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Abstract

Array Algorithms are defined as functional algorithms where each step of the algorithm results in a

function being applied to an array, producing an array result. Array algorithms are compared with

non-array algorithms. A brief rationale for teaching array algorithms is given together with an example

which shows that array algorithms sometimes lead to surprising results. 1
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1 Introduction

In this paper, the term array algorithm is used in a context which goes beyond algorithms which use array
data structures. Array algorithms use arrays or lists as their principal data structure and consist of operations
which are applied to arrays producing arrays as results.

Array algorithms, because they deal with data in aggregate, involve different problem solving processes
and require programming languages which easily support operations on arrays.

Array algorithms have been widely discussed in the literature. A search of the ACM digital library for
array algorithm finds hundreds of citations [7, 9, 1] . . . which deal with array algorithms. Almost all of these
papers focus primarily on algorithms which use array data structures rather than the sense in which we have
defined array algorithms. Metzger, Eisenberg and Peelle [6, 3, 4] have written on this subject, however their
work was directed toward a specific programming language (APL).

Array algorithms provide a different perspective on problem solving which often leads to a different insight
about the problem being solved. For this reason, it is important to include a treatment of array algorithms
and array languages in the undergraduate curriculum. Computing Curricula 2001 Computer Science [2] does
not address array programming in the sense of our definition.

However, because of changes in the design of processors which are now beginning to be used and will be
standard in most systems in the future, it is necessary to consider program design techniques which will make
efficient use of new processor technology. Recent trends in processor design are following a new direction in
order to continue to follow Moore’s Law (that computer processing power approximately doubles every 18
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for Computing Sciences in Colleges. To copy otherwise, or to republish, requires a fee and/or specific permission.
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months). That new direction is processor designs from companies such as IBM, Intel, AMD, and others, have
multiple processors on a single chip core rather than having designs of a single processor whose speed doubles
about every 18 months. Recent multicore chip designs have individual processors which are actually slower
than current generation single processor designs. This means that in order to achieve faster computing on
such processors, processing must routinely be done in parallel. Array algorithms have the potential of being
compiled to run in parallel for such processors.

2 Array Algorithms

In simple examples, the differences between array algorithms and non-array algorithms are subtle. For
example, consider the algorithm which computes the average of a list of numbers. In C, this program ave.c

might be written as:

#include <stdio.h>

#include <stdlib.h>

int main (int argc, char *argv[])

{ int sum, count, n;

count = 0;

sum = 0;

while (1 == scanf("%d\n", &n))

{ sum = sum + n;

count++;

}

printf("%f", (float)sum / (float)count);

exit(0);

}

To run this program (after compiling) one could write

$ echo "1 2 3" | ave

2.000000

An array program, written in the J programming language, a functional array language, is expressed as:

$ echo "(+/ % #) 1 2 3" | jconsole

(+/ % #) 1 2 3

2

The C average program deals with elements of an array or list, without explicitly storing them in an
array, on an item by item basis, accumulating the sum and count. After processing all elements in the array,
the average is formed by dividing the sum by the count. The J average program applies two functions (+/
“sum”) and (# “tally”) to the entire array and then computes the average by dividing (% “divide”). The J
program uses a functional composition rule (f g h) x = (f x) g (h x) to accomplish this task.

3 Languages Which Support Array Algorithms

APL, J, Lisp, Scheme, and array classes for C++ and Java are examples of languages which have the
potential for expressing array algorithms.

An array language should possess the following features for adequate expression of array algorithms:

• create arrays of any type, rank, and size

• function application on arrays producing array results

• functions should be “first class” data, i.e. we should be able to have arrays of functions and apply such
function arrays
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(0,0)

(100,100)

Figure 1: Clip a square to a line

• higher level functions i.e. apply functions to functions producing functions as results

The J language [5] is used in this paper because of its simple syntax and concise expression of array
operations. Any of the above mentioned languages could be used, making the paper substantially longer.

4 Polygon Clipping

To illustrate a non-trivial array algorithm, consider the well known algorithm for polygon clipping by Suther-
land and Hodgman [8]. Polygon clipping reduces a polygonal surface extending beyond the boundary of some
three-dimensional viewing volume to a surface which does not extend beyond the boundary. The Sutherland
Hodgman algorithm is recursive, processing one line segment at a time considering each endpoint.

We restrict ourselves to the two-dimensional case of clipping a closed polygonal figure to a line. The
array algorithm applies to three-dimensional data without changes to the J program.

Suppose we have the square:

[ square =: 5 2 $ 0 0 100 0 100 100 0 100

0 0

100 0

100 100

0 100

and the line (in homogeneous form) as illustrated in Figure 1.

[ line =: _1 1 50

_1 1 50

The array algorithm for polygon clipping (expressed in J) is:

pclip =: 4 : 0

a =. (( {. $ r =. y.) , 2) $ 1 0

pic =. (r ,. 1) +/ . * x.

a =. 2 (<"1 (i =. (-. (* pic) = * 1 |. pic) # i. {. $ y.) ,. 1) } a

q =. |: ((_1 + $ x.) , $ pic) $ pic

q =. (((i { r) * i { 1 |. q) - (i { 1 |. r) * (i { q)) % (i { 1 |. q) - i { q

r =. (pic > 0) # r

a =. 0 (<"1 ((0 >: pic) # i. $ pic) ,. 0) } a

a =. (-. 0 = a) # a =. , a

r =. (/: /: a) { r , q

r , (-. (1 {. r) -: _1 {. r) # 1 {. r

)

Applying pclip we have:

line pclip 0 1 2 3 0 { square

0 0

50 0
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100 50

100 100

0 100

0 0

which is illustrated in Figure 2. We can clip to the other side of the line by:

(-line) pclip 0 1 2 3 0 { square

50 0

100 0

100 50

50 0

The J expression of this algorithm is remarkably short, due in part to the expressive power of J, but also
to the array nature of the algorithm where loops and iterations are contained within the functions which are
applied to arrays. This is a recurring feature of array algorithms. We explain the results formed in each of
the ten lines of the program.

The first expression produces a table, named a, which will be used to code which side of the line/plane
the points lie. A copy of the original data is also named (locally) r for later use. Initially, the algorithm
assumes that column 1 of a codes all of the points as being on the correct side of the clipping boundary with
a value of 1. Later, points which are clipped will be coded with the value 0 in column 1 and new intersection
points which must be added will be coded in column 2 with a value of 2.

a =. (( {. $ r =. y.) , 2) $ 1 0

1 0

1 0

1 0

1 0

1 0

The second line produces a vector of values which indicate which side of the line/plane (a positive value
indicates the correct side of the line/plane) by computing a matrix product of the homogeneous representation
of the points and the line/plane. This result is named (locally) pic.

pic =. (r ,. 1) +/ . * x.

50 _50 50 150 50

The third line modifies column 2 of the table a to indicate that the one point, (100,0), which lies on the
wrong side of the clipping line/plane must be replaced by two points along the clipping boundary which are
determined by computing the intersection with the clipping boundary.

a =. 2 (<"1 (i =. (-. (* pic) = * 1 |. pic) # i. {. $ y.) ,. 1) } a

1 2

1 2

1 0

1 0

1 0

The fourth line builds a table, named q, of two columns which consist of the vector pic.

q =. |: ((_1 + $ x.) , $ pic) $ pic

50 50

_50 _50

50 50

150 150

50 50
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The fifth line computes a table, named q, of the intersection points with the clipping boundary of all
lines/planes which go outside the clipping boundary.

q =. (((i { r) * i { 1 |. q) - (i { 1 |. r) * (i { q)) % (i { 1 |. q) - i { q

50 0

100 50

The sixth line computes a table, re-named r, of the points which are on the correct side of the clipping
boundary.

r =. (pic > 0) # r

0 0

100 100

0 100

0 0

The seventh line modifies the table, a, to indicate, with a zero in column one, which points are clipped
from the original data.

a =. 0 (<"1 ((0 >: pic) # i. $ pic) ,. 0) } a

1 2

0 2

1 0

1 0

1 0

The eighth line produces a vector of the non-zero elements in a in row major order. This array encodes
with the value 1 the respective elements of r and uses the value 2 for the respective elements of q which are
the newly computed boundary intersection points. This vector is the mesh vector for properly ordering the
points not clipped and the boundary intersection points.

a =. (-. 0 = a) # a =. , a

1 2 2 1 1 1

The ninth line uses the grade-up function (/:) which produces a permutation of the indices of an array
which would sort the array in ascending order. That applying grade-up twice produces the proper ordering
of elements taken from a table formed by combining the tables r and q is a remarkable surprise. The ninth
line re-arranges the elements in r and q by sorting a sort!

(/: /: a) { r , q

0 0

50 0

100 50

100 100

0 100

0 0

This algorithm assumes that we start with a closed polygon. To ensure that the algorithm produces a
closed polygon, the last line closes the polygon in the case where the first (and last) point is clipped.

r , (-. (1 {. r) -: _1 {. r) # 1 {. r

0 0

50 0

100 50

100 100

0 100

0 0
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Figure 2: Square after clipping

5 Conclusions

Array algorithms involve a way of thinking about arrays of data and performing operations on the entire
array. Array algorithms may be easily parallelized because the array item processing in each array operation
is known to be independent from the item processing in any other array operation in the algorithm since the
array operations are performed in sequence.

Also, the array thinking discipline leads to more general solutions which may be used to solve other
problems by changing the functions being applied. For example, (using J) the matrix product of a and b is
expressed as the J dot product a +/ . * b. Here we are talking about summing (+/) the products (*) of
rows of a and columns of b. The dot product a *./ . = b is useful for finding matches of rows of a and
columns of b.

Teaching students to develop array algorithms gives them another way of looking at the problem solving
process which sometimes gives new insight about the problem being solved as well as often producing
an algorithm which may be easily parallelized. Parallel algorithms will be routinely required to achieve
improved performance on new multicore processor designs. Array algorithms will play an important role in
the development of parallel software.
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