
Design of an OpenGL Interface for the J

Programming Language

William A. Randall∗

John E. Howland
Department of Computer Science

Trinity University
715 Stadium Drive

San Antonio, Texas 78212-7200
Voice: (210) 736-7480
Fax: (210) 736-747

Internet: wrandall@cs.trinity.edu
Internet: jhowland@ariel.cs.trinity.edu

March, 1997

Abstract

Traditional 3D graphics programming using OpenGL in C or C++ often

requires significant development time by expert graphics programmers.

The time costs associated with learning to use OpenGL calls in the C or

C++ environment and compiling, linking, and testing during application

development are typically extensive. Therefore, new tools that reduce the

development time associated with graphics programming or make graph-

ics programming available to a broader spectrum of programmers paves

the way towards speedier and more sophisticated graphical software de-

velopment. An interpreted environment accommodates faster graphics

application development by eliminating the need to frequently recompile

code in order to observe the effects of OpenGL calls to the current graphics

state. Utilizing the functional programming language J with appropriate

OpenGL bindings, an interpreted approach provides an interactive envi-

ronment suitable for less time consuming OpenGL-like graphics program-

ming. This paper details design and implementation issues involved in

creating OpenGL bindings for the J programming language. In addition,

an explanation of one approach to creating such bindings and suggestions

for possible improvements are also included.1

∗Now at Southwest Research Institute, San Antonio, Texas
1This paper appears in the Journal of Computing in Small Colleges, Volume 12, Number

4, Pages 184-193, March 1997. Copyright c©1997 by the Consortium for Computing in Small

Colleges. Permission to copy without fee all or part of this material is granted provided that

1

1 Introduction

The programming language J, a dialect of APL created by Kenneth Iverson and
associates at Iverson Software Incorporated, is a modern functional program-
ming language. The order in which operations are performed depends on the
context of the operation’s use with in a J sentence [Smi 95]. J sentences may
be interpreted by simply reading them from left to right with the aid of a J
dictionary to substitute English meanings for symbols from the standard ASCII
character set. Once interpreted, the J sentence behaves precisely as the English
translation is understood. For example, the following line of code:

sum =. + /

may be translated into the sentence sum is (=.) the addition operation (+)
inserted (/) between elements of its list argument. Therefore, the verb sum
might be used add 3 , 5 and 7 as follows: sum 3 5 7 producing a result of 15.

In addition to its straightforward translation, J also lends itself to graphical
program development because of the functional nature of graphics programming.
The J programming language also contains primitive operations for linear al-
gebra and array manipulation. Graphics programming utilizes linear algebra
for processes like object translation, scaling and rotation and uses arrays for
tasks like grouping vertices. Graphics programming also consists of issuing
commands, or using functions, that manipulate graphics states such as shape
and color producing an image or series of images in a graphics view port. There-
fore, once appropriate functions have been defined, the J programming language
constitutes a tool well suited for graphical program development.

2 Graphics Programming Using OpenGL

In order to utilize the J environment to perform OpenGL-like graphics devel-
opment, bindings between OpenGL functions and J verbs must be constructed.
After constructing the bindings between J verbs and OpenGL functions, the J
system may be updated by either loading code containing verb bindings into
the appropriate locale via a suitably constructed J system.

3 A Sample Application: Rotating Cube with

Color Interpolation

In order to describe how the OpenGL bindings are constructed, and gain an
understanding of how the bindings can be utilized, an example that creates
a rotating cube with color interpolation follows. The original C code will be

the copies are not made or distributed for direct commercial advantage, the CCSC copyright

notice and the title of the publication and its date appear, and notice is given that copying is

by permission of the Consortium for Computing in Small Colleges. The paper was presented

at the CCSC South-Central Conference, April 11, 1997, San Antonio, Texas.

2

Figure 1: Rotating Cube

presented first followed by the J code. Notice the J syntax closely resembles the
C syntax enabling C programmers to make use of the OpenGL bindings with
only minimal effort to learn J. Figure 1 illustrates a rendering from the example.

Throughout the discussion that follows the following preliminary J bindings
will be employed.

monad =: 3

define =: :

script =: 0

from =: {

Important to all graphics applications is the display function. The display
function is executed as events occur requiring a refresh of the screen. In C, the
code for the display function in the rotating cube example appears below.

void display(void)

{

/* display callback, clear frame buffer and z buffer,

rotate cube and draw, swap buffers */

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

glLoadIdentity();

glRotatef(theta[0], 1.0, 0.0, 0.0);

glRotatef(theta[1], 0.0, 1.0, 0.0);

glRotatef(theta[2], 0.0, 0.0, 1.0);

colorcube();

glFlush();

glutSwapBuffers();

}

The display function begins by clearing the color and depth buffers and
loading the identity transformation matrix. Then the display function rotates

3

the transformation matrix for the new position of the cube, and calls a function
containing the cube geometry to render and color the cube. Finally, the display
function calls glFlush to force complete execution of the preceding OpenGL calls
and then swaps the buffers for smoother looking motion.

In J, the display function would look like the following.

display =. monad define script

NB. display callback, clear frame buffer and z buffer,

NB. rotate cube and draw, swap buffers

gl ’Clear’ ; ’GL_COLOR_BUFFER_BIT’ ; ’GL_DEPTH_BUFFER_BIT’

gl ’LoadIdentity’

gl ’Rotatef’ ; (0 from theta) ; 1.0 ; 0.0 ; 0.0

gl ’Rotatef’ ; (1 from theta) ; 0.0 ; 1.0 ; 0.0

gl ’Rotatef’ ; (2 from theta) ; 0.0 ; 0.0 ; 1.0

colorcube ’’

gl ’Flush’

glut ’SwapBuffers’

)

The structure of the OpenGL bindings for J centers around external conjunc-
tions. An external conjunction, appropriately named gl following the naming
conventions of OpenGL, is used to construct a J sentence that performs an
OpenGL function. The gl external conjunction is followed by the rest of the
OpenGL function name, like Translatef or Rotatef, and the argument list corre-
sponding to the C version of the OpenGL function. The J syntax to construct
the external conjunction looks similar to the folowing:

gl =: 1024 !: 0

In J syntax, the description of the OpenGL function and its arguments are
strung together through links forming a boxed list. A sample OpenGL sentence
in J looks like the following:

gl ’translate3f’ ; 0.0 ; _1.0 ; 5.0

The first element of the boxed list corresponds to one of approximately 120
OpenGL functions and serves as a hash key used by the J system to identify the
correct function [Nei 93]. Once the function has been identified, the J system
has an idea of what proper arguments to the function should look like. The
remaining elements in the boxed list constitute arguments to the OpenGL func-
tion. If the remainder of the boxed list contains an argument list inconsistent
with that of the original C prototype, J will alert the user to the presence of an
error. If the boxed list elements are consistent with the original C prototype,
the J system proceeds to process the sentence and perform the graphical side
effects associated with the OpenGL function.

Next, consider the code for the main function of the graphics application.
The C code follows.

4

void main(int argc, char **argv)

{

glutInit(&argc, argv);

/* need both double buffering and z buffer */

glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB | GLUT_DEPTH);

glutInitWindowSize(500, 500);

glutCreateWindow("colorcube");

glutReshapeFunc(myReshape);

glutDisplayFunc(display);

glutIdleFunc(spinCube);

glutMouseFunc(mouse);

glEnable(GL_DEPTH_TEST); /* Enable hidden--surface--removal */

glutMainLoop();

}

Notice that the main function in the rotating cube example contains calls to
the GLUT libraries. GLUT library calls are not a problem for the J system. The
J system simply relies on another external conjunction to include GLUT func-
tionality. The GLUT external conjunction is constructed in a manner similar
to the gl external conjunction:

glut =: 1024 !: 1

Also, notice the main C function uses callbacks. Callbacks constitute another
case that the J system must handle, and therefore establishes a need for another
external conjunction.

The callback external conjunction follows the same construction pattern as
the previous OpenGL external conjunctions, but is processed a little differently.
The callback external conjunction appears as follows:

callback =: 1024 !: 4

The callback external conjunction produces a C function pointer to the func-
tion specified in the second element of the boxed list, for example display. When
called with appropriate arguments, if any, the J function (in this example dis-
play) is executed. As a result, the callback function is properly executed for its
side effect.

The J code for the main function of the rotating cube example therefore
appears as follows.

main =. monad define script

(’argc’ ; ’argv’) =. y.

glut ’Init’ ; ’argc’ ; ’argv’

NB. need both double buffering and z buffer

glut ’InitDisplayMode’ ; ’GLUT_DOUBLE’ ; ’GLUT_RGB’ ; ’GLUT_DEPTH’

glut ’InitWindowSize’ ; 500 ; 500

glut ’CreateWindow’ ; callback ’colorcube’

5

glut ’ReshapeFunc’ ; callback ’myReshape’

glut ’DisplayFunc’ ; callback ’display’

glut ’IdleFunc’ ; callback ’spinCube’

glut ’MouseFunc’ ; callback ’mouse’

NB. Enable hidden--surface--removal

gl ’Enable’ ; ’GL_DEPTH_TEST’

glut ’MainLoop’

)

The remainder of the rotating cube example code appears in the Appendix
in both C and J. All that remains are the definitions of the callback functions,
some global variables, and the cube geometry and color functions.

4 Benefits to OpenGL Programming in J

The environment presented by the OpenGL bindings allows for faster graph-
ics programming and development by increasing interactivity. When graphics
commands are issued to the J system they are immediately interpreted and ex-
ecuted. The programmer is therefore allowed to experiment with translation
values or red-green-blue-alpha values (or any other graphics parameter) and
perceive the results of his or her changes relatively quickly. In other words,
the graphics state updates as the programmer issues commands inside the J
environment. As a result, the programmer immediately sees the effect of his or
her actions without having to compile, link, and test the application changes
as required when working in the C or C++ development environments. Even
with the convenience of make scripts that automate the build process, building
the C or C++ executable to evaluate the effects of added OpenGL commands
is time consuming and still requires the programmer to run the freshly built
executable.

As for the selection of the OpenGL graphics programming libraries, OpenGL
offers a robust set of utilities and commands suitable to a wide range of two and
three dimensional graphical programming endeavors. OpenGL has also evolved
as a standard amongst 3D graphics programming languages and has been ported
to and extensive variety of platforms and operating systems. In any case, the
creation of J bindings for OpenGL certainly does not exclude or prevent the
creation of J bindings for other graphics programming libraries in the future.

5 Conclusions

The ability to interactively experiment with OpenGL commands in the J envi-
ronment may increase the learning speed of new comers to graphics program-
ming and accelerate their progression along the learning curve associated with
OpenGL and 3D graphics programming. J bindings for OpenGL decrease the
feedback latency between trial and result (hopefully not error) which grants
programmers the freedom to think and work faster. The interactive feedback

6

offered by J also has a better chance of captivating and maintaining the de-
velopers interest when compared with the traditional C or C++ development
environments which follow more of a trial . . . wait . . . wait . . . wait . . . result
model.

The creation of J bindings to OpenGL also offers potential spin-off and en-
hancement projects. For example, while it may be faster to develop graphics
applications in an interpreted environment, applications with real-time needs
may still require a compiled executable to meet performance demands. A rea-
sonable project would therefore be to write a translator that would take a J
script file and generate a C or C++ file which would perform the same opera-
tions but would be compiled for optimal runtime performance.

Another spin-off project might be to create a GUI environment for object
modeling in OpenGL. Such a development tool would certainly save time over
the trial . . . wait . . . result sequences involved in using C and C++ to create
models, and would also abstract away the users need for knowledge of the J
syntax to utilize the bindings to OpenGL for modeling.

In the future, perhaps even more sophisticated graphics APIs could be uti-
lized interactively through the creation of new J bindings. In particular, Per-
former and its ability for multiprocessing poses interesting questions about how
J might handle multiple process graphical applications.

References

[Bur 96] Burke, Chris, J User Manual, Iverson Software Inorporated, Toronto,
Ontario, 1996.

[Hui 92] Hui, Roger K. W., An Implementation of J, Iverson Software Inorpo-
rated, Toronto, Ontario, 1992.

[Ive 96] Iverson, Kenneth E., J Intorduction and Dictionary, Iverson Software
Inorporated, Toronto, Ontario, 1996.

[Kil 96] Kilgard, Mark J., “The OpenGL Utility Toolkit (GLUT) Program-
ming Interface: API Version 3”, Silicon Graphics Incorporated, 1996.

[Nei 93] Neider, Jackie et al., Open OpenGL Programming Guide, Addison-
Wesley Publishing Company, New York, 1993.

[Seg 93] Segal, Mark and Kurt Akeley, The OpenGL Graphics System: A Spec-
ification (Version 1.0), Silicon Graphics Incorporated, 1993.

[Smi 95] Smillie, Keith, “Some Notes on Introducing J with Statistical Exam-
ples” Revised Edition, June 1995.

[Smi 93] Smith, Kevin P., “The OpenGL Graphics System Utility Library”,
Silicon Graphics Incorporated, 1993.

7

Appendix

A Remaining C code

GLfloat vertices[][3] = {{-1.0,-1.0,-1.0},{1.0,-1.0,-1.0},

{1.0,1.0,-1.0}, {-1.0,1.0,-1.0}, {-1.0,-1.0,1.0},

{1.0,-1.0,1.0}, {1.0,1.0,1.0}, {-1.0,1.0,1.0}};

GLfloat normals[][3] = {{-1.0,-1.0,-1.0},{1.0,-1.0,-1.0},

{1.0,1.0,-1.0}, {-1.0,1.0,-1.0}, {-1.0,-1.0,1.0},

{1.0,-1.0,1.0}, {1.0,1.0,1.0}, {-1.0,1.0,1.0}};

GLfloat colors[][3] = {{0.0,0.0,0.0},{1.0,0.0,0.0},

{1.0,1.0,0.0}, {0.0,1.0,0.0}, {0.0,0.0,1.0},

{1.0,0.0,1.0}, {1.0,1.0,1.0}, {0.0,1.0,1.0}};

void polygon(int a, int b, int c , int d)

{

/* draw a polygon via list of vertices */

glBegin(GL_POLYGON);

glColor3fv(colors[a]);

glNormal3fv(normals[a]);

glVertex3fv(vertices[a]);

glColor3fv(colors[b]);

glNormal3fv(normals[b]);

glVertex3fv(vertices[b]);

glColor3fv(colors[c]);

glNormal3fv(normals[c]);

glVertex3fv(vertices[c]);

glColor3fv(colors[d]);

glNormal3fv(normals[d]);

glVertex3fv(vertices[d]);

glEnd();

}

void colorcube(void)

{

/* map vertices to faces */

polygon(0,3,2,1);

polygon(2,3,7,6);

polygon(0,4,7,3);

polygon(1,2,6,5);

polygon(4,5,6,7);

polygon(0,1,5,4);

}

8

static GLfloat theta[] = {0.0,0.0,0.0};

static GLint axis = 2;

void spinCube()

{

/* Idle callback, spin cube 2 degrees about selected axis */

theta[axis] += 2.0;

if(theta[axis] > 360.0) theta[axis] -= 360.0;

display();

}

void mouse(int btn, int state, int x, int y)

{

/* mouse callback, selects an axis about which to rotate */

if(btn==GLUT_LEFT_BUTTON & state == GLUT_DOWN) axis = 0;

if(btn==GLUT_MIDDLE_BUTTON & state == GLUT_DOWN) axis = 1;

if(btn==GLUT_RIGHT_BUTTON & state == GLUT_DOWN) axis = 2;

}

void myReshape(int w, int h)

{

glViewport(0, 0, w, h);

glMatrixMode(GL_PROJECTION);

glLoadIdentity();

if (w <= h)

glOrtho(-2.0, 2.0, -2.0 * (GLfloat) h / (GLfloat) w,

2.0 * (GLfloat) h / (GLfloat) w, -10.0, 10.0);

else

glOrtho(-2.0 * (GLfloat) w / (GLfloat) h,

2.0 * (GLfloat) w / (GLfloat) h, -2.0, 2.0, -10.0, 10.0);

glMatrixMode(GL_MODELVIEW);

}

B Remaining code in J

vertices =. 8 3 $ _1.0 _1.0 _1.0 1.0 _1.0 _1.0 1.0 1.0 _1.0

_1.0 1.0 _1.0 _1.0 _1.0 1.0 1.0 _1.0 1.0

1.0 1.0 1.0 _1.0 1.0 1.0

normals =. 8 3 $ _1.0 _1.0 _1.0 1.0 _1.0 _1.0 1.0 1.0 _1.0

_1.0 1.0 _1.0 _1.0 _1.0 1.0 1.0 _1.0 1.0

1.0 1.0 1.0 _1.0 1.0 1.0

colors =. 8 3 $ 0.0 0.0 0.0 1.0 0.0 0.0 1.0 1.0 0.0 0.0 1.0 0.0

9

0.0 0.0 1.0 1.0 0.0 1.0 1.0 1.0 1.0 0.0 1.0 1.0

polygon monad define script

(’a’ ; ’b’ ; ’c’ ; ’d’) =. y.

NB. draw a polygon via list of vertices

gl ’Begin’ ; ’GL_POLYGON’

gl ’Color3fv’ ; a from colors

gl ’Normal3fv’ ; a from normals

gl ’Vertex3fv’ ; a from vertices

gl ’Color3fv’ ; b from colors

gl ’Normal3fv’ ; b from normals

gl ’Vertex3fv’ ; b from vertices

gl ’Color3fv’ ; c from colors

gl ’Normal3fv’ ; c from normals

gl ’Vertex3fv’ ; c from vertices

gl ’Color3fv’ ; d from colors

gl ’Normal3fv’ ; d from normals

gl ’Vertex3fv’ ; d from vertices

gl ’End’

)

colorcube =. monad define script

NB. map vertices to faces

polygon 0 3 2 1

polygon 2 3 7 6

polygon 0 4 7 3

polygon 1 2 6 5

polygon 4 5 6 7

polygon 0 1 5 4

)

theta =. 0.0 0.0 0.0

axis =. 2

spinCube =. monad define script

NB. Idle callback, spin cube 2 degrees about selected axis

2+ (axis from theta)

if. 360.0 < axis from theta

do. 360 - axis from theta

end.

display ’’

}

10

mouse =. monad define script

(’btn’ ; ’state’ ; ’x’ ; ’y’) =. y.

NB. mouse callback, selects an axis about which to rotate

if.(btn = GLUT_LEFT_BUTTON) and (state = GLUT_DOWN)

do. axis =. 0

elseif.(btn = GLUT_MIDDLE_BUTTON) and (state = GLUT_DOWN)

do. axis =. 1

elseif.(btn = GLUT_RIGHT_BUTTON) and (state = GLUT_DOWN)

do. axis =. 2

end.

)

myReshape =. monad define script

(’w’ ; ’h’) =. y.

gl ’Viewport’ ; 0 ; 0 ; w ; h

gl ’MatrixMode’ ; ’GL_PROJECTION’

gl ’LoadIdentity’

if. (w < h) or (w = h)

do.

gl ’Ortho’ ; _2.0 ; 2.0 ; _2.0 * h % w ; 2.0 * h % w ; _10.0 ; 10.0

else.

gl ’Ortho’ ; _2.0 * w % h ; 2.0 * w % h ; _2.0 ; 2.0 ; _10.0 ; 10.0

gl ’MatrixMode’ ; ’GL_MODELVIEW’

end.

)

11

