
Focusing on Design

John E. Howland, Aaron Konstam and Gerald Pitts
Department of Computer Science

Trinity University
715 Stadium Drive

San Antonio, Texas 78212-7200
Voice: (210) 736-7480
Fax: (210) 736-7477

E-mail: jhowland@Trinity.Edu
E-mail: akonstam@Trinity.Edu

E-mail: gpitts@Trinity.Edu

November 26, 2002

Abstract

The role in which design should play in the undergraduate curriculum is

addressed. An approach to introducing design into the curriculum through

a sequence of courses where students solve design problems of increasing

complexity is given. 1

Subject Areas: Computer Science Education, Computer Science Curriculum.
Keywords: computer science, design.

1 Introduction

For many years computer science majors at Trinity University were required to
complete a two semester senior level capstone course which involved analysis,
design and prototype implementation of a problem of significant complexity in
the fall semester. During the spring semester, computer science majors extend
the prototype implementation of their solution to a complete solution.

1This paper has been published in the Journal of Computing in Small Colleges, Volume 14,
Number 3, Pages 160 - 165, March 1999. Copyright c©1999 by the Consortium for Computing
in Small Colleges. Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commercial advantage, the
CCSC copyright notice and the title of the publication and its date appear, and notice is
given that copying is by permission of the Consortium for Computing in Small Colleges. To
copy otherwise, or to republish, requires a fee and/or specific permission. This paper was
presented at the CCSC South-Central Conference, April 17, 1999, St. Edwards University,
Austin Texas.

1



One of the problems students encountered with this course involved insuffi-
cient skills and experience in analysis and design required for successful comple-
tion of complex problems. The typical kind of programming assignments and
laboratory problems encountered in lower division computer science courses usu-
ally did not prepare students with adequate analysis and design skills to handle
larger more complex problems.

To address this problem, the computer science department recently made
significant changes to its curriculum for computer science majors with the in-
troduction of three one-credit required design courses which are taken in the
spring semester of the second, third and fourth years.

Students are introduced to formal analysis, design and specification methods
[Ken 96, Pet 87, DeM 78, Bro 75], and are given an opportunity to apply these
concepts twice (solving the second and third year design problems) before begin-
ning their senior project problem. Third year students have already taken the
second year design course, so there is some repetition of introductory analysis
and design methodology which most students find helpful as their understand-
ing of these tools and techniques matures. Also, third and fourth year design
students are taught some object-oriented design [Col 94, Boo 94] techniques.

In addition to providing experience in analysis and design, the courses also
have units which deal with professional conduct [ACM 98] and ethics.

2 The Design Course Sequence

The three design courses (second year, third year and fourth year) are scheduled
to meet at the same time so that certain course activities may be scheduled
to involve all three courses in a common meeting room. Each course has an
instructor who oversees the individual activities of each class, but the instructors
work together as a team to handle common course activities. When separate
activities are scheduled, each course meets with its instructor in its regularly
assigned classroom. Examples of common activities for all three courses include:

• guest lectures from industry professionals

• design presentations

• ethics presentations

Table 1 gives the course meeting schedule for the spring semester, 1998.

Scheduling all three courses to meet at the same time allows guest lecturers
from industry the opportunity to speak to all of the computer science majors.
Lecture topics have included professionalism, job opportunities and work envi-
ronments in various sectors of the computing industry.

Another benefit of this course scheduling decision is that all of the majors
have an opportunity to make their project presentations to an audience which

2



Class Period Emphasis: P - Professional, E - Ethical, D - Design
Class Month Day Topic

D January 14 1st 15 min, Common
Introduction to Design I
Introduction of 2nd and 3rd Year
Design Problem (Sophomores, Juniors)

D 21 Common - Senior Project Presentations
DE 28 1st Hour Common

Introduction to Design II
Return to individual Classrooms
Introduction of Design Problems

DE February 4 Ethics Presentation
E 11 Common - Junior Group Presentation
DP 18 1st Hour Common

Return to individual Classrooms
DE 25

E March 4 Common - Sophomore Group Presentation
11 Spring Break - No Classes!

DP 18 1st Hour Common - Speaker
Return to individual Classrooms

DE 25

DP April 1
D 8 Common

1st Hour Junior Design Presentations
2nd Hour, Sophomore Design Presentations

DP 15 1st Hour Common - Speaker
Return to individual Classrooms

DE 22
2nd Hour, Student Course Evaluations

Table 1: Class Meeting Schedule

includes second year students, third year students and fourth year students.
During the second class period, the senior students present their newly com-
pleted major project analyses, designs and prototypes. The sophomore and
junior students benefit from this experience by seeing presentations from more
experienced students and the second and third year students have an opportu-
nity, later in the semester, to present their analysis, design and implementation
of the second and third year design problems and have their presentations cri-
tiqued not only by the instructor but their upper class peers as well.

We have also found that grouping second, third and fourth year students
together for certain common experiences helps create a sense of group (computer
science majors) identity and tends to foster a friendly and beneficial competition
among members of this group of students.

3



The sophomore and junior course sections are partitioned into project groups
while the senior students may work in project teams or individually on their
senior projects; the choice is up to the senior student.

Some class periods involve ethics discussions and presentations. Second and
third year project teams plan presentations of ethical issues [Erm 97] in the com-
puting field. Project teams have successfully used skits, role playing and even
production of an ethics video. Presentation topics have ranged from software
piracy issues, to trade secrets, honesty and validity of project schedules.

2.1 Second Year Design Problem

The second year design problem used in the spring semester, 1998, involved the
design and implementation of the Unix sed command. This problem was chosen
because it was of moderate complexity but suitable for applying the standard
analysis and design techniques. The advantage we saw in picking this as the
design target was that sed was a program whose functionality and interface
were well documented and understood. It was easy for students to compare the
behavior of their implementation of sed with the behavior of the Unix version.
It should be emphasized that the students were directed not just to implement
their sed look-alike but to approach the implementation task as a full scale
design project. They were not allowed to code any module on which they had
not first completed a formal design.

2.2 Third Year Design Problem

The third year design problem used in the spring semester, 1998, involved the
design and implementation of an emulator for the MIPS R3000 processor. The
emulator was to execute the same bit patterns in memory that a real R3000 pro-
cessor would execute. The emulator was to be an instruction set emulator only.
This simplified the problem in that students did not need to design an emulation
of system buses and external processor interfaces. None of these students had
much (some had none) experience with assembly language or machine language
programming, so this project is designed, in part, to provide an opportunity for
students to learn more about the organization and operation of real computer
systems.

2.3 Fourth Year Design Problem

The fourth year design problem is selected by seniors in the fall semester when
they begin their capstone course. When they enter the fourth year design course,
the seniors have just completed the analysis, design and prototype implemen-
tation of their senior project in the fall semester and are expected to provide
leadership by example to the second and third year students in the common por-
tions of these three courses. Their formal presentations during the second week
of the course introduce the analysis and design phase in a polished professional
manner and provide examples for the younger, less mature students to follow.

4



The nature of the design problems picked by the seniors has varied from virtual
environment interfaces to Internet database mining query systems. Each fourth
year design project must be approved by the computer science department for
feasibility and level of effort before it is initiated. Many software systems have
been developed for industry with little complaint and much praise, while some,
of course, remain purely academic. In fact some systems are still in use after
more than 10 years. The software implementation, testing and final review is
required to be completed before a senior can graduate and is, therefore, the
primary focus of students in the fourth year design course. It has been our ex-
perience that the fourth year students regularly attend the course and provide
examples of leadership and insight to the younger students in the second and
third year design courses.

3 Student Course Evaluations

The first offering of these courses occurred in the spring semester 1998. The
instructors were interested in measuring student opinions about the courses in
an effort to improve the courses in subsequent offerings. A special assessment
form was developed and administered to the students, in addition to the stan-
dard university course evaluation form. Sixty students were enrolled in the three
courses and 95% of those participating in the course evaluations felt that over-
all, the course was very beneficial. Some of the positive aspects of the course
included:

• guest speakers

• sense of community (computer science)

• information on jobs

• group work skills

• learning more about systems design

• presentations

• learning about planning

• ethics

Some of the negative aspects of the course included:

• too much work for a 1 credit course

• courses seemed unorganized at times

• more interesting projects for sophomores and juniors

We intend to address these issues in an effort to improve the courses.

5



4 Conclusions

A problem arose in the design of the sophomore projects that surprised us and
will have to be addressed in the future. Although, the students were given
specific documentation on the operation of sed, the material turned to be nei-
ther specific or directed enough to prevent the students from universally making
the same mistake in their design. Every group produced programs that closely
matched the functionality of sed. But nearly every group did not see the neces-
sity of matching the interface of the Unix sed. We should have caught this but
the problem was that the design process we had them go through did not ade-
quately include a design of the interface. The solution is, obviously, to put more
emphasis on the interface in the requirements of the student’s design efforts. We
will certainly do that in the future.

The third year design class was told to not consider the problem of design-
ing a user interface for the simulator. A simple mechanism of reading startup
values for registers and memory from standard input before a simulation run
and writing register contents as well as memory to standard output at the end
of a simulation run was suggested. This approach allows suites of test files to
be developed and their result files to be compared with known correct results.
However, each project team elected to ignore this suggestion and each spent
excessive effort (at the expense of simulator completeness) to design (sometimes
elaborate) interactive simulator user interfaces. In future offerings, the instruc-
tors intend to enforce project specifications to avoid this kind of problem.

During the initial offering of these three courses, the instructors are enthu-
siastic about the benefits of sharing common activities between the courses and
plan to enhance this aspect of the courses. Much of the success of the second
and third year courses depend on the choice of an appropriate design problem.
We plan to develop a suite of different design problems so that the problems
are not repeated frequently. A variety of different Unix utility programs could
be used just as effectively as sed in the second year course. Other machine
architectures could be simulated in the third year design course.

References

[ACM 98] ACM, Code of Professional Conduct, from Bylaw 19, Bylaws of the
ACM, 1998.

[Boo 94] Booch, Grady, Object-Oriented Analysis and Design with Applica-

tions, The Benjamin/Cummings Publishing Company, Inc., 1994.

[Bro 75] Brooks, Frederick P., The Mythical Man-Month, Addison-Wesley
Publishing Company, Inc., 1975.

[Col 94] Coleman, Derek, Arnold, Patrick, Bodoff, Stephanie, Dollin, Chris,
Gilchrist, Helena, Hayes, Fiona and Jeremanaes, Paul, Object-

Oriented Development, The Fusion Method, Prentice Hall, 1994.

6



[DeM 78] De Marco, Tom, Structured Analysis and System Specification, Your-
dan, 1978.

[Erm 97] Ermann, Willams and Shauf, Computers, Ethics and Society, 2nd
Edition, Oxford University Press, 1997.

[Ken 96] Kendall, Penny A., Introduction to Systems Analysis & Design: A

Structured Approach, Irwin, 1996.

[Pet 87] Peters, Lawrence, Advanced Structured Analysis and Design, Prentice
Hall, 1987.

7


