonable interpretations are possible. Should
we obtain the first row of C (a vector of matrices) or a rank
two array whose elements consist of the first row of each
corresponding element of C (a matrix of vectors)? Note
that the normal semantics of a function applied to an array
indicate to apply the function to each element of the array;
if this approach is taken, however, it becomes impossible
to ever obtain the first row of C by any function!

In addition to requiring array elements to have zero rank, J
requires all elements of an array to be of the same general
type. If numeric data is to be placed in the same array
alongside character data, then each element of the array
must be boxed. This requirement insures uniform
applicability of any function over the elements of the array;
very few operations over the elements of an array would
make sense if the elements were not of similar type.

Although the explicit nature of J's abstraction techniques
can be beneficial in introducing the user to the specifics of
abstraction, it seems out of place in APROL, where the
Scheme-based environment already hides the abstraction
from the user in most cases. For consistency in the
language and clarity and conciseness of programs written
in APROL, it would seem desirable to continue to hide the
abstraction technique from the user; essentially, we
abstract the abstraction. However, this is only possible in
part, due to the potential ambiguity just described. Boxing
will occur automatically within APROL, but we must
retain the open function in order to be able to apply
functions to the components of an array rather than to the
array itself. In addition, it may prove beneficial to make
explicit abstraction techniques available to the user for
special applications without actually requiring or
encouraging the use of these functions. Furthermore, it
will almost certainly prove beneficial to display boxed
array elements within a box (in J style) when output to the
terminal to insure that the output is clear and unambiguous.

3.3 Arrays in APROL

We have existent in Scheme a vector data structure, which
corresponds conceptually and functionally to an array of
rank one. Thus it is appropriate to use this structure as a
convenient means of representing such an array. If we
follow the method used in J for constructing arrays of
higher rank, we can obtain such an array by applying a
shape function to a rank one array. For example, the
APROL expression (shape '#(2 2) '#(1 2 3 4))
results in a two by two matrix whose elements are the
integers from one to four, in row major order.

This correlation between the vector and the rank one array
helps to retain simplicity in the language; having two
separate but functionally equivalent data types would not
provide any particular benefit. For compatibility with
Scheme, of course, it is desirable to have the Scheme
vector functions be applicable to the array type, but defined
only for arrays of rank one. The correlation also prevents
the need to modify or add to the syntax of the language in
order to accommodate array construction. Thus the
language should be extremely easy for Scheme
programmers to use, appearing at one level as a powerful
Scheme array processing package.

The semantics of complex vector constructions is also
retained. For example, the expression '#(#(1 2 3) 4 5)
remains valid, indicating an array of rank one whose first
element is the rank one array #(1 2 3) and whose other

elements are the integers four and five. This example also
illustrates the kind of abstraction that is desirable in
APROL. In J, this object is created by the expression (<1
2 3),(<4),<5 (or 1 2 3;4;5) and corresponds to an array
with a boxed array as the first element and boxed integers
as the second and third. In APROL, although the elements
are of unlike type, no explicit abstraction operation is
applied to any of the elements at the user interface level;
likewise, no special operation need be applied when
referencing the elements of the array.

For representing arrays of rank greater than one, something
more than the Scheme vector is needed; obviously the data
structure must contain, at the very least, the shape of the
array and a list of its elements. In addition, accessor
functions are needed which can determine the rank, shape,
and elements of the array. In Scheme, however, we can
make use of procedural abstraction to bundle these
accessor functions along with the data structure, resulting
in an array object which knows its own identifying
characteristics. Thus we simply "ask" the array to return
its rank, its shape, or its elements, eliminating the need for
external accessor functions.

In order to gain the behavior specified by these
requirements, the array object must take the form of a
Scheme function. This function takes as its single
argument a symbol identifying the desired characteristic.
If the name a is bound to an array object, then the
expression (a 'rank) evaluates to the rank of a and (a
'shape) to the shape vector of a.

Whatever the specification for the nature of array objects,
it should be realized that for consistency this specification
must apply to all arrays, including those of rank one. In
order to accomplish this, the specification proposed here,
in particular, requires a redefinition of the nature of the
Scheme vector object. In its present form, a vector cannot
be applied to any object as a procedure can. We have
already established the equivalence relationship between
the vector and the rank one array. The proposed
specification is capable of representing any array object;
vectors can therefore be represented as rank one arrays
using this system. The underlying representation of the
vector must be changed to form it into an array object as
defined in the above specification. Additionally, the
Scheme vector processing functions which access the
underlying structure of the vector object must be rewritten
to accommodate the new internal representation.

This change in the nature of the vector object will be
mostly transparent to users writing and executing regular
Scheme code; that is, this structure will retain all the
functionality and input notation of the Scheme vector type.
The new representation does, however, extend the
capabilities of the vector type to include all those of the
array data type. The vector has become an instance of the
array class, and its internal representation is similar to that
of other array objects. The only difference that the Scheme
programmer will notice between the APROL vector and

the Scheme vector is the external, or output, representation.
The Scheme vector notation is inadequate for displaying
arrays of rank greater than one, nor is it suitable for
displaying vectors containing elements of rank greater than
one. In order to maintain consistency, then, vectors in
APROL will be printed using the same J-like technique
that will be used to print arrays in general:

1 2 3
4 5 6 #(1 2 3 4 5) 1 2 3 4 5
7 8 9
Matrix Vector Vector

(J notation) (Scheme notation) (J notation)
Figure 3.3.1: Array output formats

It should be noted that although the array object, and
therefore the vector, is now defined as a particular class of
function, the vector remains defined as a disjoint type per
section 3.4 of the Revised4 Report on the Scheme
Programming Language (R4RS); that is, a vector object
always satisfies the predicate vector? but not the predicate
procedure? [CLIN91,7]. Likewise, a procedure (other
than an array) always satisfies procedure? but not array?
or vector? . An array will always satisfy array? , but
satisfies vector? if and only if its rank is one. The array
type is exclusive to all types to which the vector type is
exclusive, but naturally not to the vector type itself;
therefore, since array? represents the more general case,
array? is substituted for vector? in the list of predicates
appearing in R4RS[3.4] for determining disjointness of
types in APROL. It should be noted at this point that since
an APROL vector has been fully defined to be an array of
rank one, the terms "vector" and "array of rank one" are
interchangeable and will consequently be used as such in
this discussion; additionally, the terms "array" and "array
object," referring to the class of arrays, shall include
vectors.

These differences in the representation of vectors in
Scheme and APROL require no modification to the
Scheme syntax for APROL, nor is Scheme functionality
impeded in APROL as a result of these differences. With
arrays being represented as procedures, one might be
concerned about including arrays as members of list
structures; ordinarily this is how a Scheme programmer
indicates a function application. However, literal lists are
already required to be quoted in the Scheme language to
prevent evaluation. A list whose car is an array object can
be evaluated; however, the user must insure that the cdr of
the list contains an argument appropriate to the application
of an array object. Failure to do so could result in an error
message or unpredictable results, as the application of the
procedure which is the array object would be undefined.

3.4 Strings

One may raise questions concerning the handling of the
string data type, which may be viewed as a special type of
vector containing an ordered sequence of character data.
In Scheme, the string exists as a primitive type, one of the

eight disjoint types defined by the predicates listed in
R4RS[3.4]. In J, the concept of a string exists only as an
array of character data. The representation used in J is
very flexible, allowing the full range of J array-handling
operations to manipulate the string. For consistency, it is
best to select a single representation for all strings in
APROL.

While the array representation is more powerful, we can
easily obtain this representation from a Scheme string
using the conversion procedures available in the Scheme
environment; the expression (list->vector (string ->
list s)) yields a vector containing the characters from
the string s . If this is too unwieldy, the user may easily
define a function string->vector which combines the
two conversions (see Appendix B). Alternatively, the
functions string->vector and vector->string could be
specified as essential procedures and included in every
APROL implementation. In order to maintain compliance
with the Scheme standard and thus compatibility with
portable Scheme code, it is reasonable to use the Scheme
representation and convert strings to vectors when complex
manipulation is necessary. This method also allows the
Scheme string comparators and manipulation functions to
be retained and provides the capability to convert
computed vectors to strings.

3.5 Designations of Array Functions

In order to maintain familiarity and compatibility in some
form with the existing J notation, it is desirable to use
names for the J functions of APROL which resemble the
names used in J. Unfortunately, some of the symbols used
in J have meanings in Scheme with which interference is
not acceptable; in addition, many of the symbols could be
ambiguous, or at least confusing, when removed from the
context of an infix notation. A good solution, then, is to
use the English names for the functions as given in the J
dictionary [IVER91B]. Additionally, some J functions
already have corresponding functions in Scheme; the
implementations of these functions will need to be altered
to extend their functionality to include arrays to prevent
having redundant operations in the language.

The subject of conjunctions and adverbs as used in J also
needs to be addressed. The conjunction is a type of
operator which takes two parameters and derives a new
function based on those parameters. Thus the conjunction
behaves as a function which operates on either a function
and some object or two functions. Like any other function
in J, conjunctions have symbols and associated English
names. To use a conjunction, then, we apply the desired
conjunction function to two appropriate entities and apply
the result to the desired arguments. For example, the
expression ((with power 2) 5) evaluates to five squared
or 25, and ((compose times negate) 2 5) to -2 times -
5, or ten. These expressions correspond to the J
expressions ^&2 5 and 2*&-5 , respectively. Note the use
of different names for the two forms of this conjunction;
such a distinction may contribute to the clarity of intent of

programs.

Adverbs in J operate in a similar manner; an adverb is a
symbol which modifies the behavior of a single verb. For
example, the J expression +/1 2 3 uses the adverb /
("insert") to modify the behavior of the verb + ("plus").
The result is the evaluation of the expression formed by
inserting the verb + between each of the elements of the
argument, which gives 1+2+3 , resulting in the value six.
Adverbs, then, can be viewed as the monadic version of the
conjunction; whereas a conjunction produces a function
based on two arguments, an adverb produces a function
from a single function argument. The above example
would be written in APROL as ((insert +)
���������
	���

.

There exist in J the implied operations of fork and hook
which are represented by an isolated sequence of verbs.
The effects of these operations are like those of
conjunctions; a new function is formed which is defined by
some composition of the parameter functions.
Interpretation occurs in typical J right to left style. A fork
contains three verbs, with the central verb operating on the
results of independently applying the parameter verbs to
the arguments. A hook contains two verbs, with the
leftmost verb operating on the first argument and the
application of the parameter verb to the second argument.
The following diagrams illustrate the monadic (unary) and
dyadic (binary) cases of these constructions for functions
f , g, and h and arguments x and y [IVER91B,Ê6]:

Fork Hook
g g g g

/ \ / \ / \ / \
f h f h y h x h
| | / \ / \ | |
y y x y x y y y

(fgh)y x(fgh)y (gh)y x(gh)y
Figure 3.5.1: Fork and Hook

Generally, a sequence of odd length forms a sequence of
forks, and a sequence of even length produces a hook
followed by a sequence of forks. So the sequence f g h i
j (all functions) is equivalent to f g (h i j) , and f g h
i is equivalent to f (g h i) [IVER91B,6]. Programming
examples and equivalences are shown in Appendix A. In
order to provide this same functionality in APROL, these
implied operations must have a name. While "compose"
would perhaps be an applicable name, the conjunction &
already uses this as an alternate name; therefore we may
find the name "train," the term used in the J dictionary for
such a sequence of verbs, to be appropriate. Note that this
function should accept any number of function arguments
greater than or equal to two.

3.6 Extension of Scheme and J Functions

In the context of the APROL language, several of the
functions inherited from J and Scheme can be extended to

provide greater functionality and integration of the
concepts behind those languages. The dyadic J functions
can be extended to accept more than two arguments in the
style of many Scheme procedures; for example, the
Scheme expression (+ a b c) is equivalent to the
mathematical expression a+b+c and could be extended to
apply to array addition in the same manner. The monadic J
functions need no such modification, as the Scheme
function map allows the parallel application of a procedure
to all the elements of a list. For example, if a and b are
arrays, (map transpose '(a b)) is equivalent to (list
(transpose a) (transpose b)) . Thus we already have
the capability to apply a monadic array operator across a
list of arrays.

Likewise, functions inherited from Scheme can be
extended to apply across arrays in typical J style. For
example, if c is an array of lists, then (car c) evaluates to
an array r in which each element is the car of the
corresponding list, and the shape of r is identical to the
shape of c . The map procedure provides this type of
operation on a list of lists, but we wish to extend this
capability to apply to arrays of lists where we can gain the
benefits of greater organizational flexibility and array
operability. This enhancement is not intended to fully
replace the use of the list structure and map as a means of
storing and manipulating lists, but rather to provide a tool
for efficiently manipulating lists contained within array
structures.

These extensions immediately raise issues concerning the
associativity of procedures in APROL. The Scheme
language implements left to right associativity; the
expression (- a b c) is equivalent to the mathematical
expression (a- b)- c, not a- (b- c). J, however, uses right
to left associativity. The J expression a-b-c translates to
the mathematical expression a- (b- c). Thus in APROL an
interpretation must be selected for expressions of the form
(<procedure> <arg> ...) as well as any newly defined
forms of multiple-argument expressions (such as those
created by insert). If we are to keep to the goal of
maintaining compatibility with Scheme, then obviously
(<procedure> <arg> ...) must associate from left to right;
however, it is possible to define an adverb rtol which will
force right to left associativity of a verb. Since the other
forms in APROL which require associativity to be defined
are the result of inheriting functions or styles from J, it is
convenient to the J programmer to have these expressions
associate from right to left. One advantage of this method
is that, since right to left associativity is used in the
definitions of the fork and hook, these constructs retain the
semantics previously described; otherwise they would have
to be redefined, which would be inconsistent with the J
style elements incorporated into APROL.

In another extension to the notation, it would be possible to
have APROL use the notation for negative numbers
employed by J. In order to eliminate ambiguity, the
negative sign in J is represented by a symbol different from
the negation operator. However, the Scheme notation has

no such ambiguity. Although they use the same symbol,
the negation operator always exists as an independent
function object, and the negative sign is always bound to a
numeric constant and is found immediately preceding a
numeral with no white space in between. Utilizing a
different symbol for the negative sign would have the
result that some Scheme code would require slight
modification to run in an APROL environment. Since
there is no ambiguity or unclarity in the existing syntax, it
is best to continue to use the existing Scheme symbolism.

4 Implementation Issues

Some questions and issues concerning the implementation
of an APROL interpreter have arisen during the design
process. While decisions concerning the design of a
programming language should not be made on the basis of
any particular implementation technique, considering
methods for and potential problems in implementation can
provide and have provided valuable insight into design
concerns.

4.1 Scheme Implementation

The APROL language as specified here cannot be fully
implemented in a Scheme environment. While many
functions could be written to provide capabilities
equivalent to those discussed here, several modifications to
the Scheme interpreter would be required in order to
permit the notation desired. If Scheme functions (both
those with equivalents in J and others we wish to extend)
are to be extended, they must be implemented as
completely separate functions, as many Scheme systems do
not allow the redefinition of integrable procedures. Thus,
instead of using the function + to perform all addition we
must define a new function aprol-plus ; similarly, car
cannot be applied across arrays, so we must define aprol-
car . However, it should be noted that aprol-plus and
aprol-car could could be designed to include the
functionality of + and car .

Changing the nature of vectors to conform to array objects
also requires modifications to the interpreter, as vector
notation entered by the user must be converted. Using an
implementation in Scheme, the user would be required to
apply a conversion function to all Scheme vectors. The
Scheme vector processing functions also need to be
modified, which requires redefining integrable procedures
or separation of the APROL versions of these functions.

Another important consideration is the need to properly
display the external representation of arrays upon output to
the terminal. The notation used by J is clear, concise, and
true to mathematical representation. However, printing
array results requires that they be passed to a printing
function or that the printing method be written into the
output formatting routines used by the interpreter.

4.2 Using LinkJ as an Imbedded Language

The J source code contains an option activated at compile
time which allows the system to be compiled, essentially,
as a library; in this form, the J system is known as LinkJ.
This feature can be used to facilitate a rapid
implementation of APROL without having to re-implement
all the functionality of J in Scheme. The source for LinkJ
is simply compiled along with the source code for the
Scheme system, producing a single executable file
possessing the workings of both environments.

Careful selection of a Scheme system for such an
implementation is important. Of course, the source code
for the Scheme system must be available. In addition, one
must be able to insert hooks into the system whereby calls
to Scheme functions within the Scheme environment can
reference C functions (J is currently implemented only in
C). In addition, we must have some method of operating
on Scheme objects and executing Scheme functions from J;
ideally the Scheme system would also have hooks to allow
the referencing of Scheme functions from C. As another
consideration, a Scheme system which is very complete
and adherent to at least the R4RS specification will provide
APROL with the greatest functionality and reliability.

Another possibility for hooking into the Scheme system is
to obtain string representations for Scheme objects and
pass them into the Scheme reader; perhaps a function of
the Scheme interpreter could be used to print the external
representation of an object to a string in preparation for this
operation. The problem which remains is obtaining results
back from the Scheme environment. If a special Scheme
interface function were used, however, it could reference a
C function to store the result in a static memory area. The
J system could then use this same C function to obtain the
stored result.

The abstraction techniques of both languages can be used
to an advantage in such an implementation. If no operation
is to be performed on a foreign object, it can be abstracted
and manipulated as a unit; we simply encode the block of
data used to represent the object in its parent language and
assign it an appropriate type. In J, this type is the box,
which is capable of holding data of any type; in Scheme,
we must make a new type, perhaps named "j-object." This
type of encoding can be used to avoid much unnecessary
conversion and translation between the data structures of
the two languages.

There is another method which can eliminate this complex
encoding and passing of object representations and the
difficulty of interacting with the Scheme reader. If, within
the context of the array object as specified, there exists a
Scheme data structure containing the array information,
then the array elements can be accessed and processed
using procedures implemented in Scheme from within the
Scheme environment. When J processing of the array is
desired, a Scheme interface function can be used to
construct the J representation by means of C function calls.

As this interface function will be the last step before J
execution occurs, it will be responsible for invoking the C
interface to J. When the external J execution terminates,
control is returned to the interface function along with the
encoded J object result. The interface function then works
with C decoding functions (which utilize the J system) to
convert the object into its Scheme representation. This
Scheme object is then returned to the invoking Scheme
procedure; it should be noted that this object is not
necessarily an array; J functions can be constructed to
produce a primitive type from an array, such as accessing a
particular array element.

Each function inherited from the J language will require a
Scheme interface function the name of which carries the
English name of the J function. In order for the
conjunction and adverb functions to provide applicability
to Scheme and user-defined functions, however, these
classes of functions are best fully implemented in Scheme;
this technique requires perhaps a little more work in the
implementation but prevents the need to transfer control
back and forth between the Scheme and LinkJ systems.

4.3 Independent Implementation

Designing an implementation independent of existing
environments can result in a much more efficient
interpreter. Furthermore, this allows the implementor to
optimize and unify the underlying data structures of the
system to eliminate translation problems.

To save having to re-implement the operations of J to work
within an independent system, one might consider
developing a new Scheme system specifically designed to
interface with the LinkJ environment. Such a system
would need to be carefully designed, and the implementor
would probably benefit from experimenting with LinkJ and
existing Scheme systems first. Although this type of
implementation would perhaps not work as smoothly as a
completely independent product, it does allow much
optimization of data structures and interface techniques
between the systems.

5 Conclusions

5.1 Evaluation of Project

The nature of this project is rather experimental, and its
goal has been to determine a means to provide the data
handling capabilities and programming techniques used in
two differing functional languages in a single unified
programming environment. In this specification of Array
Processing Lisp, the means is provided for an integration
of the array type and operations used in J into the Scheme
environment. List and array members are interchangeable,
and the intermixability of the combined set of operations
provides a very powerful and diverse set of tools for
manipulating these types among each other.

The APROL language allows for the application of

functions across lists of arrays and arrays of lists; this type
of parallel record processing may be useful in many
applications. Both list and array processing techniques are
available in the APROL environment. The reasoning
behind this is that most real-world applications do not
present sets of data that are of a uniform type and structure;
often some particular data type, structure, and set of
operations is best for representing one group of data, while
other types, structures, and operations are desirable for
manipulating other sets of data within the same
application. The types of structures and algorithms
required by even a single application may differ wildly and
evoke different responses among various programmers.
The APROL language provides greater flexibility in its
tools than either Scheme or J.

One advantage of the J syntax which is not fully retained in
APROL is its unique readability. Most J expressions, if
one reads the symbols as their associated names, can be
verbalized as English sentences; the infix notation and
right to left associativity of the operations contribute to this
property. However, this characteristic of J may still be of
some benefit to APROL programmers. Where
associativity must be implied in array operations, the right
to left associativity of J-like expressions remains intact as
specified in section 3.6. In addition, the use of English
names in place of the J function symbols may help to make
up for the rearrangement of phrases due to the Scheme
syntax structure. In general, applying this J characteristic
of verbalization to APROL may assist in determining the
correctness of expressions and in translating one's thoughts
into APROL programs.

5.2 Topics for Further Research

While the focus of this project has been in sketching out
the general nature of the APROL language, this is but the
first stage. There is naturally an implied goal to develop a
complete and detailed specification of the language and
implement a fully functional, efficient interpreter. In light
of this goal, several topics for future research are
presented.

Scheme and J each use a different representation for
Boolean values. In Scheme, #t represents the value of true
and #f the value of false. In conditional expressions, #f is
the only value considered false; all other objects are
considered to have a Boolean value of true. However,
Boolean is one of the eight disjoint data types listed in
R4RS[3.4]. Thus the values #t and #f are equivalent to no
other objects outside of conditional expressions. In J,
however, the binary values 1 and 0 are used to represent
the Boolean concepts of true and false. Thus values which
are the results of comparisons can be used in numerical
calculations; in fact, this is how the condition construct is
implemented in J. In order to preserve Scheme
compatibility, it is desirable to avoid compromising the
independence and integrity of the Boolean type; however,
we also wish to be able to perform conditional
computations in the J style. A solution is therefore

required which provides functionality over both
conventions and/or implements a conversion facility. A
technique to consider might be the addition of two adverbs
boolean and binary which will modify a comparator to
give results in either convention.

Operators such as - ("negate") are applicable only to
numeric elements. However, since abstraction of elements
is implicit in APROL, we may wish to consider the
possibility of "deep" application of such operators to an
array. That is, if an array a contains another array b as an
element, the operator is applied to the element array b as
well as a . If array b had another array c as an element,
then the operator would be applied to c as well, and so
forth. One should also consider the deep application of
more complex functions such as car or cdr to such an
array of lists. It should be noted, however, that potential
problems may exist regarding this type of functionality.
The J language does not support deep application of this
type, and this option has not been fully explored with
respect to APROL.

J possesses an interesting iteration mechanism known as $.
("suite"). It is possible in J to create a vector of boxed,
independent J expressions which resembles an imperative
program; such a vector can then be made into a J function
and executed. The suite is a special variable which, when
assigned to a vector of integers, determines the order in
which the "statements" of a function defined in this manner
are executed. Upon execution of a function, the suite is set
to evaluate the expressions in order of their appearance in
the function definition. However, by including statements
within the function itself to reassign the value of the suite
"on the fly," the programmer can control the flow of the
program, creating loop structures and branching. This
unique approach to repetition may have some powerful
applications in APROL. Future research should include
consideration of this feature and its implications and how it
might be adapted to and implemented in APROL.

The basis of the APROL language rests on two languages
which are relatively new and still developing. While the
Scheme standard is gradually settling down, the language
is not yet set in stone. J, on the other hand, is a very recent
development and may undergo significant changes in the
near future. While such changes need not necessarily be
incorporated into this language, APROL research should
include examination and evaluation of changes in these
languages should evolutions occur which might be
desirable features in APROL.

Appendix A
Programming Examples in APROL

: (define a '#(1 2 3 4))
a

: (+ a a a)
3 6 9 12

: (- a a a)
1 2 3 4

: (- a (array-reverse a) a)
_2 1 4 7
(Association is left to right.)

: ((insert plus) a)
10

: ((insert minus) a)
_2
(Association is right to left.)

: ((insert cons) a)
(1 2 3 . 4)

: ((insert cons) (array-append a '()))
(1 2 3 4)

: ((insert list) a)
(1 (2 (3 4)))

: (define b (shape '#(2 2 2)
 '#(1 2 3 4 8 7 6 5)))
b

: b
1 2
3 4

8 7
6 5

: ((insert minus) b)
_7 _5
_3 _1

: ((insert cons) b)
 1 2 8 7
(3 4 . 6 5)
This is a notation issue which has not yet been addressed.
Here, the extra spaces surrounding the punctuation
symbols signify that the object occupies multiple display
lines.

The following illustrates how to find the indices of all the
spaces in a string:
: (let
 ((text
 (string->vector "This is a sentence.")))
 (copy ((binary eqv?) (string->vector text)
 #\space)
 (integers (tally (string->vector text)))))
4 7 9

: (define c (reverse a))
c

: ((train plus times minus) a c)
_15 _5 5 15
This fork is equivalent to (a+c)*(a-c) .

: ((train plus signum minus reciprocal) a c)
1.75 2.66667 3.5 4
With rationals implemented, the results would appear in
ratio form. This sequence is equivalent to a+(*c)-%y (J
notation). Note the need to use the monadic functions
signum and reciprocal rather than times and divide.

: ((with power 2) 5)
25

: ((with power 2) a)
1 4 9 16

: ((compose plus decrement) 3 5)
6
This is equivalent to (<:3)+(<:5) , or 2+4 .

: ((compose plus decrement) a c)
3 3 3 3

Appendix B
Assisting Procedures in Scheme

String and vector conversion procedures, as described in section
3.4:

(define string->vector
 (lambda (s)
 (list->vector (string->list s))))

(define vector->string
 (lambda (v)
 (list->string (vector->list v))))

: (string->vector "hello world")
#(#\h #\e #\l #\l #\o #\space #\w #\o #\r #\l
#\d)
Note: In APROL, the output would be simply the following
line:
hello world

: (vector->string (string->vector "hello
world"))
"hello world"

Appendix C
Implementation Status

The current working implementation of the APROL
interpreter uses Gambit Scheme 2.0 [GAMB20] compiled
with the LinkJ 6.2 system [J62] using THINK C 5.0.4 for
the Apple Macintosh. The entire system exists as a single
standalone application, and memory is divided in a two to
one ratio between the two environments, based on the
recommended memory size for each system considered
independently. Several functions have been written in C to

facilitate translation of array arguments and passing of
control between the two systems.

For testing purposes, the only arrays currently supported
are those consisting of integer elements smaller than
bignums, although any shape and rank greater than zero are
allowed. This capability will naturally need to be extended
to include arrays of other primitive types, lists, and boxes.
The implementation of boxes will require additional
recursion in the translation routines in order to capture
arrays within arrays (to any depth). Another consideration
for future implementation will be the handling of Scheme's
exact and inexact numeric representations. Also, little
error handling and type checking of arguments is
implemented at this time.

The Gambit Scheme system is somewhat unique in that it
allows the use of names of integrable procedures for user-
defined functions. The integrable functions themselves
exist in the compiled interpreter and do not affect the
internal operation of the interpreter. However, user-
defined functions do take precedence over corresponding
integrable functions with respect to user operations; to the
user, therefore, it appears as though the integrable
functions themselves have been redefined.

With two exceptions, all the standard Scheme vector
processing functions have been redefined to work in terms
of rank one arrays rather than Scheme vectors.
vector-set! and vector-fi l l ! require a syntax
extension or macro facility to implement, as they modify
the vector argument in place rather than generate a new
vector.

Several functions are classified as APROL system
functions; these procedures provide accessors to the array
structure and the interface to the LinkJ system.
make-array is analogous to the Scheme function vector ;
given a shape vector (an integer or an array) and an
element or list of elements, it generates an appropriate
array. In J style, the element list is replicated or truncated
as needed to fill the array.

Since the interpreter has not been modified to read vectors
as arrays, the conversion procedure vector->array is
needed to produce a rank one array from a Scheme vector.
This function is intended for use by the user until the
appropriate interpreter modifications are implemented;
beyond that time, it will not appear in future versions of
this implementation of APROL.

The functions array->j and j->array handle the
translation of arguments between the Scheme and LinkJ
environments. Since arrays are normally stored in the
Scheme environment and J functions take at most two
arguments, only three arrays are ever bound in the J name
space at any given time. The names used are aprolx ,
aproly , and aprolr , corresponding to the left argument,
the right argument, and the result, respectively. That is,
aprolx and aproly are inputs to LinkJ, and aprolr is the

output. aprol-set-j-args accepts two arrays and uses
array->j to bind them to their appropriate names in the J
environment.

The procedures aprol-jx-monad and aprol-jx-dyad
serve as the interfaces to LinkJ for executing functions;
they accept a string containing the symbolic notation of the
J function to be executed and one or two arrays. The value
obtained by the application of either of these functions is
the array result given by LinkJ (translated to APROL array
representation via j->array).

The adverbs rtol , insert , boolean , and binary have
been implemented. These functions are described in
sections 3.6, 3.5, and 5.2, respectively. insert is
implemented as a Scheme function rather than simply
appending / to the J function symbol in anticipation of
inserting non-J functions into arrays. Also note that
boolean and binary currently operate only on scalar
values and are given primarily for illustrative purposes.

The predicate array? is functionally the same as the
Scheme predicate procedure? . Until interpreter
modifications are made, no further distinction can be made
without risking an error condition. (The object could be
applied to an argument, but if the procedure is not an array,
the argument may be invalid for the function in question.)
The predicate vector? has been modified to recognize
arrays of rank one rather than Scheme vectors.

The basic Scheme arithmetic functions +, - , * , and / have
been extended to apply to array arguments. However,
although / is defined, J uses floating point notation to
express the results of the divide operation, so the currently
implemented array representation technique does not
support this function. The J verbs shape , negate , take ,
and drop have also been implemented, as have plus ,
minus , times , and divide (right-to-left-associating
versions of the arithmetic functions already given).

Most supporting functions written in C are, for the most
part, self explanatory. Many of these functions have
names similar to their Scheme counterparts for clarity (the
hyphen is replaced by an underscore). One function which
has no Scheme counterpart is aprol_jpr ; this function will
print the J array specified to the Gambit window, although
it is normally used to print aprolr . This function will
become obsolete when interpreter modifications are
implemented, as array results will automatically be written
to the screen in the normal Scheme manner.

Because of the way in which aprol_fill_elements
works, a problem exists in the translation from Scheme to J
of array objects containing zero as an element. This can be
corrected by modifying the function to accept an additional
index argument; it is also anticipated that the problem will
be fixed when the ability to have boxed elements is
implemented. Additionally, caution should be exercised
when working with scalar (rank zero) values in the
prototype implementation. While some of the procedures

incorporate hacks to temporarily handle scalars, objects of
rank zero have not been fully considered in the
implementation so far; it is anticipated that any conflicts or
discrepancies will be resolved as the array type is more
fully integrated into the system.

References

[CHUR59] Church, Alonzo. 1959. The Calculi of
Lambda-Conversion. Annals of Mathematics
Studies. Princeton: Princeton University
Press, 1941; reprint, Ann Arbor: University
Microfilms, Inc.

[CLIN91] Clinger, William and Jonathan Rees, eds.
1991. Revised4 Report on the Algorithmic
Language Scheme. LISP Pointers 4 (July-
September): 1-55.

[GAMB20] Gambit Scheme 2.0. Marc Feeley, Montreal,
Quebec.

[HOWL91] Howland, John E. 1991. Proposal for
research project in Array Processing Lisp.
Trinity University, San Antonio, Texas.

[HUI92] Hui, Roger K. W. 1992. An Implementation
of J. Toronto: Iverson Software Inc.

[IVER91A] Iverson, Kenneth E. 1991. Programming in
J. Toronto: Iverson Software Inc.

[IVER91B] Iverson, Kenneth E. 1991. The ISI
Dictionary of J. Appendix to Programming
in J. Toronto: Iverson Software Inc.

[J3] J 3.4. Iverson Software Inc., Toronto,
Ontario.

[J62] J-Source Version 6.2. Iverson Software Inc.,
Toronto, Ontario.

[SPRI89] Springer, George and Daniel P. Friedman.
1989. Scheme and the Art of Programming.
New York: McGraw-Hill Book Company.

