
Functional Languages

and

Introductory Computer Science

John E. Howland
Department of Computer Science

Trinity University
715 Stadium Drive

San Antonio, Texas 78212-7200
Voice: (210) 736-7480
Fax: (210) 736-7477

Internet: jhowland@ariel.cs.trinity.edu

Abstract

The choice of which programming language to use in introductory com-

puter science courses is guaranteed to spark debate in the computer science

community. Programming languages used in computer science instruction

have followed various trends or fads within the computing industry. The

language choice has often been between languages which are currently in

wide use by industry for software production. While it is true that com-

puter science education has a responsibility to achieve a balance between

providing training in current practices within the field and core concepts

and theory, it is felt that computer science education should not be overly

influenced by popular trends when choosing a programming language to

use in the teaching of introductory computer science. Functional program-

ming languages are shown to be useful in the teaching of the concepts of

computer science. The functional language approach presented in this

paper has advantages over imperative languages in the areas of model

building, exposition, experimentation and analysis of algorithms. Exam-

ples using the J and Scheme programming languages, with emphasis on

the use of functional programming notation in exposition are given. 1

1The abstract of this paper appears in the Journal of Computing in Small Colleges, Volume
13, Number 4, Page 151, March 1998. Copyright c©1998 by the Consortium for Computing
in Small Colleges. Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commercial advantage, the
CCSC copyright notice and the title of the publication and its date appear, and notice is
given that copying is by permission of the Consortium for Computing in Small Colleges. To
copy otherwise, or to republish, requires a fee and/or specific permission. The paper was
presented at the CCSC South-Central Conference, April 18, 1998, Millsaps College, Jackson,
Mississippi.

1



Subject Areas: Computer Science Education, J, Scheme, Exposition.
Keywords: computer science introductory course, J, Scheme, exposition.

1 Introduction

The choice of which programming language to use in introductory computer
science courses borders on being a religious issue in which divides computer
science departments over issues involving what are believed to be practical skills
required by industry and the requirements of pedagogy. More often, in the past,
industrial requirements have prevailed as witnessed by the use of languages
such as Cobol, FORTRAN, PL/I and more recently C and C++. Languages
have been developed which have, in part, focused on education, i.e. Pascal,
Modula, etc., but these languages have not become a dominant force in the
commercial production of software. At least one computer scientist [Dij 89]
has advocated the use of an unimplemented programming language to teach
computer science which necessarily forces programming instruction to be purely
an intellectual activity. Recent growth in Internet activity has provided stimulus
for the development of software systems which may be executed on a variety
of different hardware/software environments. One of these, Java, which uses
an abstract Java virtual machine to host the software is remarkably similar in
overall concept to the Pascal P machine. Because of Internet popularity, Java
is now proposed by some as a suitable vehicle for teaching computer science.
Trends or fads come and go in computer science education just as in other fields.

In each of the programming languages mentioned above, it is not clear that
the choice to use the language for computer science instruction is made primar-
ily for pedagogical reasons. In Section 1.1, criteria are given which are based
on requirements of computer science instruction, particularly use of program-
ming notation in an expository fashion in the teaching of introductory computer
science.

Functional languages provide a computational environment where functions
are applied to arguments producing results. Once an item is created in memory
it is never altered. Function application occurs without side effects. Algorithms
involve sequences of function applications (functional composition). Most func-
tional language environments automatically reclaim (garbage collection) items
which are no longer needed.

Imperative languages use a state model of computation wherein procedures
modify the state of items stored in memory as a computation proceeds from
beginning to end.

Functional languages provide somewhat different view of program design
which can be useful in the teaching of introductory computer science topics.

In the following sections, programming examples are given in the Scheme [Har 94,
Man 95, Spr 89] and J [Ive 95] programming languages. J is a pure functional
language, however, Scheme is not. A subset of Scheme, which omits any Scheme
function which mutates an existent Scheme item, is used for the examples in
this paper.

2



The choice of programming language used to teach computer science topics
has been widely discussed in the computer science education literature. In par-
ticular, [Kon 74, Kon 94, Rie 93, How 94, How 95, How 96, How 97] advocate
the use of functional languages, such as J and Scheme, in the teaching of many
introductory computer science topics. This paper considers the use of Scheme
or J when teaching introductory computer science.

1.1 Criteria

• Interactive Environment

• Language Sentence Structure

• Model Building

• Experimentation

• Reasoning About Programs

• Data Abstraction

• Procedure Abstraction

• Functional and Imperative Programming

• Exact and Inexact Arithmetic

• Object Programming

• Recursion

• Iteration

• Algorithm Analysis

• Recursion and Iteration Operators

2 Interactive Environment

The advent of computer equipped classrooms where the instructor and students
have workstations and network based systems for using language aware elec-
tronic blackboards has increased the importance of an interactive environment
for a language. By interactive, we mean systems which operate in a read-
evaluate-print loop. One enters an expression which is parsed, analyzed and
evaluated in real time and then results are printed and the process is repeated.
Of course such systems may be run in batch mode reading from standard input
and writing to standard output with input/output redirection. Also, although
such systems are often implemented as interpreters, the interactive Scheme and
J systems may also have compilers which are capable of generating binary ma-
chine language programs.

3



2.1 Scheme Example

The Scheme system illustrated here prompts the user for input with “> ”. Sys-
tem output starts at the left margin.

> (map + ’(1 2 3) ’(10 20 40))

(11 22 43)

>

2.2 J Example

The J system illustrated here prompts the user for input with three spaces.
System output starts at the left margin.

1 2 3 + 10 20 40

11 22 43

3 Language Sentence Structure

When using programming notation in an expository notation for computer sci-
ence, it is important that the notation have a sentence structure that can be
easily verbalized. When reading and thinking in an explicit manner, we actually
verbalize our thoughts even though we are not speaking out loud. Conventional
programming languages are often difficult to verbalize and because of this are
not as suitable for exposition as are languages which are more easily verbalized.
Dijkstra [Dij 72], in his Turing lecture, “The Humble Programmer”, stated “...
that the tool we are trying to use and the language or notation we are using to
express or record our thoughts are the major factors determining that we can
think or express at all!”. The expressive power of a language is one yardstick
by which one may measure the relative merits of a programming language.

A programming notation which is used in an expository manner should have
a simple syntax which is easy to learn and an easily understood evaluation rule.

3.1 Scheme Sentences

Scheme sentences are sequences of words separated by spaces, preceded and
followed by “(” and “)”. The first word of a sentence is a verb (or verb like
special word) which is applied to the remaining words in the sentence. For
example:

> (* 2 3)

6

is verbalized as times 2 3. Some sentences use special words which are technically
not verbs. An example is:

(if (< a b)

a

b)

4



This sentence may be verbalized as If less than a b, then a, else b. The word
if is not a verb which means that an if sentence has a special evaluation rule.
There are relatively few special words and hence relatively few exceptions to the
normal rule for sentence formation.

Compound sentences may be formed as in:

(* (- a b) (- a c))

which might be verbalized as Times the quantity minus a b and the quantity
minus a c.

3.2 J Sentences

J sentences are sequences of words separated by spaces. Most sentences are
limited to one physical line and are read from left to right. The J primitive words
are formed from the ASCII character set. Primitive words are represented with
a single character or a character followed by a period or colon. For example, ¿
represents larger than, ¿. larger of and ¿: increment. Terminology from English
grammar is used to describe J. Functions are referred to as verbs, constants
as nouns, names assigned to values as pronouns and names assigned to verbs
as proverbs. Infix conventions are used which means that dyads (verbs having
two nouns or pronouns as inputs) are written between the nouns while monads
(verbs having one noun or pronoun as input) are written before the noun. For
example:

2 * 3

6

is verbalized as 2 times 3. Compound sentences may be formed as in:

2 * 3 + 4

14

which might be verbalized as 2 times, 3 plus 4. With the exception of subordi-
nate clauses enclosed in parentheses, verbs are evaluated in the order from right
to left so that the sentences may be read from left to right. The right input to
a verb is the value of the entire expression to the right and the left input is the
value of the noun immediately to the left of the verb. Most verb symbols have
two interpretations (dyad or monad) and the choice between interpretations is
determined by the context as illustrated by the sentence:

4 - - 2

6

which is verbalized as 4 subtract negate 2. Punctuation (parentheses) may be
used to modify the order of evaluation as in:

(2 * 3) + 4

10

5



which is verbalized as The quantity 2 times 3 plus 4.
In J, verbs may be modified by adverbs or conjunctions to form new verbs

which are then applied to inputs. For example, in:

+/1 2 3 4

10

*/1 2 3 4

24

the first is verbalized as plus insert the list 1 2 3 4 while the second is verbalized
as times insert the list 1 2 3 4. In each of these sentences, the adverb insert
(spelled ”/”) modifies the verb (plus or times) producing a new verb which sums
or multiplies the elements of the list. Adverbs or conjunctions have precedence
over verbs with the left input being the entire verb phrase on the left.

3.3 Programs

In both Scheme and J, programs and data are represented by the same notation;
lists in Scheme and lists or arrays in J. This closely models the situation of
storing both programs and data in the memory of a computer in numeric form.

Scheme Programs A single sentence is a simple Scheme program. For ex-
ample:

> (* (+ 4 5) (- 3 2))

9

Functions may be defined as compound sentences involving the special words
define and lambda. For example:

(define square

(lambda (x)

(* x x)))

Then

> (square 10)

100

Data is described using the special word quote as follows:

(define people

(quote ((Clinton (president United States))

(Dole (wanted to be President))

(Perot (also wanted to be President)))))

> (length people)

3

6



J Programs A single J sentence is also a program. For example:

(4 + 5) * (3 - 2)

9

The J word ”=:” assigns (binds) a name (pronoun) to a value (noun). For
example, suppose we have defined the following words:

monad =: 3

define =: :

Then the sentence:

square =: monad define ’y. * y.’

is an explicit definition for the square function. The pronoun ”y.” always refers
to the input of a monad. Given this definition, then we may write:

square 10

100

The J notation provides great expressive power when defining functions through
an alternate method called tacit definition. A feature of tacit definition is there
is no reference to the inputs of a definition. For example, square could also be
defined as:

square =: ^&2

Here we are using a conjunction (a verb producing verb) called bond (spelled
“&”) which takes a verb input on the left (power function, spelled “^”) and a
noun input (2) on the right and produces a new verb which squares its argument.
Square could also be defined as:

square =: *~

Here we use the adverb reflex (spelled “~”) which takes a dyad as its left input
and converts the dyad into a monad by using its input y. as its left and right
input for the dyad. In this case the verb derived from * is y. * y. .

Finally, the square function occurs frequently enough in programs so that it
is provided as a primitive function in J, (spelled ”*:”. So we could also write:

square =: *:

4 Model Building

A technique, useful in the teaching of computer science, is to use programming
notation to build small working models of the topic being described. A success-
ful notation, in this application, will provide concise, but fully accurate, working
models. Both Scheme and J excel in model building. Suppose we wish to use re-
cursive definitions, in a divide and conquer fashion, to model both recursive and
iterative processes. This technique is often used when analyzing the fibonacci
sequence. We use this example to illustrate not only modeling techniques but
also illustrate the expressive power of Scheme and J to describe recursive and
iterative processes and continuations.

7



4.1 Modeling Processes with Scheme

The fibonacci sequence 0 1 1 2 3 5 8 13, ... may be generated by the recursive
definition:

(define fibonacci

(lambda (n)

(if (< n 2)

n

(+

(fibonacci (- n 1))

(fibonacci (- n 2))))))

When analyzing this recursive definition, it is useful to define a related function,
fib-work, whose value, given an input n, is the number of times fibonacci is called
when evaluating (fibonacci n). It is easy to show that fib-work may be defined
as:

(define fib-work

(lambda (n)

(if (< n 2)

1

(+ 1

(fib-work (- n 1))

(fib-work (- n 2))))))

fib-work, itself, generates the values of a kind of fibonacci sequence. If it is our
goal to evaluate either of these functions for inputs greater than 25 to 30, it
is necessary to convert these definitions to definitions which result in iterative
processes. A recursive definition for fib-work which results in an iterative process
is given by the definition:

(define fib-work-iter

(lambda (n) (fib-work-iter-helper 1 1 n)))

(define fib-work-iter-helper

(lambda (a b count)

(if (= count 0)

b

(fib-work-iter-helper (+ 1 a b) a (- count 1)))))

Suppose f is a compound expression and e is a sub expression of f. The continu-
ation of e in f is that function of a single input x, (lambda (x) ...) which contains
the execution in f which remains to be done after evaluating the sub expression
e. This means that the value of the entire expression f may be obtained by
evaluating ((lambda (x) ...) e). Continuations allow a compound expression to
be factored into an expression e which is evaluated first and a function which
may be called with the resulting value of e as an input.

8



The idea of a continuation may be used to define tail recursive functions. A
function is tail recursive if the continuation of each recursive reference in the
definition is the identity function.

Analysis of fib-work-iter reveals that the work of this definition is done by the
recursive definition fib-work-iter-helper which has one recursive use of fib- work-
iter-helper whose continuation is the identity function. Hence, fib-work- iter is
tail recursive which means that its process is iterative. Here we are assuming
that any tail recursive definition will be optimized by the Scheme system so
that an iterative process will be generated. This will be true of any standard
Scheme implementation. The end result of all of this is that fib-work-iter will
easily evaluate the fib-work function for the input value 100. Indeed,

> (fib-work-iter 100)

1146295688027634168201

4.2 Modeling Processes with J

We express the same example used in Section 4.1 using the J notation to show
the expressiveness of J for modeling and recursive and iterative processes.

The fibonacci sequence 0 1 1 2 3 5 8 13, ... may be generated by the recursive
definition:

fibonacci =: monad define script

if. y. < 2

do. y.

else. (fibonacci y. - 1) + fibonacci y. - 2

end.

)

When analyzing this recursive definition, it is useful to define a related function,
fib work, whose value, given an input n, is the number of times fibonacci is called
when evaluating fibonacci n . It is easy to show that fib work may be defined
as:

fib_work =: monad define script

if. y. < 2

do. 1

else. 1 + (fib_work y. - 1) + fib_work y. - 2

end.

)

As in Section 4.1, fib work, itself, generates the values of a kind of fibonacci
sequence. If it is our goal to evaluate either of these functions for inputs greater
than 25 to 30, it is necessary to convert these definitions to definitions which
result in iterative processes. A recursive definition for fib work which results in
an iterative process is given by the definition:

9



fib_work_iter =: monad define ’fib_work_iter_helper 1 1 , y.’

fib_work_iter_helper =: monad define script

(’a’ ; ’b’ ; ’count’) =. y.

if. count = 0

do. b

else. fib_work_iter_helper (1 + a + b) , a , count - 1

end.

)

Again, as in Section 4.1, we may define the idea of a continuation. Suppose f
is a compound expression and e is a sub expression of f. The continuation of
e in f is that monad having input y., monad define ’... y. ...’ which contains
the execution in f which remains to be done after evaluating the sub expression
e. This means that the value of the entire expression f may be obtained by
evaluating:

monad define ’... y. ...’ e.

Since the continuation of each recursive use of fib work iter helper in the defi-
nition of fib work iter helper is the identity function, fib work iter generates a
more efficient iterative process so that:

fib_work_iter 100x

1146295688027634168201x

The J numeric suffix ”x” indicates that an exact numeric representation should
be used in this computation.

5 Experimentation

Experimental methods play an important role in computer science and should
be a part of the introductory computer science curriculum. Measuring program
performance, testing experimental hypotheses are areas where traditional sci-
entific methodology may be used. Scheme and J systems provide facilities for
measurements of memory space and execution time of programs. As an exam-
ple of a simple experiment which might be performed by introductory students,
consider the problem of estimating the execution time of the recursive fibonacci
function discussed in Section 4. In Section 5.1, a J version of this experiment is
described. The Scheme description of this experiment is similar.

5.1 Using J to Estimate the Time to Evaluate fibonacci

100

First define the time verb using the external conjunction. time returns the time
in seconds to evaluate the sentence given as its right input.

time =: 6 !: 2

10



Next, using the definition of fibonacci given in Section 4.2, determine the speed,
in calls per sec to fibonacci, of fibonacci n for values of n not more than about
25. Note that you need to use the fib work iter function from Section 4.2 to
compute these speeds. For example, on a RISC workstation you might measure
this speed as:

(fib_work_iter 20) % 10 time ’fibonacci 20’

2650.24

This measurement gives a speed of about 2650 calls per sec as determined by
the average of 10 evaluations of fibonacci 20.

The next step of the experiment involves dividing fib work iter 100 by 2650
to obtain the estimate of the time in seconds to evaluate fibonacci 100. This
division requires exact integer division which is expressed in J as:

0 2650 #: 1146295688027634168201x

432564410576465723x 2251x

Ignoring the remainder of 2251 we have a result of 432564410576465723 seconds
(the suffix ”x” indicates an exact integer). Students performing this lab are
always surprised to learn that this time is 13,716,527,478 years, 350 days, 4
hours, 55 minutes and 23 seconds. This result is easily expressed in J as:

0 365 24 60 60 #: 432564410576465723x

13716527478x 350x 4x 55x 23x

6 Reasoning About Programs

Myers [My 90] makes compelling arguments that an introduction to formal
methods should be a part of introductory computer science courses. Such meth-
ods include the topics of proof of program correctness, analytic methods of
transformation and simplification of programs, etc. Since both Scheme and J
are derived from formal mathematical notation it is not surprising that they
may be used to introduce and describe formal methods in computer science.
In [Ive 95], Iverson describes J as ”... a formal imperative language. Because
it is imperative, a sentence in J may also be called an instruction, and may be
executed to produce a result. Because it is formal and unambiguous it can be
executed mechanically by a computer, and is therefore called a programming
language. Because it shares the analytic properties of mathematical notation,
it is also called an analytic language.”

6.1 Using J for Proofs

Iverson and others have written several books which use J to describe a number
of computing related topics. One of these [Iv 95] uses J in a rather formal way
to express algorithms and proofs of topics covered in [Gr 89]. Following is an
example from the introduction of [Iv 95].

11



A theorem is an assertion that one expression l is equivalent to another r.
We can express this relationship in J as:

t=: l -: r

This is the same as saying that l must match r, that is, t must be the constant
function 1 for all inputs. T is sometimes called a tautology. For example,
suppose

l =: +/ @ i. NB. Sum of integers

r =: (] * ] - 1:) % 2:

If we define n =: ] , the right identity function, the we can rewrite the last
equations as:

r =: (n * n - 1:) % 2:

Next,

t =: l -: r

Notice that by experimentation, t seems to always be 1 no matter what input
argument is used.

t 1 2 3 4 5 6 7 8 9

1 1 1 1 1 1 1 1 1

A proof of this theorem is a sequence of equivalent expressions which leads from
l to r.

l

+/ @ i. Definition of l

+/ @ |. i. Sum is associative and commutative

(|. is reverse)

((+/ @ i.) + (+/ @ |. @ i.)) % 2: Half sum of equal values

+/ @ (i. + |. @ i.) % 2: Summation distributes over addition

+/ @ (n # n - 1:) % 2: Each term is n -1; there are n terms

(n * n - 1:) % 2: Definition of multiplication

r Definition of r

Of course, each expression in the above proof is a simple program and the proof
is a sequence of justifications which allow transformation of one expression to
the next.

7 Data Abstraction

Both Scheme and J allow a functional approach to data abstraction which allows
data abstractions to be separated from actual representation of abstract data
types. This approach provides an interface which defines software layers. A J
example of an abstract data type of stack is given.

12



7.1 J Data Abstraction for Stacks

We define the stack data type to be a collection of J items together with the
following operations:

make_stack ==> constructs a stack

stackp obj ==> 1 if obj is a stack, else 0

empty_stackp stack ==> 1 if stack empty, else 0

push_stack item ; stack ==> put item on stack

pop_stack stack ==> remove last item pushed on stack

top_stack stack ==> return last item pushed on stack

without removing that value from stack

We represent a stack as a J boxed list which has a stack ”tag” of ’stack’ as its
first item. First we define the helping words:

box =: <

open =: >

match =: -:

first =: {.

append =: ,

drop_last =: _1 & }.

last =: _1 & {

stack_tag =: box ’stack’

the_empty_stack =: box stack_tag

The stack operations may be written as:

make_stack =: monad define ’the_empty_stack’

stackp =: monad define ’stack_tag match first open y.’

empty_stackp =: monad define ’the_empty_stack match y.’

push_stack =: monad define script

(’item’ ; ’obj’) =. y.

if. not stackp box obj

do. error ’wrong type second input to push_stack’ ; obj

else. box obj append box item

end.

)

pop_stack =: monad define script

if. not stackp y.

do. error ’wrong type input to pop_stack’ ; y.

else. box drop_last open y.

end.

)

13



top_stack =: monad define script

if. not stackp y.

do. error ’wrong type input to top_stack’ ; y.

else. open last open y.

end.

)

7.2 Using the J stack abstraction

Following is a sample session using the stack abstraction of Section 7.1.

s =: make_stack ’’

stackp s

1 NB. s is a stack

empty_stackp s

1

s =: push_stack 1 2 3 ; s NB. Push the list 1 2 3 on s

top_stack s

1 2 3

empty_stackp s

0 NB. s is not empty now

s =: push_stack ’Some text’ ; s NB. Push a char string on s

top_stack s

Some text

s =: pop_stack s

top_stack s

1 2 3

s =: pop_stack s

empty_stackp s

1 NB. s is empty again

8 Procedure Abstraction

Procedure abstraction is not easily achieved in languages such as Pascal, C
or C++, however, in Scheme and J, functions are first class entities. They
may be passed as arguments, assigned names and returned as values. Springer
and Friedman [Spr 89] describe procedural abstractions in Scheme which solve
classes of problems involving flat recursion of the top level elements of a list or
deep recursion on all sub lists of a list.

8.1 Procedural Abstraction using J

In J, functions may be passed as arguments and returned as values. Adverbs are
functions whose arguments are functions and results are functions. For example,
insert (spelled ”/”) is an adverb which derives a verb result which is inserted
between the items of its argument.

14



+/ 10 20 50 NB. sum

80

*/ 10 20 50 NB. product

10000

-/ 10 20 50 NB. difference

40

Suppose a is defined by:

a =: i. 2 3

a

0 1 2

3 4 5

+/ a

3 5 7

*/ a

0 4 10

Rank (spelled ”, double quote) is a conjunction (a verb producing dyad) pro-
duces a result verb (derived from its left input) which is applied to its argument
according to the right input of rank. For example, a (defined above) has two
rows and 3 columns, and is said to be of rank 2 (2 dimensions).

+/ " 1 a NB. plus insert applied to the rank 1 items of a (rows)

3 12 NB. row sum

*/ " 1 a NB. times insert applied to the rank 1 items of a (rows)

0 60 NB. row product

+/ " 2 a NB. plus insert applied to the rank 2 items of a (columns)

3 5 7 NB. column sum

*/ " 2 a NB. times insert applied to the rank 2 items of a (columns)

0 4 10 NB. column product

J supports a number of other abstractions, too numerous to mention in this
paper, such as hooks, forks, trains, function arrays, gerunds, agenda, power
and inverse (where defined) for primitive functions as well as explicitly defined
functions.

9 Functional and Imperative Programming

Scheme supports a functional style of programming (when you restrict use of
procedures which alter already existent object, such as set-car!, set-cdr!, vector-
set!, vector-fill!, etc.) as well as an imperative style of programming when the
above mentioned procedures are used. J is a functional notation where the model
of computation consists of application of functions to arguments without side
effects (roll and deal have side effects; pseudo random state is modified). Once
an item is created in memory it is never modified; functions may be applied to

15



such items producing new items. Functional composition is the primary model
for computation.

10 Exact and Inexact Arithmetic

Scheme and J both support a model of exact integer arithmetic in addition
to arithmetic of other numeric types such as complex and inexact (floating
point) numbers. Exact values are limited in precision only by available (possibly
virtual) memory.

11 Object Programming

Object programming combines data structure and operations on data structure
to entities called objects. Objects provide abstraction, encapsulation and inher-
itance to provide data based modularization for programs. Objects are easily
modeled in Scheme using lexical closures [How 94], Chapter 6. Objects may be
modeled in J using locales [How 94], Chapter 6.

12 Recursion

A definition which refers to itself is a recursive definition. We consider several
examples of recursive definitions which illustrate our approach to teaching re-
cursion. The first of these examples is a trivial problem which is used so that
the problem being solved does not interfere with understanding the approach
being used to teach recursion.

12.1 Summing the First n Positive Integers

The first example uses a recursive definition to sum the integers 1 to k. The
divide and conquer solution has two cases.

1. Base case.

When there are no integers to be added, the result should be zero.

2. Smaller, but identical, problem.

When there are k (k>0) integers, the solution can be written as k+sum(k-1).

Following are the Scheme and J programs for summing the integers 1 to k.

(define sum

(lambda(n)

(if (= n 0)

0

(+ n (sum (- n 1))))))

16



Program sum (Scheme Version)

sum =: monad define script

if. y. = 0

do. 0

else. y. + sum y. - 1

end.

)

Program sum (J Version)

12.2 Tracing the Execution of a Recursive Definition

Most functional programming environments support traced execution of defini-
tions. Next, we show the traced output of the Scheme version of sum.

> (trace sum)

#<unspecified>

> (sum 5)

"CALLED" sum 5

"CALLED" sum 4

"CALLED" sum 3

"CALLED" sum 2

"CALLED" sum 1

"CALLED" sum 0

"RETURNED" sum 0

"RETURNED" sum 1

"RETURNED" sum 3

"RETURNED" sum 6

"RETURNED" sum 10

"RETURNED" sum 15

15

If a programming environment does not support traced evaluation, it is
straight forward to implement traced versions of recursive definitions. This is
illustrated for the J version of sum.

traced_sum =: monad define script

entering y.

if. y. = 0

do. leaving 0

else. leaving y. + traced_sum y. - 1

end.

)

Program traced_sum (J Version)

The functions entering and leaving are defined as shown below.

17



entering =: ’Entering, input = ’&trace

leaving =: ’Leaving, result = ’&trace

trace =: monad define script

display y.

:

display (format x.),format y.

y.

)

display =: 1 !: 2 & 2

Execution of traced_sum gives the following output.

traced_sum 5

Entering, input = 5

Entering, input = 4

Entering, input = 3

Entering, input = 2

Entering, input = 1

Entering, input = 0

Leaving, result = 0

Leaving, result = 1

Leaving, result = 3

Leaving, result = 6

Leaving, result = 10

Leaving, result = 15

15

12.3 The Factorial Function

To compute the product of the integers 1 to k using the divide and conquer
approach, we have, as in Section 12.1, two cases.

1. Base case.

When there are no integers to be multiplied, the result should be one.

2. Smaller, but identical, problem.

When there are k (k>0) integers, the solution may be written as k*factorial(k-1).

Following are the Scheme and J programs for computing the product of the
integers 1 to k.

(define factorial

(lambda(n)

(if (= n 0)

1

(* n (factorial (- n 1))))))

18



Program factorial (Scheme Version)

factorial =: monad define script

if. y. = 0

do. 1

else. y. * factorial y. - 1

end.

)

Program factorial (J Version)

As in Section 12.1, we can trace the execution of factorial.

> (trace factorial)

#<unspecified>

> (factorial 6)

"CALLED" factorial 6

"CALLED" factorial 5

"CALLED" factorial 4

"CALLED" factorial 3

"CALLED" factorial 2

"CALLED" factorial 1

"CALLED" factorial 0

"RETURNED" factorial 1

"RETURNED" factorial 1

"RETURNED" factorial 2

"RETURNED" factorial 6

"RETURNED" factorial 24

"RETURNED" factorial 120

"RETURNED" factorial 720

720

12.4 Continuations

In Sections 12.2 and 12.3 we notice that the functions sum and factorial are
called repeatedly until the problem has been reduced to a problem of size zero.
No results are returned by any of these calls until a call is made for a problem
of size zero. For each of the calls made for problems of size greater than zero, a
record of the computation remaining to be done must be saved. We formalize
the concept of representing the remaining computation as a monad (function of
one argument) with the following definition.2

Given a compound expression e and a subexpression f of e, the continuation

of f in e is the computation in e, written as a monad, which remains to be done
after first evaluating f. When the continuation of f in e is applied to the result

2This definition of continuation should not be confused with the definition of the Scheme
call-with-current-continuation[Spr 89].

19



of evaluating f, the result is the same as evaluating the expression e. Let c be
the continuation of f in e. The expression e may then be written as c f.

Continuations provide a “factorization” of expressions into two parts; f

which is evaluated first and c which is later applied to the result of f. Con-
tinuations are helpful in the analysis of algorithms.

12.5 Scheme Example

Suppose e is the expression (* 2 (+ 3 4)) and f is the subexpression (+ 3 4),
then the continuation of f in e is

(lambda(n) (* 2 n))

and

((lambda(n) (* 2 n)) (+ 3 4))

produces the same result of 14 as does

(* 2 (+ 3 4))

12.6 J Example

Suppose e is the expression 5 * 4 + 5 and f is the subexpression 4 + 5, then
the continuation of f in e is

monad define ’5 * y.’

and

(monad define ’5 * y.’) 4 + 5

produces the same result of 45 as does

5 * 4 + 5

12.7 Expressing Recursion as Functional Composition

Consider the function sum of Section 12.1 and evaluate the sum of the integers 1
to 5. We next write out the 5 continuations which must be formed to complete
this evaluation.

20



12.8 Using Scheme Notation

The five continuations are:

(define c1

(lambda(n) (+ 5 n)))

(define c2

(lambda(n) (+ 4 n)))

(define c3

(lambda(n) (+ 3 n)))

(define c4

(lambda(n) (+ 2 n)))

(define c5

(lambda(n) (+ 1 n)))

Then the value of (sum 5) may be written as

(c1 (c2 (c3 (c4 (c5 0)))))

12.9 Using J Notation

Consider the factorial function defined in Section 12.3 and evaluate factorial 5.
Five continuations must be formed during this evaluation. They are:

c1 =: monad define’5 * y.’

c2 =: monad define’4 * y.’

c3 =: monad define’3 * y.’

c4 =: monad define’2 * y.’

c5 =: monad define’1 * y.’

Then the value of factorial 5 may be written as

c1 c2 c3 c4 c5 1

13 Iteration

We next consider an alternate solution to the problem of summing the integers
from 1 to k. This solution uses a recursive definition but does not use the divide
and conquer strategy.

13.1 Scheme Example

The Scheme definition

(define sum-iter

(lambda(n acc i)

(if (> i n)

acc

(sum-iter n (+ acc i) (+ i 1)))))

21



solves the problem of summing the integers 1 to 5 when applied to the arguments
5 0 1. We can create a new definition sum1 which solves the problem of summing
the integers 1 to k, given the size of the problem k, with the definition

(define sum1

(lambda(k)

(sum-iter k 0 1)))

Analysis of sum1 involves analyzing sum-iter since sum1 makes a single
call to sum-iter. The definition of sum-iter is recursive. Next, using the
definition of a continuation in Section 12.4, we write the continuation of each
call to sum-iter inside the definition of sum-iter. This definition consists of
a single if expression. The only time recursive calls are made to sum-iter is
when i is less than or equal to n. The continuation of the call to sum-iter may
be written as

(lambda(n) n)

This is the identity function. Since each continuation simply returns its
argument, there is no need to form the continuations in the first place and
it is possible for an optimizing compiler or interpreter to derive an equivalent
program which replaces the recursive calls to sum-iter with an iteration which
directly forms the sum of 0 + 1 + . . . + k with a single call to sum-iter.

13.2 J Example

Next we consider an alternate solution to the problem from Section 12.3 of
computing the product of the integers 1 to k which does not use the divide and
conquer strategy.

The definition

factorial_iter =: monad define script

(’n’ ; ’acc’ ; ’i’) =. y.

if. i > n

do. acc

else. factorial_iter n , (i * acc) , i + 1

end.

)

computes the product of the integers 1 to 5 when applied to the argument 5 1
1.

A cover function for factorial_iter may be defined as

factorial1 =: monad define ’factorial_iter y. , 1 1’

so that factorial1 5 produces a result of 120.
The analysis of factorial_iter is similar to the analysis of sum-iter in

Section 13.1. The continuation of the recursive call to factorial_iter in the
definition of factorial_iter is

22



monad define ’y.’

Hence, no continuations need be saved and an optimizing compiler or in-
terpreter will replace the recursion with iteration which directly computes the
product of the integers 1 to k using a single call to factorial_iter.

13.3 Tail Recursion

A recursive definition, f, is said to be tail recursive if the continuation of each
recursive call to f is the identity function. As long as the definition is not
mutually recursive, it is an easy exercise for students to examine the source code
of a definition and explicitly write the continuations to determine whether or not
the definition is tail recursive. As many compilers and interpreters automatically
recognize tail recursion and convert such definitions to loops (gcc, for example),
students quickly learn that they can write efficient iteration loops in a functional
style.

The analysis of mutually recursive definitions is done in a similar fashion
by hand, but is problematic for compilers and interpreters, particularly if the
definitions are compiled separately.

14 Analyzing Algorithms

Students find that it is convenient to think of recursion in terms of composition
of functions. They are explicitly aware of the order in which operations are
done. For example, in Section 12.8, it is clear that the sum is accumulated in
the order 0 + 1 + . . . + 5. They are also aware that recursive definitions may be
used to provide efficient iterative programs as a result of analysis to determine
whether or not a definition is tail recursive.

14.1 Recursive Fibonacci

The recursive definitions mentioned above all involved trivial linear recursive
processes. The next example illustrates the kind of analysis a student might
perform on a less trivial problem. Consider the standard recursive definition of
the fibonacci function.

fibonacci =: monad define script

if. y. < 2

do. y.

else. (fibonacci y. - 1) + fibonacci y. - 2

end.

)

Program fibonacci (J Version)

Applying fibonacci to the argument 5 produces a result of 5. Tracing fibonacci
produces the output

23



traced_fibonacci 5

Entering, input = 5

Entering, input = 4

Entering, input = 3

Entering, input = 2

Entering, input = 1

Leaving, result = 1

Entering, input = 0

Leaving, result = 0

Leaving, result = 1

Entering, input = 1

Leaving, result = 1

Leaving, result = 2

Entering, input = 2

Entering, input = 1

Leaving, result = 1

Entering, input = 0

Leaving, result = 0

Leaving, result = 1

Leaving, result = 3

Entering, input = 3

Entering, input = 2

Entering, input = 1

Leaving, result = 1

Entering, input = 0

Leaving, result = 0

Leaving, result = 1

Entering, input = 1

Leaving, result = 1

Leaving, result = 2

Leaving, result = 5

5

Analyzing the fibonacci definition, we notice that there are two recursive
calls to fibonacci inside this definition. We next write the continuations of
each of these calls.

monad define ’y. + fibonacci n - 2’

monad define ’(fibonacci n - 1) + y.’

fibonacci is not tail recursive. In fact, each continuation contains a recur-
sive call to fibonacci. We also notice, from the traced output, that fibonacci
makes applications of fibonacci to the same argument.

Consider the problem of evaluating fibonacci 3. Two continuations must
be formed.

24



c1 =: monad define’y. + fibonacci 0’

c2 =: monad define’y. + fibonacci 1’

The value of fibonacci 3 is represented by the expression c2 c1 1. Next,
consider the problem of evaluating fibonacci 4. Three continuations must be
formed.

c1 =: monad define’y. + fibonacci 0’

c2 =: monad define’y. + fibonacci 1’

c3 =: monad define’y. + fibonacci 2’

The value of fibonacci 4 is represented by the expression c3 c2 c1 1.
Next we consider the number of times fibonacci is called while evaluating

fibonacci. Define fib_work to be the number of times fibonacci is called
while evaluating fibonacci. We see that:

• fib_work 0 = 1

• fib_work 1 = 1

• fib_work 2 = 3

• fib_work 3 = 5

• fib_work 4 = 9

• fib_work 5 = 15

It is easy to establish the recurrence formula for fib_work

fib_work n = 1 + (fib_work n - 1) + fib_work n - 2

Assuming that the execution time of fibonacci is proportional to fib_work,
then the order of fibonacci is fib_work which is, itself, a fibonacci func-
tion. This analysis leads to a laboratory experiment [How 94] in which stu-
dents conduct timing measurements of the number of recursive calls per sec-
ond a workstation can make to fibonacci. Since fibonacci would make
1146295688027634168201 recursive calls while evaluating fibonacci 100, a work-
station which can perform 1,000,000 recursive calls per second would require ap-
proximately 1146295688027634 seconds (more than 363487 centuries!) to eval-
uate fibonacci 100. This laboratory provides the opportunity for students to
deal with formal analysis, experimental measurements, recursion and iteration.

25



14.2 Tail-Recursive Fibonacci

Introductory computer science texts [Abe 85, Spr 89] give tail-recursive defini-
tions for the fibonacci function.

fib_iter =: monad define ’fib_iter_helper 1 0 , y.’

fib_iter_helper =: monad define script

(’a’ ; ’b’ ; ’count’) =. y.

if. count = 0

do. b

else. fib_iter_helper (a + b) , a , count - 1

end.

)

fib_iter makes a single call to fib_iter_helper to computer fibonacci.
fib_iter_helper is tail-recursive since the continuation of the one recursive
call is the identity function.

15 Iteration and Recursion Operators

Functional languages often have functional abstractions for iteration and re-
cursion. For example, Scheme has a mapping (iteration abstraction) function
named map which applies a function to each item of a list.

(map (lambda(x) (* x x x)) ’(2 3 4 5))

produces the result

(8 27 64 125)

This same example is easily expressed using J. In J, the power function, ex-
pressed as ^, may be used as the argument of the bond conjunction, &, producing
the cube function ^&3. This monad may be applied as:

(^&3) 2 3 4 5

producing the result

8 27 64 125

The J programming notation has a rich collection of abstractions for dealing
with iteration over the items in lists and arrays. For example, the insert adverb,
/, allows a dyad to be inserted between the items of a list or array.

+/ 1 2 3 4 5

evaluates the expression

26



1 + 2 + 3 + 4 + 5

while

*/ 1 2 3 4 5 6

evaluates the expression

1 * 2 * 3 * 4 * 5 * 6

Scheme and J both support an extensive family of abstractions for recursion
and iteration which are beyond the scope of this paper. Such features are
important in the exposition of a more advanced treatment of recursion and
iteration. For example, Iverson [Iv 95] shows extensive use of J to construct
mathematical proofs of correctness of algorithms.

16 Available Implementations

There are a number of Scheme and J implementations available for nearly ev-
ery machine and operating system including Windows, WindowsNT, MacOS,
Linux and other varieties of UNIX. Commercial versions of these languages are
available as well, but free versions have proven to be more than adequate for
laboratory use and students are able to install versions of the software identical
to lab systems on their own machines. More information on available Scheme
software may be found at:

ftp://ftp.cs.indiana.edu/pub/scheme-repository/

Information on J software may be found at:

http://www.jsoftware.com .

16.1 Text Materials

Several well known introductory computer science text books which use Scheme
are (most notably) [Abe 85, Fr 92, Har 94, Man 95, Spr 89]. Development of
the J programming language is relatively recent, with the first papers on J ap-
pearing in 1991. To this date, the only J based computer science text materials
are [How 94]. However, J has been used in an expository fashion to describe
several topics in mathematics [Iv 92, Iv 93, Iv 95, Re 95].

17 Schools Using Scheme or J

A list of colleges and universities using Scheme in various courses is maintained
at the Scheme Repository:

http://www.cs.indiana.edu/scheme-repository/home.html

Information about the use of the J programming language is maintained at:

http://www.jsoftware.com/

27



18 Summary

Languages which are routinely used by industry, such as Basic, FORTRAN, C,
C++, etc., are often not entirely suitable for expository presentation of topics
in the introductory computer science curriculum. Frequently, students enter-
ing computer science programs have already studied one of these languages and
have some programming experience. Choosing a language which is better suited
for expository presentation of computer science topics, such as Scheme or J, can
have a leveling effect amongst students who have different preparation for col-
lege level training in computer science. Moreover, choosing a language which
allows expression of powerful ideas helps give the mindset which allows stu-
dents to think what might otherwise have been ”unthinkable” thoughts. Such
notation should foster development of formal methods in addition to the prac-
tical aspect of design, analysis and programming. An important method of
exposition involves building small working models of each topic. Once built,
such models provide the basis for laboratory experimentation which can involve
measurements, formulation and verification of hypotheses and analysis.

Programming notation becomes a powerful tool of exposition by making
an appropriate choice of language. The decision about choice of programming
language should be made primarily on the basis of how well key concepts in
computer science may be expressed in the language. For these reasons Scheme
or J is preferable to other languages commonly used in introductory computer
science courses.

Functional languages such as Scheme and J are useful in teaching recursion
and iteration to introductory students. The exercise of writing the continuation
of each recursive call in a definition forces students to think about the definition.
Students also find that the alternate view of recursion as a composition of con-
tinuation functions gives a new perspective on recursive definitions. Identifying
tail-recursive definitions or transforming non tail-recursive definitions into tail-
recursive definitions is a useful exercise which helps enhance understanding of
the algorithm. This author has found Scheme and J to be equally effective in the
teaching of recursion and iteration. Both languages have significant advantages,
particularly when used for exposition, over imperative languages.

References

[Abe 85] Abelson, Harold and Sussman, Gerald with Sussman, Julie., Structure

and Interpretation of Computer Programs, MIT Press, 1985.

[Dij 72] Dijkstra, Edsger, ”The Humble Programmer”, 1972 ACM Turing lec-
ture, reprinted in ACM Turing Award Lectures, The First Twenty
Years, pp 17 - 31, ACM Press, 1987.

[Dij 89] Dijkstra, Edsger, ”On The Cruelty of Really Teaching Computing
Science”, 1989 SIGCSE Award Lecture, SIGCSE Bulletin, Vol. 21,
No. 1, February 1989.

28



[Har 94] Harvey, Brian and Wright, Matthew, Simply Scheme: Introducing

Computer Science, MIT Press, Cambridge, MA, 1994.

[How 94] Howland, John, “Lecture Notes for Great Ideas in Computer Science”,
Trinity University Computer Science Department Lecture Notes,
http://www.cs.trinity.edu/About/The Courses/cs301/.

[How 95] Howland, John, “ A Laboratory Computer Science Course for Liberal
Arts Students”, The Journal of Computing in Small Colleges, Volume
10, Number 5, May 1995.

[How 96] Howland, John, “ Using J as an Expository Language in the Teaching
of Computer Science to Liberal Arts Students”, ACM APL96 Con-
ference Proceedings, Lancaster University, England, August, 1996.

[How 97] Howland, John, “ It’s All in the Language (Yet Another Look at the
Choice of Programming Language for Teaching Computer Science)”,
The Journal of Computing in Small Colleges, Volume 12, Number 4,
March 1997.

[Iv 95] Iverson, Kenneth, Concrete Math Companion, Iverson Software,
Toronto, Canada, 1995.

[Ive 95] Iverson, Kenneth E., J Introduction and Dictionary, Iverson Software,
1995.

[Kon 74] Konstam, Aaron and Howland, John, “APL as a Lingua Franca in the
Computer Science Curriculum”, SIGCSE Bulletin, Volume 6, Number
1, February 1974.

[Kon 94] Konstam, Aaron and Howland, John, “Teaching Computer Science
Principles to Liberal Ar ts Students Using Scheme”, SIGCSE Bulletin,
Volume 26, Number 4, December 1994.

[Man 95] Manis, Vincent S. and Little, James J., The Schematics of Computa-

tion, Prentice Hall, Englewood Cliffs, NJ, 1995.

[Rie 93] Riehl, Arthur, moderator, “Using Scheme in the Introductory Com-
puter Science Curricul um”, Panel, SIGCSE Bulletin, Volume 25,
Number 1, March 1993.

[Re 95] Reiter, Cliff, Fractals Visualization and J, Iverson Software, Toronto,
CA, 1995.

[Spr 89] Springer, George and Friedman, Daniel, Scheme and the Art of Pro-

gramming, MIT Press, 1989.

[Fr 92] Friedman, Daniel, Wand, Mitchell and Haynes, Christopher. Essen-

tials of Programming Languages, MIT Press, 1992.

29



[Gr 89] Graham, Knuth and Patashnik, Concrete Mathematics, Addison-
Wesley Publishing Company, Reading, MA, 1989.

[Iv 92] Iverson, Kenneth, Arithmetic, Iverson Software, Toronto, Canada,
1992.

[Iv 93] Iverson, Kenneth, Calculus, Iverson Software, Toronto, Canada, 1993

[My 90] Myers, J. Paul, ”The Central Role of Mathematical Logic in Com-
puter Science”, SIGCSE Bulletin, Vol. 22, No. 1, February 1990.

30


