
Recursion, Iteration

and

Functional Languages

John E. Howland
Department of Computer Science

Trinity University
715 Stadium Drive

San Antonio, Texas 78212-7200
Voice: (210) 736-7480
Fax: (210) 736-7477

Internet: jhowland@ariel.cs.trinity.edu

Abstract

Functional programming languages are shown to be useful in the teaching

of the concepts of recursion and iteration. The functional language ap-

proach presented in this paper has advantages over imperative languages

in the area of analysis of recursive and iterative algorithms. Examples

using the J and Scheme programming languages, with emphasis on the

use of functional programming notation in exposition are given. 1

Subject Areas: Computer Science Education, J, Scheme, Exposition.
Keywords: computer science introductory course, J, Scheme, exposition.

1 Introduction

Functional languages provide a computational environment where functions are
applied to arguments producing results. Once an item is created in memory it
is never altered. Function application occurs without side effects. Algorithms
involve sequences of function applications (functional composition). Most func-
tional language environments automatically reclaim (garbage collection) items
which are no longer needed.

1This paper appears in the Journal of Computing in Small Colleges, Volume 13, Number
4, Pages 86-97, March 1998. Copyright c©1998 by the Consortium for Computing in Small
Colleges. Permission to copy without fee all or part of this material is granted provided that
the copies are not made or distributed for direct commercial advantage, the CCSC copyright
notice and the title of the publication and its date appear, and notice is given that copying is
by permission of the Consortium for Computing in Small Colleges. To copy otherwise, or to
republish, requires a fee and/or specific permission. The paper was presented at the CCSC
South-Central Conference, April 18, 1998, Millsaps College, Jackson, Mississippi.

1



Imperative languages use a state model of computation wherein procedures
modify the state of items stored in memory as a computation proceeds from
beginning to end.

Functional languages provide somewhat different view of program design
which can be useful in the teaching of introductory computer science topics. This
paper discusses the use of functional programming techniques in the teaching
of recursion and iteration.

The topic of recursion is usually not taught in close combination with itera-
tion in the CS I-CS II course sequence. Sometimes these topics are presented as
being unrelated to one another with recursion being treated as a more advanced
topic and sometimes less efficient approach to problem solving which should be
avoided unless absolutely necessary.

An important problem solving strategy, sometimes called divide and con-
quer, involves sub-dividing a problem into parts. At least one part, often called
a base case, is easily handled and one or more other parts are identical, except
smaller, to the original problem. Each of the parts may be handled by the
solution or subdivided into parts which may be handled by the solution.

In the following sections, programming examples are given in the Scheme [Har 94,
Man 95, Spr 89] and J [Ive 95] programming languages. J is a pure functional
language, however, Scheme is not. A subset of Scheme, which omits any Scheme
function which mutates an existent Scheme item, is used for the examples in
this paper.

The choice of programming language used to teach computer science topics
has been widely discussed in the computer science education literature. In par-
ticular, [Kon 74, Kon 94, Rie 93, How 94, How 95, How 96, How 97] advocate
the use of functional languages, such as J and Scheme, in the teaching of many
introductory computer science topics. This paper considers the use of Scheme
or J when teaching recursion and iteration.

2 Recursion

A definition which refers to itself is a recursive definition. We consider several
examples of recursive definitions which illustrate our approach to teaching re-
cursion. The first of these examples is a trivial problem which is used so that
the problem being solved does not interfere with understanding the approach
being used to teach recursion.

2.1 Summing the First n Positive Integers

The first example uses a recursive definition to sum the integers 1 to k. The
divide and conquer solution has two cases.

1. Base case.

When there are no integers to be added, the result should be zero.

2



2. Smaller, but identical, problem.

When there are k (k>0) integers, the solution can be written as k+sum(k-1).

Following are the Scheme and J programs for summing the integers 1 to k.

(define sum

(lambda(n)

(if (= n 0)

0

(+ n (sum (- n 1))))))

Program sum (Scheme Version)

sum =: monad define script

if. y. = 0

do. 0

else. y. + sum y. - 1

end.

)

Program sum (J Version)

2.2 Tracing the Execution of a Recursive Definition

Most functional programming environments support traced execution of defini-
tions. Next, we show the traced output of the Scheme version of sum.

> (trace sum)

#<unspecified>

> (sum 5)

"CALLED" sum 5

"CALLED" sum 4

"CALLED" sum 3

"CALLED" sum 2

"CALLED" sum 1

"CALLED" sum 0

"RETURNED" sum 0

"RETURNED" sum 1

"RETURNED" sum 3

"RETURNED" sum 6

"RETURNED" sum 10

"RETURNED" sum 15

15

If a programming environment does not support traced evaluation, it is
straight forward to implement traced versions of recursive definitions. This is
illustrated for the J version of sum.

3



traced_sum =: monad define script

entering y.

if. y. = 0

do. leaving 0

else. leaving y. + traced_sum y. - 1

end.

)

Program traced_sum (J Version)

The functions entering and leaving are defined as shown below.

entering =: ’Entering, input = ’&trace

leaving =: ’Leaving, result = ’&trace

trace =: monad define script

display y.

:

display (format x.),format y.

y.

)

display =: 1 !: 2 & 2

Execution of traced_sum gives the following output.

traced_sum 5

Entering, input = 5

Entering, input = 4

Entering, input = 3

Entering, input = 2

Entering, input = 1

Entering, input = 0

Leaving, result = 0

Leaving, result = 1

Leaving, result = 3

Leaving, result = 6

Leaving, result = 10

Leaving, result = 15

15

2.3 The Factorial Function

To compute the product of the integers 1 to k using the divide and conquer
approach, we have, as in Section 2.1, two cases.

1. Base case.

When there are no integers to be multiplied, the result should be one.

4



2. Smaller, but identical, problem.

When there are k (k>0) integers, the solution may be written as k*factorial(k-1).

Following are the Scheme and J programs for computing the product of the
integers 1 to k.

(define factorial

(lambda(n)

(if (= n 0)

1

(* n (factorial (- n 1))))))

Program factorial (Scheme Version)

factorial =: monad define script

if. y. = 0

do. 1

else. y. * factorial y. - 1

end.

)

Program factorial (J Version)

As in Section 2.1, we can trace the execution of factorial.

> (trace factorial)

#<unspecified>

> (factorial 6)

"CALLED" factorial 6

"CALLED" factorial 5

"CALLED" factorial 4

"CALLED" factorial 3

"CALLED" factorial 2

"CALLED" factorial 1

"CALLED" factorial 0

"RETURNED" factorial 1

"RETURNED" factorial 1

"RETURNED" factorial 2

"RETURNED" factorial 6

"RETURNED" factorial 24

"RETURNED" factorial 120

"RETURNED" factorial 720

720

5



3 Continuations

In Sections 2.2 and 2.3 we notice that the functions sum and factorial are
called repeatedly until the problem has been reduced to a problem of size zero.
No results are returned by any of these calls until a call is made for a problem
of size zero. For each of the calls made for problems of size greater than zero, a
record of the computation remaining to be done must be saved. We formalize
the concept of representing the remaining computation as a monad (function of
one argument) with the following definition.2

Given a compound expression e and a subexpression f of e, the continuation

of f in e is the computation in e, written as a monad, which remains to be done
after first evaluating f. When the continuation of f in e is applied to the result
of evaluating f, the result is the same as evaluating the expression e. Let c be
the continuation of f in e. The expression e may then be written as c f.

Continuations provide a “factorization” of expressions into two parts; f

which is evaluated first and c which is later applied to the result of f. Con-
tinuations are helpful in the analysis of algorithms.

3.1 Scheme Example

Suppose e is the expression (* 2 (+ 3 4)) and f is the subexpression (+ 3 4),
then the continuation of f in e is

(lambda(n) (* 2 n))

and

((lambda(n) (* 2 n)) (+ 3 4))

produces the same result of 14 as does

(* 2 (+ 3 4))

3.2 J Example

Suppose e is the expression 5 * 4 + 5 and f is the subexpression 4 + 5, then
the continuation of f in e is

monad define ’5 * y.’

and

(monad define ’5 * y.’) 4 + 5

produces the same result of 45 as does

5 * 4 + 5

2This definition of continuation should not be confused with the definition of the Scheme
call-with-current-continuation[Spr 89].

6



4 Expressing Recursion as Functional Composi-

tion

Consider the function sum of Section 2.1 and evaluate the sum of the integers 1
to 5. We next write out the 5 continuations which must be formed to complete
this evaluation.

4.1 Using Scheme Notation

The five continuations are:

(define c1

(lambda(n) (+ 5 n)))

(define c2

(lambda(n) (+ 4 n)))

(define c3

(lambda(n) (+ 3 n)))

(define c4

(lambda(n) (+ 2 n)))

(define c5

(lambda(n) (+ 1 n)))

Then the value of (sum 5) may be written as

(c1 (c2 (c3 (c4 (c5 0)))))

4.2 Using J Notation

Consider the factorial function defined in Section 2.3 and evaluate factorial 5.
Five continuations must be formed during this evaluation. They are:

c1 =: monad define’5 * y.’

c2 =: monad define’4 * y.’

c3 =: monad define’3 * y.’

c4 =: monad define’2 * y.’

c5 =: monad define’1 * y.’

Then the value of factorial 5 may be written as

c1 c2 c3 c4 c5 1

5 Iteration

We next consider an alternate solution to the problem of summing the integers
from 1 to k. This solution uses a recursive definition but does not use the divide
and conquer strategy.

7



5.1 Scheme Example

The Scheme definition

(define sum-iter

(lambda(n acc i)

(if (> i n)

acc

(sum-iter n (+ acc i) (+ i 1)))))

solves the problem of summing the integers 1 to 5 when applied to the arguments
5 0 1. We can create a new definition sum1 which solves the problem of summing
the integers 1 to k, given the size of the problem k, with the definition

(define sum1

(lambda(k)

(sum-iter k 0 1)))

Analysis of sum1 involves analyzing sum-iter since sum1 makes a single
call to sum-iter. The definition of sum-iter is recursive. Next, using the
definition of a continuation in Section 3, we write the continuation of each call
to sum-iter inside the definition of sum-iter. This definition consists of a
single if expression. The only time recursive calls are made to sum-iter is
when i is less than or equal to n. The continuation of the call to sum-iter may
be written as

(lambda(n) n)

This is the identity function. Since each continuation simply returns its
argument, there is no need to form the continuations in the first place and
it is possible for an optimizing compiler or interpreter to derive an equivalent
program which replaces the recursive calls to sum-iter with an iteration which
directly forms the sum of 0 + 1 + . . . + k with a single call to sum-iter.

5.2 J Example

Next we consider an alternate solution to the problem from Section 2.3 of com-
puting the product of the integers 1 to k which does not use the divide and
conquer strategy.

The definition

factorial_iter =: monad define script

(’n’ ; ’acc’ ; ’i’) =. y.

if. i > n

do. acc

else. factorial_iter n , (i * acc) , i + 1

end.

)

8



computes the product of the integers 1 to 5 when applied to the argument 5 1
1.

A cover function for factorial_iter may be defined as

factorial1 =: monad define ’factorial_iter y. , 1 1’

so that factorial1 5 produces a result of 120.
The analysis of factorial_iter is similar to the analysis of sum-iter in

Section 5.1. The continuation of the recursive call to factorial_iter in the
definition of factorial_iter is

monad define ’y.’

Hence, no continuations need be saved and an optimizing compiler or in-
terpreter will replace the recursion with iteration which directly computes the
product of the integers 1 to k using a single call to factorial_iter.

5.3 Tail Recursion

A recursive definition, f, is said to be tail recursive if the continuation of each
recursive call to f is the identity function. As long as the definition is not mu-
tually recursive, it is an easy exercise for students to examine the source code
of a definition and explicitly write the continuations to determine whether or
not the definition is tail recursive. As many compilers and interpreters auto-
matically recognize tail recursion and optimize these definitions as loops (gcc,
for example), students quickly learn that they can write efficient iteration loops
in a functional style.

The analysis of mutually recursive definitions is done in a similar fashion
by hand, but is problematic for compilers and interpreters, particularly if the
definitions are compiled separately.

6 Analyzing Algorithms

Students find that it is convenient to think of recursion in terms of composition
of functions. They are explicitly aware of the order in which operations are
done. For example, in Section 4.1, it is clear that the sum is accumulated in the
order 0 + 1 + . . . + 5. They are also aware that recursive definitions may be
used to provide efficient iterative programs as a result of analysis to determine
whether or not a definition is tail recursive.

6.1 Recursive Fibonacci

The recursive definitions mentioned above all involve trivial linear recursive
processes. The next example illustrates the kind of analysis a student might
perform on a less trivial problem. Consider the standard recursive definition of
the fibonacci function.

9



fibonacci =: monad define script

if. y. < 2

do. y.

else. (fibonacci y. - 1) + fibonacci y. - 2

end.

)

Program fibonacci (J Version)

Applying fibonacci to the argument 5 produces a result of 5. Tracing fibonacci
produces the output

traced_fibonacci 5

Entering, input = 5

Entering, input = 4

Entering, input = 3

Entering, input = 2

Entering, input = 1

Leaving, result = 1

Entering, input = 0

Leaving, result = 0

Leaving, result = 1

Entering, input = 1

Leaving, result = 1

Leaving, result = 2

Entering, input = 2

Entering, input = 1

Leaving, result = 1

Entering, input = 0

Leaving, result = 0

Leaving, result = 1

Leaving, result = 3

Entering, input = 3

Entering, input = 2

Entering, input = 1

Leaving, result = 1

Entering, input = 0

Leaving, result = 0

Leaving, result = 1

Entering, input = 1

Leaving, result = 1

Leaving, result = 2

Leaving, result = 5

5

Analyzing the fibonacci definition, we notice that there are two recursive
calls to fibonacci inside this definition. We next write the continuations of
each of these calls.

10



monad define ’y. + fibonacci n - 2’

monad define ’(fibonacci n - 1) + y.’

fibonacci is not tail recursive. In fact, each continuation contains a recur-
sive call to fibonacci. We also notice, from the traced output, that fibonacci
makes applications of fibonacci to the same argument.

Consider the problem of evaluating fibonacci 3. Two continuations must
be formed.

c1 =: monad define’y. + fibonacci 0’

c2 =: monad define’y. + fibonacci 1’

The value of fibonacci 3 is represented by the expression c2 c1 1. Next,
consider the problem of evaluating fibonacci 4. Three continuations must be
formed.

c1 =: monad define’y. + fibonacci 0’

c2 =: monad define’y. + fibonacci 1’

c3 =: monad define’y. + fibonacci 2’

The value of fibonacci 4 is represented by the expression c3 c2 c1 1.
Next we consider the number of times fibonacci is called while evaluating

fibonacci. Define fib_work to be the number of times fibonacci is called
while evaluating fibonacci. We see that:

• fib_work 0 = 1

• fib_work 1 = 1

• fib_work 2 = 3

• fib_work 3 = 5

• fib_work 4 = 9

• fib_work 5 = 15

It is easy to establish the recurrence formula for fib_work

fib_work n = 1 + (fib_work n - 1) + fib_work n - 2

Assuming that the execution time of fibonacci is proportional to fib_work,
then the order of fibonacci is fib_work which is, itself, a fibonacci func-
tion. This analysis leads to a laboratory experiment [How 94] in which stu-
dents conduct timing measurements of the number of recursive calls per sec-
ond a workstation can make to fibonacci. Since fibonacci would make
1146295688027634168201 recursive calls while evaluating fibonacci 100, a work-
station which can perform 1,000,000 recursive calls per second would require ap-
proximately 1146295688027634 seconds (more than 363487 centuries!) to eval-
uate fibonacci 100. This laboratory provides the opportunity for students to
deal with formal analysis, experimental measurements, recursion and iteration.

11



6.2 Tail-Recursive Fibonacci

Introductory computer science texts [Abe 85, Spr 89] give tail-recursive defini-
tions for the fibonacci function.

fib_iter =: monad define ’fib_iter_helper 1 0 , y.’

fib_iter_helper =: monad define script

(’a’ ; ’b’ ; ’count’) =. y.

if. count = 0

do. b

else. fib_iter_helper (a + b) , a , count - 1

end.

)

fib_iter makes a single call to fib_iter_helper to compute fibonacci.
fib_iter_helper is tail-recursive since the continuation of the one recursive
call is the identity function.

7 Iteration and Recursion Operators

Functional languages often have functional abstractions for iteration and re-
cursion. For example, Scheme has a mapping (iteration abstraction) function
named map which applies a function to each item of a list.

(map (lambda(x) (* x x x)) ’(2 3 4 5))

produces the result

(8 27 64 125)

This same example is easily expressed using J. In J, the power function, ex-
pressed as ^, may be used as the argument of the bond conjunction, &, producing
the cube function ^&3. This monad may be applied as:

(^&3) 2 3 4 5

producing the result

8 27 64 125

The J programming notation has a rich collection of abstractions for dealing
with iteration over the items in lists and arrays. For example, the insert adverb,
/, allows a dyad to be inserted between the items of a list or array.

+/ 1 2 3 4 5

evaluates the expression

12



1 + 2 + 3 + 4 + 5

while

*/ 1 2 3 4 5 6

evaluates the expression

1 * 2 * 3 * 4 * 5 * 6

Scheme and J both support an extensive family of abstractions for recursion
and iteration which are beyond the scope of this paper. Such features are
important in the exposition of a more advanced treatment of recursion and
iteration. For example, Iverson [Iv 95] shows extensive use of J to construct
mathematical proofs of correctness of algorithms.

8 Summary

Functional languages such as Scheme and J are useful in teaching recursion and
iteration to introductory students. The exercise of writing the continuation of
each recursive call in a definition forces students to think about the definition.
Students also find that the alternate view of recursion as a composition of con-
tinuation functions gives a new perspective on recursive definitions. Identifying
tail-recursive definitions or transforming non tail-recursive definitions into tail-
recursive definitions is a useful exercise which helps enhance understanding of
the algorithm. This author has found Scheme and J to be equally effective in the
teaching of recursion and iteration. Both languages have significant advantages,
particularly when used for exposition, over imperative languages.

References

[Abe 85] Abelson, Harold and Sussman, Gerald with Sussman, Julie., Structure

and Interpretation of Computer Programs, MIT Press, 1985.

[Har 94] Harvey, Brian and Wright, Matthew, Simply Scheme: Introducing

Computer Science, MIT Press, Cambridge, MA, 1994.

[How 94] Howland, John, “Lecture Notes for Great Ideas in Computer Science”,
Trinity University Computer Science Department Lecture Notes,
http://www.cs.trinity.edu/About/The Courses/cs301/

[How 95] Howland, John, “ A Laboratory Computer Science Course for Liberal
Arts Students”, The Journal of Computing in Small Colleges, Volume
10, Number 5, May 1995.

[How 96] Howland, John, “ Using J as an Expository Language in the Teaching
of Computer Science to Liberal Arts Students”, ACM APL96 Con-
ference Proceedings, Lancaster University, England, August, 1996.

13



[How 97] Howland, John, “ It’s All in the Language (Yet Another Look at the
Choice of Programming Language for Teaching Computer Science)”,
The Journal of Computing in Small Colleges, Volume 12, Number 4,
March 1997.

[Iv 95] Iverson, Kenneth, Concrete Math Companion, Iverson Software,
Toronto, Canada, 1995.

[Ive 95] Iverson, Kenneth E., J Introduction and Dictionary, Iverson Software,
1995.

[Kon 74] Konstam, Aaron and Howland, John, “APL as a Lingua Franca in the
Computer Science Curriculum”, SIGCSE Bulletin, Volume 6, Number
1, February 1974.

[Kon 94] Konstam, Aaron and Howland, John, “Teaching Computer Science
Principles to Liberal Arts Students Using Scheme”, SIGCSE Bulletin,
Volume 26, Number 4, December 1994.

[Man 95] Manis, Vincent S. and Little, James J., The Schematics of Computa-

tion, Prentice Hall, Englewood Cliffs, NJ, 1995.

[Rie 93] Riehl, Arthur, moderator, “Using Scheme in the Introductory Com-
puter Science Curriculum”, Panel, SIGCSE Bulletin, Volume 25,
Number 1, March 1993.

[Spr 89] Springer, George and Friedman, Daniel, Scheme and the Art of Pro-

gramming, MIT Press, 1989.

14


