
Array Algorithms

John E. Howland
Department of Computer Science

Trinity University
715 Stadium Drive

San Antonio, Texas 78212-7200
Voice: (210) 999-7364
Fax: (210) 999-7477

E-mail: jhowland@Ariel.CS.Trinity.Edu
Web: http://www.cs.trinity.edu/˜jhowland/

1869

S
A

N

 A
NTONIO, T

E

X
A

S

T
R

IN
IT

Y UNIVER

S
IT

Y

E
TRIBUS
UNUM

Trinity University Computer Science

CCSC2005: 2005.04.15

Abstract

Array Algorithms are defined as functional algorithms where each step of the
algorithm results in a function being applied to an array, producing an array
result. Array algorithms are compared with non-array algorithms. A brief
rationale for teaching array algorithms is given together with an example
which shows that array algorithms sometimes lead to surprising results.

1869

S
A

N

 A
NTONIO, T

E

X
A

S

T
R

IN
IT

Y UNIVER

S
IT

Y

E
TRIBUS
UNUM

Trinity University Computer Science 1

CCSC2005: 2005.04.15

Overview of Presentation

• Background of the Problem

• Definition of an Array Algorithm

• Several Examples

• Conclusions

1869

S
A

N

 A
NTONIO, T

E

X
A

S

T
R

IN
IT

Y UNIVER

S
IT

Y

E
TRIBUS
UNUM

Trinity University Computer Science 2

CCSC2005: 2005.04.15

Background

“. . . the times they are a-changin’ . . . ” : Bob Dylan

• Moore’s Law: (April 19, 1965 issue of Electronics) . . . innovations in
technology would allow a doubling of the number of transistors in a given
space every year . . .

• Moore updated this (1975) to a doubling of the number of transistors
every two years to account for the growing complexity of chips

• We have experienced this exponential growth for 40 years

1869

S
A

N

 A
NTONIO, T

E

X
A

S

T
R

IN
IT

Y UNIVER

S
IT

Y

E
TRIBUS
UNUM

Trinity University Computer Science 3

CCSC2005: 2005.04.15

Background (continued)

• Intel Gives Up on Speed Milestone (Wall Street Journal, October 15,
2004)

The company said it no longer plans to offer its Pentium 4 chip for
desktop computers at a clock speed of four gigahertz, a target that
had alread slipped from the end of this year until sometime in 2005.
The fastest member of that chip family is now 3.6 gigahertz.

• Intel is now focusing on increasing cache memory and putting multiple
processors on a single chip.

• While Moore’s law appears to continue to hold, the more dense chips
will not include the previous benefit of allowing higher clock speeds due
to heat dissapation and current leakage problems.

1869

S
A

N

 A
NTONIO, T

E

X
A

S

T
R

IN
IT

Y UNIVER

S
IT

Y

E
TRIBUS
UNUM

Trinity University Computer Science 4

CCSC2005: 2005.04.15

Background (continued)

• Intel, IBM and other processor manufacturers have announced they too
will be following the strategy of providing multiple processor chips which
are not necessarily faster than their current chips.

• New Chips Pose a Challenge to Software Makers (Wall Street Journal,
April 14, 2005, B3)

• How will our programs go faster in the future?

1869

S
A

N

 A
NTONIO, T

E

X
A

S

T
R

IN
IT

Y UNIVER

S
IT

Y

E
TRIBUS
UNUM

Trinity University Computer Science 5

CCSC2005: 2005.04.15

Background (continued)

• Parallel programming will have to become the standard approach in all
of the programs we write (if we wish to go faster).

• We need new programming languages.

• We need new programming methodoligies.

1869

S
A

N

 A
NTONIO, T

E

X
A

S

T
R

IN
IT

Y UNIVER

S
IT

Y

E
TRIBUS
UNUM

Trinity University Computer Science 6

CCSC2005: 2005.04.15

Array Algorithms

• In this paper, the term array algorithm is used in a context which goes
beyond algorithms which use array data structures.

• Array algorithms use arrays or lists as their principal data structure and
consist solely of functions which are applied to arrays producing arrays
as results.

• Of course, occasionally, array algorithms have one element results or
arguments.

1869

S
A

N

 A
NTONIO, T

E

X
A

S

T
R

IN
IT

Y UNIVER

S
IT

Y

E
TRIBUS
UNUM

Trinity University Computer Science 7

CCSC2005: 2005.04.15

Array Algorithms (continued)

Array algorithms:

• involve different problem solving processes

• require programming languages which support primitive operations on
arrays or have libraries of array operations

• C++ or Java (with the inclusion of appropriate array operation classes
and libraries)

• APL, Lisp, Scheme, Fortran90, MatLab, J

1869

S
A

N

 A
NTONIO, T

E

X
A

S

T
R

IN
IT

Y UNIVER

S
IT

Y

E
TRIBUS
UNUM

Trinity University Computer Science 8

CCSC2005: 2005.04.15

Array Thinking

• Array algorithms provide a different perspective on problem solving which
often leads to a different insight about the problem being solved.

• Array algorithms require thinking about the data, and how it may be
organized so that operations may be performed on all of the items in the
array rather than what can be done with the elements of the array on an
item by item basis.

• Array thinking helps formulate a problem solution so that operations may
be performed on collections of data (in parallel) on appropriate hardware.

1869

S
A

N

 A
NTONIO, T

E

X
A

S

T
R

IN
IT

Y UNIVER

S
IT

Y

E
TRIBUS
UNUM

Trinity University Computer Science 9

CCSC2005: 2005.04.15

Example 1 (average)

In simple examples, the differences between array algorithms and non-
array algorithms are subtle. For example, consider the algorithm which
computes the average of a list of numbers. In C, this program ave.c might
be written as shown on the next slide. This program reads the elements of
an array or list and accumulates the sum of the elements as each number is
read.

1869

S
A

N

 A
NTONIO, T

E

X
A

S

T
R

IN
IT

Y UNIVER

S
IT

Y

E
TRIBUS
UNUM

Trinity University Computer Science 10

CCSC2005: 2005.04.15

Example 1 (average continued)

#include <stdio.h>

#include <stdlib.h>

int main (int argc, char *argv[])

{ int sum, count, n;

count = 0;

sum = 0;

while (1 == scanf("%d\n", &n))

{ sum = sum + n;

count++;

}

printf("%f", (float)sum / (float)count);

exit(0);

}

1869

S
A

N

 A
NTONIO, T

E

X
A

S

T
R

IN
IT

Y UNIVER

S
IT

Y

E
TRIBUS
UNUM

Trinity University Computer Science 11

CCSC2005: 2005.04.15

Example 1 (average continued)

To run this program (after compiling) one could write

$ echo "1 2 3" | ave

2.000000

The C average program deals with elements of an array or list, without
explicitly storing them in an array, on an item by item basis, accumulating
the sum and count. After processing all elements in the array, the average
is formed by dividing the sum by the count.

1869

S
A

N

 A
NTONIO, T

E

X
A

S

T
R

IN
IT

Y UNIVER

S
IT

Y

E
TRIBUS
UNUM

Trinity University Computer Science 12

CCSC2005: 2005.04.15

Example 1 (average continued)

In the array programming examples which follow, the J programming
language is used primarily for its concise presentation of array algorithms.
Other languages, such as APL, Lisp, Scheme, Fortran90, Matlab, C++, or
Java (the latter two with appropriate array operation classes or libraries)
could have been used at the expense of brevity of presentation.

1869

S
A

N

 A
NTONIO, T

E

X
A

S

T
R

IN
IT

Y UNIVER

S
IT

Y

E
TRIBUS
UNUM

Trinity University Computer Science 13

CCSC2005: 2005.04.15

Example 1 (average continued)

An array program, written in the J programming language, a functional
array language, is expressed as:

$ echo "(+/ % #) 1 2 3" | jconsole

(+/ % #) 1 2 3

2

The J average program applies two functions (+/ “sum”) and (#
“tally”) to the entire array and then computes the average by dividing
(% “divide”). The J program uses a functional composition rule
(f g h) x = (f x) g (h x) to accomplish this task.

1869

S
A

N

 A
NTONIO, T

E

X
A

S

T
R

IN
IT

Y UNIVER

S
IT

Y

E
TRIBUS
UNUM

Trinity University Computer Science 14

CCSC2005: 2005.04.15

Example 2 (computing differences)

Given some data values,

xi, i = 0, 1, . . . , 10 : −125,−64,−27,−8,−1, 0, 1, 8, 27, 64, 125 (1)

compute (iterative algorithm)

x1 − x0, x2 − x1, . . . , x10 − x9 (2)

61, 37, 19, 7, 1, 1, 7, 19, 37, 61 (3)

1869

S
A

N

 A
NTONIO, T

E

X
A

S

T
R

IN
IT

Y UNIVER

S
IT

Y

E
TRIBUS
UNUM

Trinity University Computer Science 15

CCSC2005: 2005.04.15

Example 2 (computing differences continued)

Given some data values,

[x =: (_5 + i. 11) ^ 3

_125 _64 _27 _8 _1 0 1 8 27 64 125

compute (array algorithm)

1 }. x

_64 _27 _8 _1 0 1 8 27 64 125

_1 }. x

_125 _64 _27 _8 _1 0 1 8 27 64

(1 }. x) - _1 }. x

61 37 19 7 1 1 7 19 37 61

1869

S
A

N

 A
NTONIO, T

E

X
A

S

T
R

IN
IT

Y UNIVER

S
IT

Y

E
TRIBUS
UNUM

Trinity University Computer Science 16

CCSC2005: 2005.04.15

Example 3 (computing line lengths)

Suppose we have a text array (file):

[text =: 0 : 0

Now is the time

to do

the work and this

is the work that must be done.

)

Now is the time

to do

the work and this

is the work that must be done.

1869

S
A

N

 A
NTONIO, T

E

X
A

S

T
R

IN
IT

Y UNIVER

S
IT

Y

E
TRIBUS
UNUM

Trinity University Computer Science 17

CCSC2005: 2005.04.15

Example 3 (computing line lengths continued)

nl =: 10 { a. NB. a new-line character

[x =: _1 , (text = nl) # i. # text

_1 15 21 39 70

_1 + (1 }. x) - _1 }. x

15 5 17 30

text

Now is the time

to do

the work and this

is the work that must be done.

1869

S
A

N

 A
NTONIO, T

E

X
A

S

T
R

IN
IT

Y UNIVER

S
IT

Y

E
TRIBUS
UNUM

Trinity University Computer Science 18

CCSC2005: 2005.04.15

Example 4 (polygon clipping)

To illustrate a non-trivial array algorithm, consider the well known
algorithm for polygon clipping by Sutherland and Hodgman [8]. Polygon
clipping reduces a polygonal surface extending beyond the boundary of
some three-dimensional viewing volume to a surface which does not extend
beyond the boundary. The Sutherland Hodgman algorithm is recursive,
processing one line segment at a time considering each endpoint.

We restrict ourselves to the two-dimensional case of clipping a closed
polygonal figure to a line. The array algorithm applies to three-dimensional
data without changes to the J program.

1869

S
A

N

 A
NTONIO, T

E

X
A

S

T
R

IN
IT

Y UNIVER

S
IT

Y

E
TRIBUS
UNUM

Trinity University Computer Science 19

CCSC2005: 2005.04.15

Example 4 (polygon clipping continued)

Suppose we have the square:

[square =: 5 2 $ 0 0 100 0 100 100 0 100

0 0

100 0

100 100

0 100

and the line (in homogeneous form) as illustrated in Figure 1.

1869

S
A

N

 A
NTONIO, T

E

X
A

S

T
R

IN
IT

Y UNIVER

S
IT

Y

E
TRIBUS
UNUM

Trinity University Computer Science 20

CCSC2005: 2005.04.15

Example 4 (polygon clipping continued)

(0,0)

(100,100)

Figure 1: Clip a square to a line

[line =: _1 1 50

_1 1 50

1869

S
A

N

 A
NTONIO, T

E

X
A

S

T
R

IN
IT

Y UNIVER

S
IT

Y

E
TRIBUS
UNUM

Trinity University Computer Science 21

CCSC2005: 2005.04.15

Example 4 (polygon clipping continued)

The array algorithm for polygon clipping (expressed in J) is:

pclip =: 4 : 0

a =. (({. $ r =. y.) , 2) $ 1 0

pic =. (r ,. 1) +/ . * x.

a =. 2 (<"1 (i =. (-. (* pic) = * 1 |. pic) # i. {. $ y.) ,. 1) } a

q =. |: ((_1 + $ x.) , $ pic) $ pic

q =. (((i { r) * i { 1 |. q) - (i { 1 |. r) * (i { q)) % (i { 1 |. q) - i { q

r =. (pic > 0) # r

a =. 0 (<"1 ((0 >: pic) # i. $ pic) ,. 0) } a

a =. (-. 0 = a) # a =. , a

r =. (/: /: a) { r , q

r , (-. (1 {. r) -: _1 {. r) # 1 {. r

)

1869

S
A

N

 A
NTONIO, T

E

X
A

S

T
R

IN
IT

Y UNIVER

S
IT

Y

E
TRIBUS
UNUM

Trinity University Computer Science 22

CCSC2005: 2005.04.15

Example 4 (polygon clipping continued)

Applying pclip we have:

line pclip 0 1 2 3 0 { square

0 0

50 0

100 50

100 100

0 100

0 0

which is illustrated in Figure 2.

1869

S
A

N

 A
NTONIO, T

E

X
A

S

T
R

IN
IT

Y UNIVER

S
IT

Y

E
TRIBUS
UNUM

Trinity University Computer Science 23

CCSC2005: 2005.04.15

Example 4 (polygon clipping continued)

(0,0)

(100,100)

(50,0)

(100,50)

(0,100)

Figure 2: Square after clipping

1869

S
A

N

 A
NTONIO, T

E

X
A

S

T
R

IN
IT

Y UNIVER

S
IT

Y

E
TRIBUS
UNUM

Trinity University Computer Science 24

CCSC2005: 2005.04.15

Example 4 (polygon clipping continued)

We can clip to the other side of the line by:

(-line) pclip 0 1 2 3 0 { square

50 0

100 0

100 50

50 0

1869

S
A

N

 A
NTONIO, T

E

X
A

S

T
R

IN
IT

Y UNIVER

S
IT

Y

E
TRIBUS
UNUM

Trinity University Computer Science 25

CCSC2005: 2005.04.15

Example 4 (polygon clipping continued)

The details of the polygon clipping algorithm are given in the paper.
This example was included as an example of an array implementation of
a recursive algorithm which examined (clipped) each line segment in the
polygon on a line by line basis.

1869

S
A

N

 A
NTONIO, T

E

X
A

S

T
R

IN
IT

Y UNIVER

S
IT

Y

E
TRIBUS
UNUM

Trinity University Computer Science 26

CCSC2005: 2005.04.15

Conclusions

• Array algorithms involve a way of thinking about arrays of data and
performing operations on the entire array.

• Array algorithms may be easily parallelized because the array item
processing in each array operation is known to be independent from
the item processing in any other array operation in the algorithm since
the array operations are performed in sequence.

• Array thinking discipline leads to more general solutions which may be
used to solve other problems by changing the functions being applied.

1869

S
A

N

 A
NTONIO, T

E

X
A

S

T
R

IN
IT

Y UNIVER

S
IT

Y

E
TRIBUS
UNUM

Trinity University Computer Science 27

CCSC2005: 2005.04.15

Conclusions (continued)

• Teaching students to develop array algorithms gives them another way
of looking at the problem solving process which sometimes gives new
insight about the problem being solved.

• Array languages, such as J, have great potential for implementation on
parallel machines so that parallel algorithms may be written without
much thought about parallelism beyond array thinking.

1869

S
A

N

 A
NTONIO, T

E

X
A

S

T
R

IN
IT

Y UNIVER

S
IT

Y

E
TRIBUS
UNUM

Trinity University Computer Science 28

CCSC2005: 2005.04.15

References

[1] Bosse, Michael, “Real-world Problem-solving, Pedagogy, and Efficient
Programming Algorithms in Computer Education”, ACM SIGCSE
Bulletin, 32(4):66-69, December 2000.

[2] Computing Curricula 2001 Computer Science, Final Report, The Joint
Task Force on Computing Curricula, IEEE Computer Society and
Association for Computing Machinery, IEEE Computer Society,
December 2001.

[3] Eisenberg, Murray, and Peelle, Howard, “APL Thinking: Examples”,
ACM SIGAPL, Proceedings of the International Conference: APL in
Transition, 17(4):433-440, January 1987.

1869

S
A

N

 A
NTONIO, T

E

X
A

S

T
R

IN
IT

Y UNIVER

S
IT

Y

E
TRIBUS
UNUM

Trinity University Computer Science 29

CCSC2005: 2005.04.15

[4] Eisenberg, Murray, and Peelle, Howard, “A Survey: APL Thinking”,
ACM SIGAPL Quote Quad, 21(2):5-8, December 1990.

[5] Hui, Roger K. W., Iverson, Kenneth E., J Dictionary, J Software,
Toronto, Canada, May 2001.

[6] Metzger, Robert, “APL thinking finding array-oriented solutions”,
ACM SIGAPL, Proceedings of the International Conference on APL,
12(1):212-218, September 1981.

[7] Stallmann, Matthias F. M., “A One-way Array Algorithm for Matroid
Scheduling”, Proceedings of the third annual ACM symposium on
Parallel Algorithms and Architectures, Pages: 349-356, Hilton Head,
South Carolina, 1991.

1869

S
A

N

 A
NTONIO, T

E

X
A

S

T
R

IN
IT

Y UNIVER

S
IT

Y

E
TRIBUS
UNUM

Trinity University Computer Science 30

CCSC2005: 2005.04.15

[8] Sutherland, Ivan and Hodgman, Gary, “Re-entrant Polygon Clipping”,
Communications of the ACM, 17(1):32-42, January 1974.

[9] Zhao, Yihong, Deshpande, Prasad, Naughton, Jeffrey, “An
Array-based Algorithm for Simultaneous Multidimensional
Aggregates”, Proceedings of the 1997 ACM SIGMOD International
Conference on Management of Data, Pages: 159-170, Tucson,
Arizona, 1997.

1869

S
A

N

 A
NTONIO, T

E

X
A

S

T
R

IN
IT

Y UNIVER

S
IT

Y

E
TRIBUS
UNUM

Trinity University Computer Science 31

