
Managing Computer Science Laboratories

Using Open Software

John E. Howland
Department of Computer Science

Trinity University
715 Stadium Drive

San Antonio, Texas 78212-7200
Voice: (210) 999-7364
Fax: (210) 999-7477

E-mail: jhowland@Trinity.Edu
Web: http://www.cs.trinity.edu/˜jhowland/

November 26, 2002

Abstract

An approach to installing and maintaining computer science department

laboratory systems using open software is presented. Issues such as system

security, updating and maintenance are addressed. Some details, such as

programs and systems administration scripts are presented. 1

Subject Areas: Computer Science Education, Computer Science Curriculum
Computer Science Laboratories.
Keywords: GNU Software, Software Freedom, Open Software, Open Sources.

1 Introduction

The Trinity University Computer Science Department began to assume increas-
ing responsibility for development and maintenance of its laboratory computers
a number of years ago when it became clear that the university computer center

1Copyright c© 2001 by the Consortium for Computing in Small Colleges. Permission to
copy without fee for all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the CCSC copyright notice and the title
of the publication and its date appear, and notice is given that copying is by permission of
the Consortium for Computing in Small Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission. This paper appears in the Journal of Computing in Small
Colleges, Volume 16, Number 3, pages 117-126, March 2001. This paper was presented at the
12th annual South Central Conference of the Consortium for Computing in Small Colleges,
Amarillo, Texas, April 20-21, 2001.

1

staff did not have the required expertise for the specialized needs of the Depart-
ment. Such needs included Unix operating systems, compilers and interpreters
for a wide range of languages, system security, frequent updating of software
packages and remote access to systems. As the Department began to acquire a
variety of Unix systems from Sun Microsystems, Silicon Graphics,Incorporated
and Hewlett Packard it became clear that it was necessary to perform our own
systems administration. Two computer science faculty volunteered to provide
management for this effort, to train computer center staff, and perform much of
the work themselves. Several attempts to involve students in these efforts proved
unsuccessful and were later abandoned. As the systems administration work-
load increased, it became increasingly clear that automation of administrative
tasks, where ever possible, would be useful.

As the Sun and HP Unix systems became outdated, they were replaced with
higher-end Intel architecture machines running Linux. The use of Linux, because
it is based on Open Source software, [DiB 1999, Ray 1997, Ra1 1997, Ray 1999]
had the advantage of lowering the cost of each Unix workstation substantially,
while, at the same time increasing the range of available software. As the number
of Linux systems grew to 78 out of a total of 106 computer science machines,
the two faculty responsible for the systems administration of these machines
saw their workload increase substantially. To make matters worse, one faculty
member retired leaving the entire task to the author.

To ease the systems workload, a number of decisions were made to simplify
the organization of our systems and provide a similar software environment
for each workstation independent of the brand of the system. These decisions
included:

• Network Information System (NIS): provide a common password database
to authenticate user logins.

• Network File System (NFS): provide user home directories from a common
source.

• /usr/local file-system: provide a common shared file-system for optional
installed software.

• Login Scripts: provide a system which identifies the system architecture
and, where possible, gives a common user interface and installed software
base.

Initially the NIS and NFS services were provided on dedicated Sun or HP
server machines. When these machines were scheduled for replacement we used
a single Intel based machine running Red Hat Linux. Later, when the Sun and
HP workstations were replaced we used Intel processor workstations running
Red Hat Linux. The Red Hat distribution was chosen primarily for its Red Hat
Package Manager (RPM) [Bai 1997] which simplifies some software installation
and maintenance tasks.

2

Nearly all of the software packages we use in our departmental laboratories
are available in RPM form. However, the usual approach in package devel-
opment is to put package binaries in /usr/bin or /usr/X11R6/bin, libraries
in /usr/lib, documentation in /usr/doc, etc. This means that providing all
of your installed software packages on an NFS /usr/local file-system was no
longer practical. The Red Hat Package Manager also provides some facilities for
automatic system updates from a server machine. This facility is used occasion-
ally, but we have found that another approach is preferable to handle updates
and occasionally the need to install systems from scratch when disk drives fail
or new major releases of operating systems become available.

Linux vendors do supply systems, such as Kickstart,[Red 2000] which can be
used to partially automate the installation of a vendor’s system software. How-
ever, such systems do not seem to offer all the features for system installation
and updating, particularly when a rather large base of additional software is to
be provided on each machine. Such systems also require large amounts of disk
space for each system to be configured. Finally, we desired a system for instal-
lation and updating which could be operated remotely, over the network, and
perhaps be run automatically. Symantec markets a system, Ghost, for cloning
Windows and Linux systems, however, the system would not properly install
Linux filesystems during our testing.

2 Software Images

When managing the software for a number of computers it is necessary to de-
velop techniques to manage the similarities and differences of the machines.
Many vendors of proprietary software attempt to key operating systems and
application programs to single machines even under circumstances where ap-
propriate licenses have been negotiated for each computer. This usually means
that a systems administrator must spend time in front of each system console
installing operating systems and application software rather than making a sin-
gle installation of the operating system and application programs and copying
that installation to other machines. The labor requirement is significant, par-
ticularly when one considers the fact that in a CS laboratory setting, software
must be periodically upgraded and re-installed. When re-installing, one often
must re-install each application package on each machine.

Open Source software, because of the freedom provided by Open Source li-
censes, [Gnu 1989, Art 1998, Net 1998, SGI 1999, App 1999] allows the possibil-
ity of making a single installation of operating system and application software
and then creation of a system image which can then be easily, even automat-
ically, installed or re-installed on each system. Red Hat provides a system
installation tool, Kickstart, which can be used to automate the Linux installa-
tion process from CDROM or NFS file-systems by using an installation script
for each target machine. This system is not suitable for our site, since our Linux
system occupies approximately 2.8G disk space and will not, therefore, fit on
CDROM. NFS Kickstart installation requires machine console access (as does

3

CDROM installation) and for this reason was considered unsuitable.
A standard compressed tar file of all appropriate file-systems is created from

a tested master system. This image is stored on an NFS file-system which is
mountable on any system where the image may be loaded. Creating the system
image would be simple if each laboratory machine were identical in configura-
tion. However, differences in feature such as the number of processors, sound,
video, network, and disk hardware, make image creation a bit more challeng-
ing. For example, different video adapters require different X11 configurations.
Different disk drive types (SCSI or IDE) as well as different disk drive parti-
tioning schemes require different LILO and /etc/fstab configurations. These
differences are handled by including all configuration possibilities in the system
image and selecting the appropriate configuration during the host configuration
phase of installation by setting up soft links to appropriate configuration files.

3 Disk Partitioning

The key to allowing automated re-installation of updated system images is to
provide a small Linux system which is run while loading the new system on a disk
partition. Initially, this Linux system is booted from a floppy disk or a CDROM
and is used to create initial disk partitions for Linux (swap, small installer Linux
and regular Linux) and, if the system is a dual boot system, a file-system for
Windows. The initial disk partitioning must be done in a traditional manner.
We use the Linux fdisk program. Once the disk is partitioned, a small Linux
system is installed on one of the two Linux partitions, lilo is run to prepare
the system for booting and the system is rebooted. At this point, the system
is ready to load the prepared Linux image and this part of system installation
may be done remotely and automatically from an installation script running on
another machine.

Following are the disk partitions used on a sample Pentium III workstation
which has a 10G disk drive. Both Linux partitions are of equal size to allow the
next Linux system to be loaded while running the current Linux system. If disk
space is scarce, the second Linux system need only consume about 100M. This
system would need to be booted before loading the next Linux system on the
larger Linux partition.

[root@Xena00 root]# fdisk /dev/hda

The number of cylinders for this disk is set to 1244.
There is nothing wrong with that, but this is larger than 1024,
and could in certain setups cause problems with:
1) software that runs at boot time (e.g., LILO)
2) booting and partitioning software from other OSs

(e.g., DOS FDISK, OS/2 FDISK)

Command (m for help): p

Disk /dev/hda: 255 heads, 63 sectors, 1244 cylinders
Units = cylinders of 16065 * 512 bytes

Device Boot Start End Blocks Id System
/dev/hda1 1 560 4498168+ 83 Linux

4

/dev/hda2 561 597 297202+ 83 Linux
/dev/hda3 * 598 1228 5068507+ c Win95 FAT32 (LBA)
/dev/hda4 1229 1244 128520 82 Linux swap

Command (m for help): q

4 Loading System Images

Once disk partitions have been created and a small installer Linux has been
installed and booted, it is possible to create scripts which login to the target
Linux system, mount the NFS file-system which contains the Linux image to be
installed and then run the installation script. Arguments to this script select
such things as target disk partitions, etc. The installation scripts may be run
from a remote machine and setup so that a new version of the operating system
and application software may be installed overnight when the machines are not
being used.

Following is a sample installation script:

#!/bin/bash
A Script to load a Linux system from Sol:sysadmin/images
This script resides on Sol:sysadmin which must be mounted
on /sysadmin before running the script.
The user should be in /root before running this script.
The mounting and un-mounting of all other partitions is handled
by the script.
#
NB. Usage
#
load-linux <dest> <image>
#
Typical usage (for JanusXX or XenaXX) :
#
/sysadmin/load-linux hda1 janus-hda1.tgz
/sysadmin/load-linux hda2 janus-hda2.tgz
#
(for DwarfX or SnowWhite)
#
/sysadmin/load-linux sdb1 Dwarf-sdb1.tgz
/sysadmin/load-linux sdb2 Dwarf-sdb2.tgz
#
This script removes the old (non running) linux system from /<dest> .
The tar file containing the new linux system is assumed to reside on
Sol:/sysadmin/images/ and the script argument <image> is the name of
the gzipped tar file.
#
After loading the tar file, the script runs lilo. To activate the new
Linux system, reboot the machine after running host configuration
scripts.
#
dest is the name of the destination partition
mount point, for example, either /hda1 or /hda2 . This partition
must be described in the /etc/fstab so that the
mount (below) will work.

dest=$1

image is the name of the gzipped tar file in /sysadmin/images containing
the system to be loaded into dest.

image=$2

5

mke2fs -b 1024 /dev/$dest > load-linux.out 2>&1

mount /$dest

date >> load-linux.out 2>&1
(cd /$dest ; tar xzf /sysadmin/images/$image) >> load-linux.out 2>&1
lilo -r /$dest -v -v >> load-linux.out 2>&1
date >> load-linux.out 2>&1

umount /$dest

5 Host Configuration

After loading a new Linux system, a number of system dependent configuration
parameters must be changed as they reflect the configuration of the system used
to make the image. For example, the system image may have been made on a
single processor machine, but the target machine may have 2 or 4 processors.
This particular configuration is made by establishing /etc/lilo.conf to point
to an appropriate lilo configuration file which boots the multiprocessor Linux
kernel. Soft links are also used to setup appropriate /etc/X11/XF86Config

configuration files for each target machine video adapter and /etc/fstab con-
figuration files to select appropriate disk partitions and disk type (SCSI or IDE).

Red Hat Linux distributions contain as subsystem, called kudzu which de-
tects and configures various hardware parameters. kudzu runs at boot-up and
will detect and configure any hardware it finds in the system which has changed
from what is found in its configuration file /etc/sysconfig/hwconf. If the
target system has different hardware from the system used to make the image,
then adjustments will be performed by kudzu during the first system boot.

Finally, system identity, network parameters (IP number, netmask, etc.)
must be changed to reflect the identity of the target system. Our systems run
OpenSSH (a secure shell daemon) and new host keys must be computed. This
final configuration must be performed after a new target system is booted.

Script for setting system identity:

#!/bin/bash
A simple script to perform CS Linux host configuration.
We use Red Hat distributions, so we assume Red Hat file organization.

Ordinarily this script will be run from Sol:/sysadmin which is usual
mounted as /sysadmin on our systems, so one must first mount (as root)
#
mount /sysadmin
#
Then the script is run as (supposing the image being configured is
Xena00 which has an IP of 131.194.131.90) and you wish to configure
this machine as Janus00 which has an IP of 131.194.131.150 and the
non-running partition is mounted on /hda1

/sysadmin/host-config Xena00 90 Janus00 150 hda1

The name of the host (unqualified) in CS.Trinity.Edu
sourcename=$1

The ip number of the host (unqualified) in 131.194.131
sourceip=$2

6

The new name of the host (unqualified) in CS.Trinity.Edu
newname=$3

The ip number of the host (unqualified) in 131.194.131
newip=$4

The name of mount point for the partition
mount=$5

Setup the mount point so we edit the files in etc of the
non-running Linux system
cd /$mount

Edit etc/sysconfig/network
to reflect identity of workstation being configured
sed -e "s/$sourcename/$newname/" etc/sysconfig/network > junk1
mv junk1 etc/sysconfig/network
chmod 644 etc/sysconfig/network
chown root:root etc/sysconfig/network

Edit etc/sysconfig/network-scripts/ifcfg-eth0
sed -e "s/131\.$sourceip/131\.$newip/" etc/sysconfig/network-scripts/ifcfg-eth0 > junk1
mv junk1 etc/sysconfig/network-scripts/ifcfg-eth0
chmod 755 etc/sysconfig/network-scripts/ifcfg-eth0
chown root:root etc/sysconfig/network-scripts/ifcfg-eth0

Edit etc/hosts
sed -e "s/131\.$sourceip/131\.$newip/" etc/hosts > junk1
mv junk1 etc/hosts
sed -e "s/$sourcename/$newname/g" etc/hosts > junk1
mv junk1 etc/hosts
chmod 644 etc/hosts
chown root:root etc/hosts

Edit etc/HOSTNAME
sed -e "s/$sourcename/$newname/" etc/HOSTNAME > junk1
mv junk1 etc/HOSTNAME
chmod 644 etc/HOSTNAME
chown root:root etc/HOSTNAME

Edit etc/http/conf/httpd.conf
sed -e "s/$sourcename/$newname/" etc/httpd/conf/httpd.conf > junk1
mv junk1 etc/httpd/conf/httpd.conf
chmod 644 etc/httpd/conf/httpd.conf
chown root:root etc/httpd/conf/httpd.conf

Edit etc/resolv.conf
sed -e "s/131\.$sourceip/131\.$newip/" etc/resolv.conf > junk1
mv junk1 etc/resolv.conf
chmod 644 etc/resolv.conf
chown root:root etc/resolv.conf

Script for secure shell (ssh) configuration:

#!/bin/bash
Do the Openssh host key configuration
rm /etc/ssh/ssh_host_dsa_key
rm /etc/ssh/ssh_host_dsa_key.pub
rm /etc/ssh/ssh_host_key
rm /etc/ssh/ssh_host_key.pub
ssh-keygen -b 1024 -f /etc/ssh/ssh_host_key -N ""
ssh-keygen -d -f /etc/ssh/ssh_host_dsa_key -N ""

7

6 Windows 2000 Software Images

Lab machines which are configured as dual boot machines have a FAT32 partition
which is used to hold a Windows 2000 system. A FAT32 file-system, rather
than an NTFS file-system, is used so that students may have read access to the
Windows file-system from Linux. Admittedly, a FAT32 file-system provides less
security than NTFS, but past experience has indicated that we need to allow
students to have write access to large portions of a lab machine’s file-system as
a convenience. We have also found that the Windows operating system needs
to be re-installed on a periodic basis. Windows operating systems are closely
keyed to the hardware of the system on which they are installed and cannot be
easily cloned to machines having different hardware features.

The Symantec Ghost program is used to make the initial installation of
Windows 2000 on lab machines, using a separate image for each machine type.
Of course these different images must be installed individually. We have found
that having once installed a Ghost image that it is possible to re-install Windows
2000 systems from a Linux tar image of the Windows 2000 FAT32 file-system.
Re-installation is required when it is necessary to restore a working Windows
system or when newly installed software needs to be propagated to all machines
in a lab.

The procedure is to update a master machine for each different hardware
configuration. Then boot Linux and make a gzipped tar image of the Windows
FAT32 file-system on our NFS image server. This system may then be loaded
onto the FAT32 partition of each dual boot lab machine. Of course, just as when
loading Linux images, this work may be performed remotely and automatically
from scripts. After loading a new Windows image, however, the identity of
each machine must be established manually and, if the machine is a part of a
Windows domain, the machine must be deleted and re-added to the domain
server.

7 Current Status of Laboratories

Trinity University [How 2000] has used Linux based systems in its CS laborato-
ries for several years with excellent results. Linux was first used in mission crit-
ical server applications such as departmental Web servers and NFS file servers.
The choice was made, not because of cost, but rather, because of our desire for
reliable and secure server systems. Over a period of four years, these systems
have experienced only a few hours of unscheduled down time. The NFS server
initially functioned in a multi-platform environment providing home directories
to SGI and HP Unix systems as well as to PowerPC and Intel based Linux
systems. One year ago, a 23 machine laboratory of HP 712 workstations were
replaced with 23 Pentium III machines running our own variant of Red Hat
Linux, version 6.0. This summer a second lab of 22 Intel based Linux machines
has been constructed, and, together with about 10 other dual processor Linux
machines, all being served by the NFS file server, all machines run a common

8

Red Hat 6.2 based Linux image. These machines are connected to the Internet
through a pair of Cisco 3500 series Ethernet switches so that each lab machine
and the file server have a dedicated 100MB Ethernet line. The switches improve
the performance of these machines when run as a 66 processor parallel process-
ing system. The NFS/NIS server machine has been upgraded to a dual processor
Pentium III machine which supplies an NIS database to all departmental Unix
machines as well as home directories via NFS and Windows 9X/NT/2K access
to home directories via Samba. This machine also functions as the departmental
Web and FTP server.

The Computer Science Department maintains its own set of local changes to
the current Red Hat distribution of Linux. These changes include security mod-
ifications, updates and installed software packages which are used in a variety of
courses. We make this distribution available to students on a Departmental im-
age server so that students can install and use on their own machines the same
software environment which is available in the Computer Science Department
labs. Since the software bears the GNU license, this may be done at no expense
to the students.

8 Conclusions

Maintaining computer science laboratory systems has traditionally been a rather
labor intensive activity. Operating systems need to be re-installed and upgraded
on a regular basis. We have found that by using Open Source software solutions
that it is possible to have lab machines which have a richer and more reliable
software base than is the case with proprietary systems. In addition, we have
found that it is possible to reduce system administration work-loads by using
non-standard approaches for loading system software and some of this work may
be automated.

References

[App 1999] Apple Computer, “Open Source Projects at Apple”
http://www.publicsource.apple.com/apsl/, 1999.

[Art 1998] The Artistic License,
http://language.perl.com/misc/Artistic.html, 1998.

[Bai 1997] Bailey, Edward C., Maximum RPM, Red Hat Software, Inc.,
Durham, NC, 1997.

[DiB 1999] OPENSOURCES, Voices from the Open Source Revolution,
Edited by Chris DiBona, Sam Ockman and Mark Stone, O’Reilly
& Associates, Sebastapol, California, 1999.

[Gnu 1989] GNU General Public License,
http://www.gnu.org/copyleft/gpl.html, 1989.

9

[How 2000] Howland, John E., “ Software Freedom, Open Software and the
Undergraduate Computer Science Curriculum”, Journal for
Computing in Small Colleges, Vol. 15, No. 3, March 2000.

[Jen 1999] Jensen, Michael, “Information Technology at a Crossroads: Open
Source Computer Programming”, The Chronicle of Higher
Education, October 29, 1999.

[Net 1998] Netscape, Mozilla & Netscape Public Licenses,
http://www.mozilla.org/MPL/, January 1998.

[Ope 1999] “The Open Source Definition”,
http://www.kr.debian.org/OpenSource/osd.html, 1999.

[Ray 1997] Raymond, Eric, “The Cathedral and the Bazaar”,
http://www.tuxedo.org/˜esr/writings/cathedral-bazaar/, 1997.

[Ra1 1997] Raymond, Eric, “Home steading the Noosphere”,
http://www.tuxedo.org/˜esr/writings/homesteading/, 1997.

[Ray 1999] Raymond, Eric, “The Magic Cauldron”,
http://www.tuxedo.org/˜esr/writings/magic-cauldron/, 1999.

[Red 2000] Red Hat, Inc., “Reference Guide for Red Hat Linux 6.2”, Red
Hat, Inc., Durham, NC, 2000.

[SGI 1999] Silicon Graphics “Linux”,
http://www.sgi.com/developers/technology/linux/, 1999.

10

