
All S Y S T E M / ~ ~ O  functional characteristics having programming sig- 
nijicance are completely and concisely described. 

The  description, which i s  formal rather than verbal, i s  accomplished 
by a set of programs,  interacting  through common variables, used 
in conjunction  with  auxiliary tables. 

The language used in the programs involves operators and notation 
selected from  mathematics and logic, together with  additional opera- 
tors and  conventions defined to facilitate system description. 

Although the formal  description i s  complete and  self-contained, text 
i s  provided as an  aid to initial  study. 

Examples to illustrate the application of the formal  description are 
given in an  appendix. 

by A. D. Falkoff, K. E. Iverson, 
and E. H. Sussenguth 

This paper presents a precise formal description of a complete 
computer system, the IBM SYSTEM/~W. The description is func- 
tional: it describes the behavior of the machine as seen by the 
programmer, irrespective of any particular physical implemention, 
and expressly  specifies the  state of every register  or facility acces- 
sible to  the programmer  for every moment of system operation 
at which this information is actually available. 

The work  is  based on the  SYSTEM/^^^ manual' and on inter- 
pretations and revisions furnished by the system architects, some 
of whom have assisted in a thorough audit of the present de- 
scription.2 

The formal description comprises a  set of programs and 
auxiliary tables, all of which are grouped for easy cross-reference 
beginning on page 240.a These provide a complete,  self-contained 
description of the system which, after some familiarity with the 
notation  and programs is gained, will  be  found  more convenient 
for  reference than verbal description. An appendix furnishes 
examples of reference  use of the material. The remainder of the 
text is  designed primarily as  a guide and aid in the initial reading 
of the programs. 

The second and  third sections describe the central processing 
unit  and the  input/output system, respectively. The first section 
defines the notation employed and illustrates its use. Further 
illustrations may  be  found in the references 4, 5, 6. 
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The notation 

A system is described by a collection of interacting programs, each 
program consisting of a list of statements executed in an alterable, 
but specified,  sequence. The interaction between programs occurs 
through shared variables and  through direct alteration of the 
sequence in one program by another. 

Statements  are of two major types, called specification and 
branch. A specification statement incorporates a left-pointing 

~ arrow and implies that  its execution respecifies the value of the 
variable to  the left of the arrow by the value of the expression to 
the right of the arrow. Thus, if z and y have values 3 and 4, re- 
spectively, the execution of the specification statement 

z t z + ! /  
sets  the variable z to  the value 7. 

The  statements of a program are numbered serially from zero 
and  are executed in serial order except that  the execution of a 
branch statement may interrupt  the sequence.  One type of branch 
has the form 

I 

I 

-+ a, n 

and implies that Program a immediately executes its statement 
numbered n (to be referred to hereafter as line n) and proceeds 
from there. If the foregoing branch statement occurs in Program p 
(where /3 # a) ,  the sequence in Program /3 is not affected. For 
example, the execution of line 1 of IPL, the initial program load 
program (page 259) resets CPU, the central processing unit 
program, to  its line 0 but does not affect the sequence in IPL, 
which continues to line 2. 

In  the more familiar case the branch statement --$ a, n occurs 
in Program a, and the program name is elided to yield the form 
-+ n. Line 11 of the CPU program furnishes an example, causing 
a branch to one of lines 12,  14, 13, 17, or 19 according to which 
component of the vector (12, 14,  13, 17, 19) is selected  by the 
index n,. The  statement itself completely specses  the branch, 
and  the broken arrows from line 11 to each of its potential suc- 
cessors are provided merely as a graphic aid to comprehension. 

Solid arrows from line to line are, however,  used as  an alter- 
native specification of branching within a given program. An un- 
labelled arrow denotes an unconditional branch; thus line 12 of 
the CPU program is invariably followed  by line 16. A solid arrow 
labelled with a relation (R and  emanating from a line containing 
a  statement of the form 

x : y  

implies that  the branch arrow is  followed if and only if the relation 
x(Ry holds. Thus line 40 of the CPU is followed  by line 1 if pI4 = 0, 
and by line 25 if p,4 # 0. In following branch arrows that cross, 
the  path does not change direction at a crossing. 



Operation 

Vector 
Scalar 

Matrix 

Arithmetic 

Absolute value 
Floor 
Ceiling 
Residue modulo m 

And 
Or 

Negation 

Relation 
{ 

Reduction 
Row reduction 
Column reduction 
Matrix  product 

Base 10  value 

Base 2 value 

Representation 
{ 

base 10 
base 2 

Catenation 
Row catenation 
Compression 

vector 
row 
column 
row list 

Row list expansion 

Mask 

Indexing 3 

Maximum prefix 

Left  rotation 
Right  rotation 
Left  shift 
Right  shift 

Full 
Characteristic 
Prefix 
suffix 

Random 

Interval 

Notation@ 

Z 

X 

X 

+ - x +  

z t j x  

k t r x  
k t L x  

k c m l n  

w t u A u  
w t u  vu 
w t a  

w t z6ly 
w t - U  

w +- e(n)  
w +- ei(n) 
w +- a'(n) 
w +- d ( n )  
W C ?  

w t ?(n) 
w +- P(n) 
z +- t'(n) 

Definition@ 

x = xo, x I ,  . . ., X ( , ~ ) - I  u x  = numher of Components 

P = ith row vector 

Usual definitions All operations are extended 

z = maximum of z and -2 dimensionally  compatible 
component-by-component to 

k < z < k + l  vectors and matrices. If one 

is treated  as  a  vector or ma- 
trix of appropriate dimension 
whose  components  are a11 

' 

of the operands is  a scalar, it  

I L  = 1 and u = 1 equal. Examples: 
u = 1   o r v = 1  Z + - X + Y  

z t x x  y 
W e  U A  V 

z6ly is true w + - x  # y 
w t x  < y 

z = xo 0 xI  0 ... 0 x ~ , ~ ) - ~  0 is  any binary operator or 
t i  ZE O/X' relation. The case X Y is 
I' = o/x, 
q = OI/X' 0 2  Yj 

the  ordinary  matrix product. 
The  expressions X 2 y, 
x :: Y, and x :: yare  treated 
as  in  matrix algebra. Thus 
X y  is  the scalar product. 

J. - 

z is the base-10 value of the vector x 
z is  the base-2 value of the vector u 
z. = 1 u' 

1 -  

vz = n a n d l O L z  = l O n I j  

u u = n a n d 1 u = 2 " 1 j  

2, = x ;  2 1  = y 
z = xo, XI, ... I Xbx)-I, Yo, Y1, +.. , Y ( q - 1  

Z i  = u/X; 
z obtained  by suppressing from x each xi for which u; = 0 

z i  = x i ;  j = ('x) I i + k cyclic left  (right)  rotation of 

z = o k A k r x  left  (right)  shift bringing zeros 
z = i t k A k l x  into  evacuated positions 

wi  = 1 
wi = (V/ i  = j )  
w< = (i < j )  

w 5 0 or 1 (arbitrary) from context. 
wi = 0 or 1 
wi = 0 or 1 but +/w = j 
z = j ,  j + 1, ... , j + n - 1  

2. , = - x . .  , , j  = ( Y X )  I i - k x by k places. i 
I Dimension of w is n. The  n . - ((n - i) I j )  may be omitted if it  is clear w .  = 
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Table 1 (Continued) 
~ 

@ The  notation for each operation is only the por- 
tion to  the  right of the specification arrow;  the 

@ Throughoui  this  paper  elementary  operations 
variable to  the left  facilitates definition. 

occurring in compound expressions are,  except 
as  indicated  by  parentheses,  executed  in  strict 
order from  right  to  left.  In  this  table  the sym- 
bol = is used instead of = to denote  equality, 
since the  latter  denotes  an  operator of thc class 
a. 

@ The following arguments  are used in  the 
examples: 

= 7, -6, 5, -4, 3 
b = 3, 2, 1 
c = 0 , 0 , 1 , 1 , 0 , 1 , 1 , 1  
n = any logical vector 

(ni = Oar 1)  
p = 1, 0, 1, 0, 1 

r E +, -, x, + 
q = 1,0,  1 

b + q = 4 , 2 , 2  

b X b = 9 , 4 , 1  
b ro q = 4, 2, 2 

I q - 3 3 2 , 3 , 2  

r-3.G = -3 
7121 = 0  

q A PO = 0, 0, 1 
q v PO = 1,1 ,1  

b < A, = 0, 0, 1 
2 < AI = 0, 0, 1 

1 - 3 . 6  = -4 

-q A Po = c j  V PO = 1,1,0 

P' = q 
Ac = 0, 1, 2 

a - Ao = 7, -7, 3, -7, -1  
I a - Ao = 7,  7, 3, 7, 1 

La + 2 = 3, -3, 2, -2 ,  1 r a  + 2 = 4, -3 ,3 ,  - 2 , 2  

q A 2 1 b = q = A : A q  
q V 2 1 b = q  

2 j a " 2 1 a x a = 1 , 0 , 1 , 0 , 1  

q o # p = p = - q O = p  

+/A = 10, 15, 20 
+/a = 5 

+ / / A  = 3, G, 9, 12,  15 

P : A =  [ 2 4 6 8 1 0 1  
3 5 7 9 1 1  

#/P = 0 , 0  
Z / / P  = 1,1 ,0  
A / n  = -V/-n 

r,/a = 2520 A/p = - V/-P 

X/A = 0,  120, 720 
#/n = N = /"n 

#/p = 2 I +/p = - =/j 

P = ( 0 , l )  0 ( 1 , O )  0 ( 1 , l )  = t'(2) 0 tO(2) @ cO,l(2) 
A = 1'(3) @ l'(3) 0 1~(3)  0 t3(3) 0 1'(3) 

~ , b ~ l , O , l , 0 , 1 , 3 , 2 , 1   q / b = 3 , 1  

PIA = [? = q / / A  = [ 2  ,] = Ao,2 

(2 I Ao)/Al = 2, 4 ( a  > O)/a  = 7,5 ,3  
vq/b + / q  2 

0 1 2 3 4  

12 4 GJ 

E / A - O 0 , 1 , 2 , 3 , 4 , 1 , 2 , 3 , 1 , 5 , 2 , 3 , 4 , 5 , G  E(4, 2)\a,  b = c "' -f 
L2 1J 

/a;  p; An/  = 0, - G ,  2, -4, -1 /b; Pu; q/  = q 
0 0 . a . ~  = 7, -4, - G  b,, = 2, 3, 2 
, / e = 1 , 1 , 0 , 0 , 0 , 0 , 0 , 0  ~ / p - 1 , 0 , 0 , 0 , 0  

a,?(2)  = 5, -4 

+/,/E = number of leading zeros in n = vn or indcx of lcading 1 in n 

2 t A' = 3, 4, 5,  1, 2 
3 1 A' = 3,  4, 5,  1, 2 (2 1 .J(S))/C = 1, 1, 0 
2 a A' = 3, 4, 5, 0, 0 

2 7 AI = 0,  0, 0, 1, 2 

2 T p = 1, 0, 1, 1, 0 

- 

4 4 )  = 1, 1, 1, 1 C(4) = 0, 0, 0, 0 ?(4) = I ,  1, 0, 1 

.2(5) = 1, 1, 0, 0, 0 a2(5) /a  e 7, "6 (1 1 u2(5))/a E -6,5 
d ( 5 )  = 0, 0, 0, 1, 1 0 3 / @ / c  = 1, 0, 1 

e'.2.4(5) = 0, 1, 1, 0, 1 ZA2(8) = 0,0, 1, 1, 1, 1, 1, 0 

12(5) = 2, 3, 4,  5, 6 c,?(5) = I ,  1, 0, 1, 1 
?(2)  = 0, 0 or 0, 1 or 1, 0 or I ,  1 

P ( 3 )  = 0, 1, 1 or 1, 0, 1 or 1, 1, 0 (0 5 1.7 ( k ) )  A ((I 2 (k)) < Z X )  = 1 
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combined in the form 

z : y + x  

implying that y is specified  by x and is then compared with z to 
determine a branch. 

The operand  types  and elementary operators employed are 
defined in  Table 1, together  with examples. These examples permit ~ 

Table 1 to be studied by itself  before  proceeding to  the more 
complex expressions in the programs. 

In  a compound expression such as 

( X X ~ + Z ) - ~ A - T  

the order of execution of the elementary operations is determined 
by parentheses in the usual way and  any remaining ambiguity 
is resolved by proceeding from right to left, no priorities being 
accorded to multiplication or  any  other operator.  This convention 
applies, in particular, to  Table 1 itself. 

The convenience of the right-to-left order of execution is 
indicated by the paucity of parentheses in the programs. As an 
example, consider line 5 of the CPU program: 

a”/# + (24) T 2  +  IO''/^. 
Proceeding from right to left, the  last 24 bits of the vector p 
are selected, the base-2 value of the resulting vector is taken  and 
added to 2, and finally the 24-bit representation of the sum 
respecifies the last 24 bits of p .  

In  complex  logical  expressions, the right-to-left convention 
permits convenient interpretation from left to  right; for example, 
the expression 

p V q V ~ A s A t = 3  

is interpreted as indicated by the  tree shown in Figure 1. 
No elision of operator symbols is permitted; consequently, the 

names of variables can, without  ambiguity, consist of any number 
of alphabetic  characters, including spaces. For  brevity, single 
characters are used  for all variables except for those which occur 
infrequently, such as  the panel switches occurring in CP, the 
control panel program. All variable names are in italics: light- 
face lower case for scalars, boldface  lower  case for vectors, and 

Tree representation of boldface upper case for matrices. Literal  alphabetic values (e.g., 
“stop”  and  “operate” on lines 12 and 13 of the CP program) are 
denoted by roman type. 

In  order  to reduce the number of variable symbols assigned 
to local counters  and  other  intermediate variables, certain symbols 
(including i, j ,  k, i, j ,  and k) will  be  used only as local variables, 
i.e., the value of any such variable will  be relevant only in the 
program in which it occurs and will not affect or be affected by 
any variable of the same name occurring in  another program. 
A family of matrices will be denoted by a pre-superscript as, for 

I 

- --lpound statement 

p x  

t 
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example, 'J,  in line 20 of MAC' (j; k) ,  the memory access program. 
The system description comprises a  set of tables  and programs. 

Programs include system programs and defined  operations. All 
system programs operate concurrently and continuously, with 
precisely one line active  in each program a t  all times. This  active 
line will often be a dwell of the form shown in  Figure 2. The 
program breaks from  the dwell only when the variable x is set 
to a nonzero value by some other program in the system. 

A defined operation is a program which operates only when 
invoked by some other program. It can be distinguished from a 
system program by the presence of exit arrows. When called, a 
defined operation constitutes the active line of the program it is 
serving, and will  itself have precisely one line active a t  a  time 
until an exit is reached. 

Variables occurring in the name of a defined operation (for 
example, j and k in the case of M A C i ( j ;  k ) )  are dummy variables 
whose values are determined by the values of the variables occur- 
ring in any particular use of the defined operation. Thus,  the 
performance of line d3 of EXC (that is, MAC' (aa, 2, f ,  d; a"/RU1))  
executes MAC' with j = (az, 2, f, d) and with k = al' /Ral .  
A  study of MAC will  show that  this causes 2 bytes of data,  fetched 
from the memory location starting a t  a2, to be transferred to  the 
last sixteen positions of the general register whose index is a,. 

All components of the formal system  are listed in Table 2. 
The  text  and figures, and  the tables  not listed, are  intended for 
exposition only. 

Table 2 CornDonents of formal descriotion 

Figure 2 Dwell 

1 x:o 

System programs 

BMT Burst-mode  timer 
CHc Channels 
CP Control  panel 
CPU Central processing unit 
EIE External  interruption  entry 
EP Emergency  pull 
ES External signals 

page 
261 
261 
259 
259 
2 59 
2 59 
2 59 

page 
H F C c  Hardware failure in channels 261 
ZOZE 1/0 interruption  entry 261 
ZPL Initial program  load 259 
MCZE Machine check interruption  entry 259 
T Timer 259 
TOLE Time-out  limiters  261 
TU Timer  update 259 

Defined  operations 
DELAY 
DIAGNOSE 
EXC Instruction execution 2 40 POWER-ON SEQUENCE 
MAC'(j; k) Memory access 2 59 RESET 2 59 
MALFUNCTION  RESET 

Page page 
MODEL-DEPENDENT RESET 
POWER-OFF SEQUENCE 

* 
* * 

* SYSTEM STOP * 

* These  operat,ions  are not detailed in this  description. 

Table 3 System  reference table for programs and variables: symbol and dimension columns only 250 

Table 5 Navigation matrix N a n d  reference table: first 11 columns (navigation matrix) only 256 

Table  6  Operation decoding matrix 0: numerical  entries only 258 
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Table 4 Central  processing  unit 
program segments 

CPU 
Functions lines 

Initial-program-load 0 

Instruction fetch 1-7 
Instruction interpre- 8-10 

Effective address cal- 11-19 

Instruction execution 20-21 
Entry of program 22-24 

Interruption service 25-33 
Single-step, stop, and 34-36 

dwell 

tation 

culation 

interruption 

wait tests 

CPU program 

instruction fetch 
(lines 1-7) 

instruction 
interpretation 
(lines 8-10) 

204 

The  central  processing unit 
The central processing system comprises the nine system pro- 
grams shown  on  page 259, and the defined operations listed in 
Table 2. An overall view of the system can be  gained from Table 3, 
which lists all variables occurring in the programs, indicates the 
meaning or significance of each symbol and the dimensions of 
each vector or matrix variable, and provides reference to  every 
program statement (or entire program) in which  each variable is 
specified or used. Since the range of each variable is readily de- 
duced  from its use in  the programs, ranges are  not explicitly 
specified in the table. Most of the variables are logical (i.e., have 
the range 0,  l), but some, such as the components of a, m, and 
N, are  not.  The ranges of the components of some arrays (e.g., N )  
are  not  all alike. 

Although Table 3 is  designed  for  reference, it will  also repay 
careful initial study. It shows, for example, that  the memory M 
behaves as  a 9-bit wide  memory of at  most 224 8-bit bytes with 
parity, that each  block of 2" bytes of M may be protected by a 
4-bit protection key K ' ,  and that 16 single-word general registers 
R and  4 double-word floating-point registers F are provided. All 
of the more detailed information on the  treatment of the variables 
(such as the formats used in instruction addresses) is immediately 
available in the programs. 

The core of the system is the CPU program, which describes the 
sequencing and execution of instructions and the servicing of 
interruptions. The functional segments of this program are listed 
in  Table 4. 

An instruction may  be 1, 2, or 3 half-words  long and is fetched 
by lines 3-7 (using the M A C  operation detailed on  page 259), two 
bytes at a time, from  memory locations specified  by the instruction 
counter represented by ""/pa, the last 24 bits of the program  status 
word p .  For each  half-word fetched, the instruction  length code 
(p32  ,,,) is augmented by 1 (line 4) and the instruction address by 2. 
The sum of the first 2 bits of the first half-word  plus 1 determines 
(on  line 7) the number of half-words fetched. 

Line 2 enters  a specification  exception if the protection feature 
is not installed (m, = 0) and  any of positions 8-11 of p are nonzero. 
Addressing and specification  exceptions are detected by lines 7-8 
of the M A C  operation and are entered (MAC line  15) into ts  
and is, respectively. Either of these errors subsequently causes a 
branch from CPU line 6 to line  24, skipping the instruction execu- 
tion phase and any remaining portion of the fetch. 

If the fetch concludes without error, lines 8-9 interpret the 
instruction by selecting  from the navigation matrix N (Table 5 )  
a row N "  to specify the vector n used in the subsequent control 
of the instruction execution  phase. The row  of N selected  is de- 
termined by the particular element of the operation decoding 
matrix 0 (Table 6) selected by the 8-bit operation code in the 
first byte of the instruction. Table 6 displays the mnemonics 

A. D. FALKOFF,  K. E. IVERSON, AND E. H.  SUSSENGUTH 



used  for the instructions as well as  the index to N, which  is the 
only formal part of the matrix 0. Similarly, Table 5 includes 
much informal information in addition to the formal specification 
of the matrix N. 

Except for its first two  components, the navigation vector n 
is of formal interest only, since the sequences it determines in 
the CPU program  (line 11) and in the EXC operation are also 
indicated informally by broken-line arrows and labels. If the 
8-bit operation code  corresponds to no installed operation, then 
no = 0 and an operation exception exists (line lo); if the operation 
is  privileged (n, = 1) and if fils = 1 (that is, the processor  is 
in the problem stale as opposed to the supervisor state), a privileged 
operation exception exists. 

The manner of specifying the operands of an instruction is a 
function of the format of that instruction. Most instructions specify 
two operands; the efective addresses of the first and second operands 
are computed as a, and a,, respectively. Normally, the addresses 
are used to select  two  general registers (RR format), a register 
and storage in memory (RS), a register and storage with a second 
register for indexing (RX), two areas in storage (SS) or storage 
and immediate  data from the instruction itself (SI), all as indicated 
in Table 7. However,  since many exceptions exist, Table 7 should 
be  considered as  a guide only, all operands being  explicitly de- 
fined in EXC.  Some instructions in the RS format use a  third 
address a8. A terminal R and a terminal I in instruction mnemonics 
usually indicate the RR and SI formats, respectively. 

For instructions in the SS format, the lengths of the operands 
are defined by line 17; I ,  + 1 and I ,  + 1 are the lengths (in bytes) 
of the first and second operands, and Io  + 1 is the length for  some 
instructions in which a single length is required. Again, the matrix 
N (and hence n) provides (via CPU line 11) the formal specifica- 
tion of the format used  by  each instruction. 

The calculation of the effective addresses is straightforward 
and will  be discussed only for the RX and RS cases. In  the  latter 
case, the second operand address a2 is determined by the second 
half-word of the instruction  and is  formed by adding to  the value 
of its last 12 bits ( Lml'/Z1) the value of the general register  selected 
by its first 4 bits (I RLU*'"), unless the zeroth register is selected 
(0 = La4/Z1), in which  case  zero  is added. Finally, the residue of 
this sum modulo zz4 specifies a,. The first and third operand ad- 
dresses are determined by the values of groups of 4 bits in the first 
half-word, La4/m4/Zo and lw4/Z0,  respectively. The RX format 
differs only in that  the index quantity contained in the general 
register  selected by the last 4 bits of the first half-word 
is (again, unless the zeroth register is selected) also added to  the 
sum used to determine a,, and in that  the third address is not 
applicable. 

The calculation of the effective address is immediately followed 
by a use of the defined operation E X C  on line 20. This operation 
begins with a branch from line 0 to  line n3, that is, to  the segment 
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effective address 
calculation 
(lines 11-19) 

instruction 
execution 
(lines 20-21) 
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of the EXC operation  appropriate  to the particular  instruction 
being executed. For example, if the instruction is LR, then n3 
is specified by N,?', and n3 = do. This is  also indicated informally 
by the "LR" written to  the left of line do. 

To continue the example, line do specifies the value of general 
register R"' by the value of Ras, and  the exit arrow on the same 
line indicates that EXC is complete. 

The execute instruction (EX) beginning on line bo, furnishes a 
somewhat more complex example of the execution phase. Except 
that  the length code p32,33 and  the instruction counter are 
not  disturbed, lines bo-3 are like the instruction  fetch (CPU 3-7) 
and therefore load the instruction register with the  data beginning 
a t  byte address a2 in memory. Since n3 = bo in  this case, line 21 
of CPU subsequently causes (unless a program interruption  has 
been entered  in t ,  either on line b5 or by use of MAC on line bl)  
a  branch to line 8, thus interpreting  and executing the instruction 
just fetched by the EX instruction,  without  disturbing the in- 
struction  counter. If this subject  instruction is itself an EX, it has 
the operation code 0100 0100, and line b5 therefore enters an 
execute exception and line 21 does not cause a branch, thus 
aborting  the execution of the subject EX instruction. The phrase 
l5 A l6 in line b5 prevents  a spurious execute exception if address- 
ing or specification exceptions have  already occurred. 

If the first operand address of EX is nonzero, then line b4  will 
or the  last  byte of general register P with the  last  byte of the 
first half-word of the subject  instruction. This permits a pro- 
grammer to specify such parameters as length, index, or im- 
mediate data in the subject  instruction indirectly via R"'. 

If no program interruption  has been generated by the preceding 
entry of program fetch and execution, each component of t will be zero, and lines 
interruption 23 and 24  will  be skipped. Otherwise line 24 presents the inter- 
(lines 22-24) ruption  by  setting h, to 1 and entering an appropriate code in 

positions 16-31 of p .  Thus, if the  interruption is occasioned by an 
addressing exception, ta = 1, the expression t /  1" yields 5, and 
its base 2  representation (namely, 0000  0000 0000 0101) is 
entered in p .  If multiple causes of program interruption occur, 
then one of the appropriate codes  will  be selected at random  and 
stored in p .  For example, if tg  = te  = 1, then t /  r" = (5, 6) and 
?'/(5, 6) selects one of 5 and 6. 

If the cause of the program interruption  entry is neither t4 
nor t5 (that is, neither a  protection nor an addressing exception), 
then  the instruction  length code p32,33 is unchanged by line 23; 
otherwise line 23 may set  the length code to zero. 

Other  types of interruptions are entered  in  other components 
of h by other programs (listed in the reference column of Table 3) 
whose details will  be considered later. 

An interruption service places an appropriate code in  bits 
interruption 16-31 of p ,  stores p in memory at  one of five  fixed locations deter- 
service mined by the  type of interruption (line 31), and finally respecifies 
(lines 25-33) p (line 32) from one of five other fixed memory locations. Since 
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this respecifies the instruction  counter 024/p, it occasions an 
alteration  in  the normal sequence of instructions. 

Interruption servicing is skipped if the expression 

V / h  A (0, 1, 1, $71 (a7/#> ’ 8 )  

{line 25) has the value zero. The vector (0, 1, 1, p7, (a7/#) B,) 
is therefore a mask which causes certain components of h to be 
ignored. Thus h, (machine check interruption) is always ignored 
at this  point, h, and h, (program and supervisor call interruptions) 
never are, h, (external) is ignored if p7 = 0, and h, (I/O) is ignored 
unless an interruption is being presented (in B,) by one of the 
channels for which the corresponding mask bit  in a’/$ is set  to 1. 

If there is an acceptable interruption, then line 26 determines 
h as  the index (in h) of the  interruption  to be serviced. The queue 
discipline in h is not first-in first-out but  rather  strict  priority 
(according to position in h) of the unmasked components of h 
presented. 

If h = 0, 3, or 4 (machine check, external, or I/O), then go 
is set  to signal the appropriate program (MCIE, EIE,  or IOIE) 
to enter the appropriate data in  bits 16-31 of p ,  while the CPU 
program dwells on line 28. Then  the accepted interruption indi- 
cation is reset on line 29. In certain  situations, an 1/0 channel 
is unable to present an indicated interruption at  the time it is 
accepted  by the CPU; this is signalled by the IOIE program by 
setting gl to 1 before resetting go to 0, thus aborting the interrup- 
tion  by the branch on line 30. In  any  event, line 25 is executed 
again so that all outstanding unmasked interruptions  are serviced 
in turn before continuing to line 34. 

Whenever the program status word p is loaded from memory, 
bits 16-33 (the  interruption code and  instruction  length code) 
are indeterminate as shown by CPU 33, I P L  8, and EXC a26. 

If the operating state is set  to “stop”,  then the CPU dwells 
on line 35 with the manual Eight ‘(on”. Events which set the operat- 
ing state are listed in Table 3. These include line 34 of the CPU 
which sets it to “stop” if the  rate switch is not  set  to ‘(process”, 
e.g., if set to “single-step”. 

Subsequent  to the dwell on line 35, the behavior is determined 
by the wait  bit pi4; if $14 = 0, the wait light is turned “off” and  the 
next instruction  fetch is begun (branch from line 36 to line 1);  
if p14 = 1, the wait  light is turned “on” and  the interruption 
service phase is entered a t  line 25. Hence if PI, = 1, the CPU 
“waits”, executing no further  instructions  until an external or 
1/0 interruption or initial program load replaces p with a  value 
such that p14 = 0. 

The computer memory is initially loaded by the I P L  program 
which resets (line 1) the CPU to  the dwell a t  line 0, where it re- 
mains until the loading (effected by an 1/0 channel) is complete, 
as signalled by the  setting of the variable i p l  to zero. The  branch to 
line 25 shows that when loading is complete, operation is resumed 
with interruption service rather  than with the instruction  fetch. 
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memoly access The M A C  operation, which occurs in  the instruction  fetch  and 
operation throughout the EXC operation, serves to fetch from or store 

in memory a specified number of bytes beginning at a specified 
address. Because it incorporates certain tests  and  other functions, 
it warrants a detailed  scrutiny. 

The general form of the M A C  operation is M A C i  ( j ;  k ) ,  where 
i specifies one of nine identical but independent MAC programs, 
i = 9 for the CPU memory-access, i = 8 for the interval  timer, 
and i = 0-6 for the channels; where k is the vector involved 
in the transfer to or from memory; and where j is a four-com- 
ponent  vector specifying the address in memory ( jo), the number 
of bytes  transferred ( j l ) ,  the performance of a  fetch ( j ,  = f) 
or store ( j 2  = s), and  the  type of address being treated ( j3  = d 
for data address, i for instruction address, g for a machine- 
generated [;.e.,  fixed] address, and h for hold, which prevents 
any of the  other MAC’ programs from operating  until the cur- 
rent M A C i  program has been used again  with j ,  # h). 

Since the several MAC’ programs all use the same memory, 
memoly access they  must observe a queue discipline. It is controlled by the 
priority queue vector q and  the request vector r. When MAC’ is invoked 

by any system program (e.g., MAC’ in CPU line 3), then a re- 
quest for service is entered (line 0)  by setting ri to 1. If the queue 
is empty,  the request is also entered  in qi. In  any case, the MAC’ 
program dwells on line 1 until i is recognized as  the “first” non- 
zero entry in the queue. The queue discipline is not first-in first- 
out,  but is in order by position in a permutation of q specified 
by the vector rank, which  gives priority according to  the index i, 
except that i = 0 (the multiplexor channel) may be assigned out of 
order. This implies that  the channels have  priority over the interval 
timer which has priority over the CPU. 

Any request for service which is not entered  dircctly in q on 
line 0 is entered from r by line 24. If j 3  # h,  then q is respecified 
by Y (with ri already  set to zero by line 2) except that a CPU re- 
quest is entered  in qD only if w = 0. The variable w is controlled 
(line 2) only by MAC’, the timer  update memory-access, and it 
remains a t  0 or 1 according to whether the last use of MAC8 was 
for  a  store or for a fetch. This excludes the CPU from memory 
during the  updating of the interval counter (TU lines 1, 3) and 
prevents the  inadvertent overwriting (by TU line 3) of a new 
setting of the  interval  timer  counter by a CPU “store”  instruction. 
However, the use of memory by 1/0 is not excluded by w. 

If j 3  = h, line 24 leaves q unchanged and therefore prevents 
any  other M A C  from being executed until  after  the  next use of the 
same M A C  with j ,  # h.  The use of j ,  = h occurs only in the 
instruction TS (test  and  set)  as follows (EXC lines a29, 30) 

MACg(a, ,  1, f ,  h; u) 
MAC’(a1, I, S, d; e (8)). 

Thus, the addressed byte is set immediately following a  test of 
its value, before any other access to memory can occur. 
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The first 2’’ bytes of memory are normally used for special address 
purposes by the machine (e.g., 48,  40,  32,  24, and 56 are used to modification 
store fi  on line 31 of the CPU program) and by the supervisory and  comparison 
program. Any address j o  in this region is automatically prefixed 
(MAC lines 3,4) by a 12-bit prefix selected from either the 
main or alternate prefix (having wired-in values) according to 
the  setting of the prejix trigger, which is set  during the initial 
program loading ( IPL line 3). It must be emphasized that every 
memory address (including those used in I/O) below 212 is modified 

’ in  this way, although this  fact will not be referred to again  in 
the  text. 

The effect of line 6 is to  set  the operating state to “stop” if 
all but  the  last  bits of the address switch on the console agree 
with the specified address j,, but line 6 is skipped if the address 
compare  switch is on “normal” or if it is set  to “instruction” and 
j ,  does not specify that j o  is an instruction address. 

specification exception is indicated (line 7) if the address j o  is 
not divisible by the number of bytes jl. An addressing exception 
is indicated (line 8) if the address j ,  exceeds the size of memory, 
and  in  this  event  the  address j o  is respecified for all  subsequent 
purposes by an  arbitrary value  within the range of the memory 
(line 9). A  protection exception is indicated (lines l0,l l)  if the 
machine has  the protection  feature (m, = 1) and  the memory- 
access is of the store data  type ( j z  .3 = s, d)  and  the keys uo and 
u1 differ and neither is zero, where uo is the protection key in 
the memory bank addressed by j,, and u, is either the protection 
key in p (in the case of a CPU memory-access) or the protection 
key in  the  appropriate channel address word (in an 1/0 memory- 
access). 

If there  are multiple exceptions, line 13 chooses  some one of 
them to  enter  into s and  thence  into the program exceptions 
vector 1 (in the case of CPU or timer memory-access) or in the 
channel status word S’ (in the case  of a channel). If the error is 
a specification exception (so = 1) or if the operation is a store, 
then line 17 skips all  further  steps except to respecify the queue 
(line 24). Otherwise, j.e., on a fetch  operation with an addressing 
exception, in which the address j ,  has been respecified arbitrarily 
(line 9), the (meaningless) fetch from memory proceeds. 

If no exception occurs, or if a machine-generated address is 
being treated, line 12 skips the  entry of exceptions, branching 
directly to line 18 which  chooses line 23 for store and 19 for fetch. 
Line 23 stores the specified vector k together with the appropriate 
parity  bits  in  the specified  rows of M .  Line 19 fetches the appro- 
priate rows of M to specify the matrix ‘J.  The row list of the  last 8 
columns of ‘J specifies k, and  the  parity bits are available (e.g. to 
the channel) in ‘J,. In  the case of a CPU or a TU memory-access, 
line 22 checks the  parity of the  data fetched from memory and 
signals an error by setting component 9 or 8 of the machine failure 
vector f. 

Lines 7-11 specify three  types of exception conditions. A exceptions 

~ 



other central 
processing system 
programs 

control panel and 
emergency pull 
programs 

external 
interruption entry 
program 

machine check 
interruption entry 
program 

The details of the control panel, the  interruption entries, the 
interval  timer, the initial program load, and  the EXC operation 
will  now  be treated in that order.  At  this point, however, the 
reader should be equally prepared to approach them in any  other 
desired order. It must be  re-emphasized that all system programs, 
including the CPU program, run concurrently. 

The normal dwell of the CP program (lines 4,5) is broken by 
depression of the power-o$ key (line 4) or by depression of a con- 
sole button bi or by a pulse on one of the  IPL in-lines e4 or e,. 
Line 6 determines b as  the index (with respect to e4, e,, b) of the 
signal to be serviced, line 7 dwells until the signal returns to zero, 
and line 8 branches to  the appropriate program segment. 

The  last four buttons  are ineffective if the machine is in the 
"operate" state (line 13), but otherwise perform the straight- 
forward functions detailed in lines 15-25. The stop key (line 12) 
causes the CPU to dwell the next time it reaches line 35; the 
interrupt key sets  the console interrupt which (as indicated in 
Table 3) is used in the E I E  program to enter an external  inter- 
ruption; the  IPL in-lines, the load key and  the reset key all reset 
the system (line 9), and all but  the  latter  set ipl ,  releasing the IPL  
program from its normal dwell. 

The EP program serves to stop  the  entire system until  the 
emergency  pull  switch is restored, whereupon it sets  the CP program 
to line 1, to dwell until  the power-on key is depressed. 

The timing signal in-lines "'/E3 are momentary pulses (fr to 1 
microsecond) supplied from some data transmission line, perhaps 
the  output signals E' of some co-operating computer. The E S  
program shows the latches external signals being set by "'/Ea. 
Similarly, E I E  shows the timer  alarm, console interrupt, and 
external signals being entered as interruptions. If any of these 
signals appear, E I E  line 0 sets h,. The CPU program will event- 
ually recognize h, and  set h = 3 and go = 1 (lines 26,27), thus 
breaking the dwell on lines 0 and 1 of the E I E  program. Line 2 
then enters the eight external  interruptions in p and line 3 resets 
those signals entered, but does not reset any which may have 
come on during the brief interval since the  entry operation on 
the preceding line. The reset of go on line 4 frees the CPU from 
its dwell on line 28. 

The  entry of a machine check (i.e., a hardware failure) is 
radically different, since, after  setting h,, it preempts the CPU 
by causing a branch to CPU line 26. The MCIE program also 
sends a momentary signal on the machine-check out-line e, 
(which may be connected as  an  input  to some co-operating com- 
puter),  enters zeros as  the interruption code in p ,  performs a 
diagnosis, stores  certain machine registers (referred to as cpu 
status) in memory beginning at byte 128, and finally resets go 
(to free the CPU), the failure vector f, and  any  outstanding 
program and supervisor call interruptions  (but  not external or 
1/0 interruptions). The machine failure is serviced (line 0) only 
when the machine check mask p I 3  = 1. 
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Indications of machine failure are  entered  in f from various 
sources, but only two are shown in  this description. One occurs 
on line 4 of HFC for hardware failures in  certain 1/0 channels. 
The second occurs on line 22 of MAC, and  detects  parity er- 
rors  in data fetched from memory for the CPU or the  interval 
timer. Parity checks are also made on R, F, and p ,  and a t  other 
points, but none of these are shown explicitly in the programs. 
Their inclusion would merely encumber the description. 

The TU program is activated by the signal tick from the T timer  and 
program, but only if the CPU is not  stopped at  the dwell on lines timer  update 
36-37, the rate  switch is set to “process1’, and an RDD (read direct) Programs 
instruction is not  awaiting a hold-in signal on e,. When acti- 
vated, line 1 fetches the four bytes representing the interval 
timer  counter, line 2 decreases it (modulo 232) by an amount 
dependent on the timer frequency which drives the T program, 
line 3 restores the new count to memory, and line 4 sets  the 
timer alarm if the count  has passed through zero. The execution 
of MACs on lines 1 and 3 will, of course, be deferred until  all 
1/0 requests for memory access have been serviced. Moreover, 
no CPU memory-access can  intervene between TU lines 1 and 3 
(see MAC lines 2, 24). 

10) becomes 1, whereupon the CPU is forced to its dwell at line 0, Program 
and  the load  light is turned “on”. The  further behavior depends 
upon which agency (IPL in-lines or load key) initiated the action. 
If it were the load key, the program would dwell (line 5) awaiting 
a satisfactory error-free channel-end signal from the 1/0 unit 
designated by the  setting of the load unit switch, store load unit 
switch in memory a t  address 2, and load p from memory a t  address 
0. If the initiating agency were one of the  IPL in-lines, only the 
loading of p would  be performed. 

If a machine failure occurs in the loading, the I P L  program 
dwells on line 9, regardless of the value of the machine check 
mask; otherwise, line 10 turns  the load  light to “off”, the operating 
state to “operate”, and ipl to zero. The role of 1/0 in the initial 
program load will be clarified in  the  third section; here it will 
suffice to remark that  the 1/0 channels are  reset  by the RESET 
occurring on line 9 of the CP program, and  the 1/0 unit designated 
by the load unit switch then begins to perform a read. 

The I P L  program dwells at  line 0 until i p l  (set only by CP line initial-program-load 

The 143 machine instructions described by the defined operation instruction 
EXC are grouped in twelve families. Because there is little  inter- execution 
action  with  other programs, the interpretation is straightforward, operation 
and  textual comment will therefore be limited to  the more difficult 
cases. 

Table 5 can facilitate reference in  many ways. The final 
columns indicate the  effect of each type of interruption on each 
instruction; it may suppress the instruction so that none of the 
result variables are affected, terminate it after some but  not neces- 



considered unreliable), or allow it  to complete. Since a protection 
exception t4 is  occasioned  only by storing in memory, the cor- 
responding  column of Table 5 can be  used to identify all "store" 
type instructions; similarly, column t5  identifies all instructions 
which refer to memory. Other columns of Table 5 identify those 
instructions which set the condition code,  general registers, and 
floating point registers. 

SSM (set system mask) is a privileged operation executable 
status switching, only in the supervisor mode (PIS = 0) as shown  by the exit on 
readjwrite direct, line a1 and the  setting of i, on CPU line 10. ISK (insert storage key) 
diagnose and SSK (set storage key) are also  privileged and are also sup- 
(lines a0-34) pressed  (line a4) if the protection feature is not installed (that is, 

mo = 0 and hence t ,  = Eo = Tii, = l), if the address Ioz4/PS 
is outside the range of the memory, or if any of the last 4 bits 
of Pa are nonzero. 

These last 4 bits of Raa are not otherwise relevant to  ISK 
and SSK (see  lines a6, 7) and the specification error test is intended 
to prevent the programmer from  using them for other purposes, 
and hence to reserve them for use in possible  modifications of 
S Y S T E M / ~ ~ ,  such as  an extension of the length of the protection 
keys. The devious programmer can, of course,  use a nonzero 
final half-byte in Pa to force a specification exception, but  the 
prudent programmer will not. Similar tests will  be found else- 
where  (e.g., on the format of channel commands) and serve a 
similar function. 

Since SSM,  SSK, and ISK are privileged instructions, only the 
supervisor program can set  the system mask or set or refer to 
the memory protection keys K ' .  SPM (set program mask) is not 
privileged. 

WRD (write direct) transfers one byte from  memory to  the 
direct control out-lines Eo and the immediate data byte from the 
instruction register to  the timing signal out-lines E2, and  sets 
the write-out signal e, to 1. The signals E' and eo are momentary; 
Eo remains unchanged until another WRD is executed. The  test 
for suppression of the instruction (line a9) includes the  term f1 
because the direct control feature is optional and may not be 
installed, and the term t2 because WRD is priviIeged. Except for 
the dwell on line a17, the behavior of RDD (read direct) is similar. 
Normally, the  outputs Eo and Ea of one computer are connected 
into  the  inputs E' and Ea of a co-operating computer. Programs 
ES and EIE enter  any nonzero signal on E" as  an  interruption. 

The diagnose instruction is  privileged (as indicated by the 
presence of tz on line  a20) and may also  be suppressed by an 
unsatisfactory address al. It performs a certain diagnosis of the 
hardware and  then, for certain models, loads p using 8 bytes 
beginning at  112. LPSW (load program status word), which  is 
also  privileged,  performs a similar load from  memory at  address a,. 

svc (supervisor call)  forces an interruption by setting h,; the 
interruption code  is the immediate data byte o s / P ,  prefixed by 
8 zeros. 
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TS (test  and  set) simply  fetches  one  byte u from memory 
(a29), sets  the condition code to (0, u,,), and  sets  the  same  byte 
in memory to  all 1’s. The significant  characteristic of this in- 
struction  is  that (because of the “hold”  h  in the first use of M A C )  
it sets  the  tested  byte  in memory before any  other reference to 
memory can occur. 

EX (execute) mas discussed in  conjunction  with the C’PU 
program. TM (test  under  mask)  sets  the condition code as shown 
on  line  b7.  Thus,  the code is (0, 0) if the immediate data  byte 
(as//) is entirely zero; otherwise, the first bit is set  to 1 if all 
bits of ( o * / / ) / u  are 1, whereas the second bit  is  set if any bit 
of (as/ P) /u is 1. The expression (as/ /)/u denotes the components 
of the  byte u from  memory which are extracted  by the nonzero 
bits of the immediate data  byte. 

The branch  instructions  set the instruction  counter con- 
ditionally as shown, and can  therefore be used to  alter  the  normal 
sequence of instruction  execution. A full  appreciation of BXH 

(branch  on index  high) and BXLE depends  upon a knowledge 
of the 2’s conlplement  representation of signed numbers, which 
is also used  in the fixed-point arithmetic  instructions. 

A logical vector  (register) u of dimension d represents any 
integer n in the range - F 1  to 2“” - I in the for111 

n = (I u) - u,, x 2”.  

For example, if d = 3 the representation scheme is given in 
Table 8. 

It is easily verified that  the representation of a number n 
in  the  appropriate  range is given  by the  statement 

u +- / (d)Tn;  (n < 0); - (d)T In + l/. 
Arithnlctic  operations  (such  as the  sunmation occurring  in BXH 

(line b20)) may, however,  produce a result  outside the repre- 
sentable  range.  The  representation shown  above is, however,  used 
even in  this case. The  matter is illustrated  in  Table 9 by examples 
computed  for  a  dimension d = 4. 

For  the BXH instruction,  lines b17-1!) show the specification 
of k,, k,, and k, as the signed numbers  represented in general 
registers ul,  a3, and  either ua + I (if uR is even)  or us (if us is odd). 
Register u1 is then respecified by the 2’s complement  representa- 
tion of the  sum k,, + k,. The value of this  result is compared  with 
k, (line b23) to dcterminc  whether to  lmnch  to a2. 

The  four 1/0 instructions  are all privileged (line cO), determine 
a  channel  address  from the first threc of the last  eleven bits of 
the first  operand  address,  test  whether the indicated  channel is 
operational  (line c2) ,  and conclude by  setting  the condition code 
to  (1, 1) if it is  not. If the channel  selected is the lnultiplexor  chan- 
nel (i = 0) and a “burst nlodc” timer  has  not  run  out,  then  cfj 
dwells for a  maximum of about 100 microseconds before testing 
(line c6) whether the channel is busy. 

If the channel is busy, the condition code is  set  to (1, 0) on 
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branches,  execute, 
test  under  mask 
(lines bo-24) 

Table 8 

n U 
~ 

3 0 1 1  
2 0 1 0  
1 0 0 1  
0 0 0 0  

-1 1 1 1  
-2 1 1 0  
-3  1 0 1  
-4 1 0 0  

Table 9 

ltepre- Inter- 
senta- preta- 

‘n t ion  t ion 

P f l  1 0 0 1  -6 
______ 

23 1 0 0 0  -7 
2 3 - 1  0 1 1 1  $7 
-23 1 0 0 0  -8 

-(23+1) 0 1  1 1  +7 
- ( Z 3 + 2 )  0 1 1 0  +6 

input/output 
(lines c0-15) 
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line  c7, and  all instructions but HIO (halt I/O) conclude; HIO 

proceeds to signal the channel to stop by setting Bf, and  then 
dwells until  the channel resets it to zero. 

If the channel is not busy, line c l l  branches to  conclude  on 
line c12 for TCH (test channel), and otherwise to set Bf, and dwell 
(c14,  15) awaiting a response  from the channel. The dwell endures 
until either Bf, is reset by the channel or until (in the case of 
the multiplexor channel only) the channel becomes busy ( B i  = 1). 
The  latter case is followed by a repetition of the sequence  from 
line  c4. This repetition could recur many times due to short  bursts 
of activity in the multiplexor channel instigated by 1/0 units 
already in operation. Further discussion of the 1/0 instructions 
will  be deferred to  the  third section. 

LH (load halfword) loads the last two bytes of R"' from memory 
load and store and  then, unless a specification exception has occurred in the 
general registers fetch  from memory, extends the sign bit R:; to  the  left  to give 
(lines d0-24) the correct 2's complement representation in the  entire register. 

LPR (load positive), LNR (load negative), LTR (load and  test) 
and LCR (load  complement) illustrate the use of the 2's comple- 
ment representation. Since  line dl1 sets the condition code to 
(1, 1) only in the event of overflow, line dl2 indicates a fixed 
point overflow only if the overflow  mask PS6 = 1. 

STM (store multiple) stores a number of general registers 
beginning with a, and continuing in cyclic order through register 
a3. A specification exception suppresses the instruction since it 
occurs on the first execution of line dl4 before any  data has been 
transferred, but  in  the event of either a protection or addressing 
exception all of the result field  becomes unreliable (d19-24). 
LM (load multiple) behaves similarly except that a protection 
exception cannot occur. 

All  single-length shifts operate on R"'; all double-length shifts 
shifts operate on the combined quantity Rat, R"'+' and cause a speci- 
(lines eo--15) fication error (which  suppresses the instruction) if a, is odd. The 

amount of shift is the residue  modulo 64 of a,; zeros are introduced 
in the evacuated positions  for all except the arithmetic right shifts. 

All of the arithmetic shifts shift the entire  quantity except 
the first bit (e8,  10) and  set the condition code to  (0, l), (0, 0), 
or (1, 0) according as  the result is <, =, or > zero,  except that 
the left shifts set it to (1, 1) if a significant digit (i.e., in  the 2's 
complement representation, one  which  differs  from the leading 
bit) is lost in  the shift (e7). In this event the left shifts also set a 
fixed point overflow exception (e9) if mask P,, = 1. The right 
shifts extend the sign bit (ell) to  fill evacuated positions to  give 
the correct representation of the result in 2's  complement form. 

This family comprises  four operations (compare  logical, or, 
logical operations, and,  and exclusive-or) in four formats (RX, RR, SI, and SS). 
compare logical The first three formats are  treated in  lines f0-13. CL, CLR, and CLI 

(lines f0-32) merely set the condition code (f7); the rest perform the appropriate 
logical operation (f8) and set the condition code as shown on line 
f13, except that in the  SI format the setting of the condition code 
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is  suppressed (f12) by a protection or addressing  exception. 
The SS format  for logical operations (f14-32) operates  byte- 

by-byte  from  left to  right. As in  the LM and STM instructions,  a 
protection or addressing  exception will make  the  entire  result 
field and  the condition code unreliable (f27-32). 

The instructions in  this  group  treat  the  operands byte-by- 
byte, the first three (MVO, PACK, UNPK) in right-to-left  order and 
the rest  left-to-right. The single-byte  uses of MAC involved 
cannot produce  a specification exception;  protection or addressing 
exceptions  make  unreliable the  entire result field in  memory, as  
well as  the condition code when it is a result. 

MVO (move with offset) moves the second field to  the first 
field, off-setting it one-half byte  to  the left to leave the rightmost 
half-byte of the result field unchanged. Zero fill occurs  (g9,lO)  when 
the source field is exhausted, and conclusion occurs (g6) when the 
result field is exhausted. 

PACK converts a decimal number  in zoned  format (one digit 
per  byte  with a4/byte  as the zone bits,  except  for the low-order 
byte  in which a4/byte represents the sign) into packed  format (two 
digits  per  byte, namely, a4/byte and w4/byte,  except  for the low- 
order  byte  in which w4/byte represents the sign).  Five  operations, 
selected by  the variable i (line g15), are used in  constructing the 
packed bytes  as follows: 

0 the sign and digit of the low-order byte  are  interchanged; 
1 the digit is placed in  the  right half of the  byte; 
2 the digit is placed in  the  left half of the  byte; 
3 a zero digit is placed in  the  left half of the  byte; 
4 zero digits  are placed  in both  halves of the  byte. 

The variable i respecifies itself (line g16) by  the  ith component 
of (4,3,4,4,4) if the source field is exhausted, or by (1,2, 1, - , -) 
if it is not.  The process ends (g21) when the result field is com- 
pleted. 

UNPK (unpack)  performs the operation converse to PACK. The 
program is analogous but simpler, since i has  only  four  states. 

The remaining  instructions  in  this  group  scan the fields from 
left to right. TRT (translate  and  test) uses successive bytes  from 
the first field as relative  addresses in  the second field until  the 
byte  fetched  therefrom is nonzero; this  byte  and  the  current 
address to  the first field are  then stored  in R2 and R’, respectively 
(g43), and  the condition code is set. TR (translate)  replaces  each 
byte of the first field by  its correspondent  selected  from the second 
field. MVZ (for which I,“ = 1)  moves  only the zone portion (i.e., 
the left  half) of each  byte; MVN moves the numeric  portion. 

ED uses the first field both as result  and  as a pattern to select 
successive bytes  from the second source field and from a $11 byte 
specified (h13) by  the first byte of the  pattern field. Each  pattern 
byte is classified (h12) as “digit  select”, “significance start”, 
“field separator”, or “other” (class = 0, 1, 2, or 3); class then 
controls the subsequent  assembly of the result  byte. 
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Except  for a byte  with a sign  (i.e., a non-numeric  right  half), 
bytes  from  the source field are used  one  half-byte a t  a time,  each I 
half being prefixed by a standard zone j selected  by f i 1 2  (lines  h2, 
17-22). The source byte  thus  constructed is used (h24-26) only 
if the rlulneric part is nonzero or if the  current  portion of the field I 
is already  significant (s = 1); otherwise the fill byte is used. The 
byte is constructed, and  the source field is advanced,  only when 
thc class of the  pattern  byte is either a “digit  select”  or  a “sig- 
nificance start” (h14). If the class is “other”  and s = I, the  pat- 
tern  byte is left  unchanged (h1.5); otherwise thc fill byte  is in- 
serted (hl6). I 

The significance trigger s is set only on line h8. It is set  to 
zero if j = 0, that is, at  the  outset  (hl)  and also if the  last  byte 
used was from the source field and  the numeric part was a plus 
sign (h9, 23). If j = 1, then s is set according to  the class of the I 
preceding pattern  byte, s changing  from 1 to 0 only  in  the case 
of a “field separator” (cZass = a), and from O to 1 only  in the I 
case of “significance start” (class = I )  or  in  the case of “digit 
select” if the last  byte was chosen from thc source field and was I 
nonzero, as seen fronl the  setting of u 011 lines h10 and h21. 

The final setting of the condition code is determined  (h3) 
by s and i. The latter is set  by a nonzero digit (h27) and reset 
(h7)  by  a “field separator.” A data exception ( t 7 )  occurs if the I 
left half of a source byte  is non-numeric  (h20), and  terminates (h4) 
in  the manner of protection  and addressing  exceptions.  Since 
ED is an optional  (decimal)  feature, it is aborted (hO) if t ,  = 1, 
and is treated as an "undefined operation”  by  branching to 
line 10. EDMK (edit and  mark) differs only in  that  the  byte ad- 
dress of the first  nonzero  digit in  the last nonzero field is entered 
(h30) in R’. 

In  this group of instructions, the first  operand is taken from 
fixed-point one  or  two  general  registcrs,  determined  by a,. The second operand , 
arithmetic is chosen as Ra2 for the R.lt format  instructions, as 2 bytes from 
(lines io-30) menlory a t  ay for the half-word  instructions, or as 4 bytcs from 

memory for all others. 
The  argmnents k ,  and k,  are derived  from the operands  in 

two  ways: as the base-2 value  (is, 1 G )  in the “logical” group 
AL, ALR, SL, SLR, and as the 2’s complement  value (i4, 10) for all 
others. 

A specification esccption  suppresses the instruction  (i10).  An 
addressing  exception n1nl;es the result lc questionable ( i l l ,  12); 
otherwise k is the  true result of the  appropriate  arithnletic  opera- 
tion on k ,  and k ,  (line i17). 

The specification of the final  result is illustrated  by line i19. 
The  treatnlent of results  outside the representable  range  has 
already been discussed in the section  devoted to branch in- 
structions.  The  setting of  t,hc  condition code and  the exception 
conditions is and t ,  is straightforward. 

The  intermediate result k is obtairled  (j22) by applying the 
decimal  arithmetic appropriate  arithmetic  operation  to  the  arguments k ,  and k,  or, 
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in the case of ZAP (zero and  add)  and CVR (convert to binary), convert 
by using the single argunmlt k ,  directly. CVD also involves a single (lines j0-55 
argument only ( j  1). 

The argument ki is determined (j19) as the signed base-10 
value of the vector a l / u  of decimal digits, u being assembled ( j  15) 
by catenating the hasc-2 values of half-bytes from field i. The 
last half-byte determines the sign (jig), a negative sign being 
represented by 13 (that is,  1101) in the extended RCD code 
(& = 0),  and by 11 in the Anlerican Standard code. For example, 
if p12 = 0, I ,  = 1 and  the bytes at  Ma' and Ma1" are 0101 0000 
and 1001  1101, respectively, thcn u = 5 , 0 ,  9, 13, and k ,  = -509. 

The result X: is converted to  thc decimal representation and 
stored (j34-42) and, except for DIJ (divide decimal), the opera- 
tions end on line j43. Because of the  setting of j on line j33, the 
quotient k is stored only in the first ( I ,  + 1) - (1, + 1) bytes of 
the first field, leaving space of length ( I ,  + 1) for the remainder, 
which  is computed on line j47 and converted and stored by re- 
peating from line j3.5. 

CVD produces an %byte result (j2),  and CVD and CVB produce 
spccification exceptions (j39, 3) if the argument address is not 
at an %byte  boundary. E'or MP and DP, a specification exception 
is  occasioned (j9) if the length of the second  field  exceeds either 
8 bytes or the length of the first (i.c., the result) field. All speci- 
fication exceptions suppress the instruction; except for CVD, in 
which the result field remains unchanged, all other  errors make 
the relevant result fields unreliable (348-55). A data exception f 7  
occurs in ZAP (j8) if the fields overlap such that  the right-hand 
end of the second field is to  the right of the right-hand  end of the 
first. Data exceptions caused by improper overlapping in the 
other  instructions  are  dctccted  and  entered on line j18. 

word) and long (two-word) representations utilize logical vectors arithmetic 
u of dimensions 32 and 64, respectively. A number n, represented ( l i n e s  k0-73) 
by u, is evaluated  as follows: 

uo is the sign (0 for +, and 1 for -); 
I d / a " / u  is the characteristic c; 
2"""* x 1 (Ys/u is the fraction f ;  
c - 64 is the exponent  e; and 
1 7 2  is equal to f X 16". 

Two floating-point representations  are  used; the short (one- floating-point 

The program comprises three ~najor segments, the fetching 
of operands u and v (lines kO-l6), the conlputation of the results 
(k17-65), and  the storing of results and  the  setting of the con- 
dition code and of (lost) significance ( ilr) and exponent underflow 
( fI3) exceptions (1~66-73). 

Floating  point register i is selected by the address 2xi, 
and  the relevant addresses (both u1 and u2 in the RR format) 
are therefore subject to a specification exception check (kl) 
which suppresses the instruction. Specification exceptions oc- 
casioned by MAC also suppress the instruction (1~14). 

I 
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The behavior of the computation phase will  be illustrated 
by AD (add normalized (long)). The argument with  the smaller 
characteristic is shifted right (k21-23) by four times the difference 
in  the characteristics, since the characteristic is taken  to be the 
exponent of 16, and one  hexadecimal digit comprises four bits. 

The  appropriate common characteristic determines j on line 
k24.  Lines k28-30  show the determination of the arguments k,  
and k, as  the signed  values of the fractional parts of u and U, 
and  the determination of the result k therefrom. The sign of the 
result is determined on line  k32, and the fraction and possible 
fraction overflow i on line  k33. 

If fraction overflow  occurs,  line  k37 shifts the fractional part 
of the result right one  hexadecimal digit and prefixes it with 
hexadecimal 1 (thus restoring the overflow), and the next line 
increases the characteristic accordingly. If exponent overflow 
results (k39), the entire vector u is questionable (k40); otherwise, 
the characteristic is  specified by j on line k48. If fraction overflow 
does not occur, the program continues with line  k41. 

The  treatment of a zero result fraction depends on the (lost) 
significance  mask f i g @ ;  if = 1, the fraction is  combined with 
the nornlal characteristic j (lines  k41, 48); if ps9 = 0, it is  com- 
bined with a zero characteristic (i.e., the most negative possible 
exponent) and a positive sign  (k42, 47). 

A nonzero fraction is  normalized  (k44, 45), the amount of 
shift i (in  hexadecimal digits) being determined as  the integral 
part of one-fourth of the number of leading zeros. The charac- 
teristic is  reduced accordingly; if it becomes negative, the entire 
result field is set to zeros  (k47) and  the exponent underflow  excep- 

Because the  tests for the various exception conditions approp- 
undefined riate to a given  class of instructions (including the check on the 
operation codes legitimacy of the operation code) may proceed concurrently, 
(lines 10-5) addressing and specification  exceptions  may  be presented even 

for an undefined operation code. The undefined operation excep- 
tion t ,  will, of course, be presented (CPU line lo), but in the event 
of multiple exceptions any  one of the exceptional conditions may 
actually be  recognized (CPU line 24). 

If the first half of the operation code byte  has  any of the 
values 0, 1, 4, etc., listed on line IO, no spurious exception condi- 
tions can occur.  Any other codes may  (as indicated by the question 
marks) set f, and f6 as shown  by  lines 14-5. For example, the first 
half-byte of the illegitimate code  0011  0101 has the value 3  and 
is  treated, for error check  purposes, the same as  the floating- 
point instructions occurring in 'row 3 of the operation decoding 
matrix 0. Thus t5 is set to zero and fa may be set to  the value 
i4 V i,. In other wolds, this case may present a specification 
exception if either of the effective addresses do not designate a 
valid index to a floating-point register. The format used for the 
calculation of the effective addresses is determined by I Z:,l as 
shown by N,". 

I 

~ 

I tion ( f,,) is set conditionally on line k73. 

I 
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Input/output 

The SYSTEM/B~O input/output included in this formal description 
comprises five system programs: CH" (channel c ) ,  IOIE (I/O 
interruption  entry), HFC" (hardware failure in channel c), TOL" 
(time-out limiter for channel c), and BMT (burst-mode timer). 
The description extends as far  as  the interface between a channel, 
which communicates directly with the CPU and  the system 
memory M, and control units, which are closely associated with 
input/output devices. 

Channels  are of two major types, multiplexor and selector, 
and a system  has a t  most one of the former and six of the  latter. 
Both  types  are encompassed in the general program C H ,  where 
c is the channel number, the number zero  being reserved for a 
multiplexor channel. In a formal reading of the program, the 
value of c is fixed, and  the single program C H  represents several 
independent programs, one for each channel in the system. The 
behavior of a multiplexor channel (c = 0) differs significantly 
from that of a selector channel; the differences appear wherever 
a statement involves the terms (c = 0) or (c  # 0) or involves 
a branch based on  the variable c. For example, because of the 
branch on CH line 46, lines 47 and 48 apply only to  the multi- 
plexor channel, a point emphasized by the use of the superscript 
0 rather than c. 

The programs TOL" and HFC" also represent a multiplicity 
of similar, but  not necessarily identical, programs for different 
values of c. However, operational differences in  these programs 
depend not upon distinctions between multiplexor and selector 
channels, but  rather  upon model-dependent factors such as the 
degree to  which a particular channel shares physical facilities 
with the CPU. These  factors  are reflected in the "channel model" 
matrix CM. 

At  this point,  Table 3 merits  further  study for the information 
it yields with regard to  the logical structure of the  input/output 
system. It will be found that most of the channel variables are 
formally matrices, with the rows  indexed by the channel number. 
The rows are therefore completely independent in  their behavior, 
and a column is of interest per se only in the case of pending 
interruptions ( B8), as shown in CPU line 25 and IOIE line 1. 
Analogously, matrix V possesses one row for each control unit 
on the system,  and CH line 37 uses columns V8 and V12. 

A channel resembles an independent computer insofar as it 
executes a sequence of special fixed-length (8-byte) instructions, 
called commands, stored in the system memory M. To this end 
it possesses a sequence counter a Z 4 / C A W 1  (initially set  by an 
1/0 instruction of the C P U )  and a command register C". The 
commands themselves are limited, so far  as  the channel is con- 
cerned, to  the transfer of information to or from M ,  known re- 
spectively as read and write, and a respecification of the next 



cases of read and write  are, respectively, sense and control, but 
these are distinguished as such only at  the control unit or device 
level. 

The execution of a sequence of connnands (of length  greater 
than one) is called chaining, and is signalled by the flags C& 
and Ci8. Data-chaining causes a respecification of the  data address 
( w ~ * / ( Y ~ ~ / C C ) ,  the flags (Ci2,33,34,aR,36),  and the byte  count ( w ~ ~ / C ) ,  
but does not  disturb  the command code (ax//?) and hence merely 
continues the operation in progress. Command-chaining, which 
takes place only when an operation is completed, causes all of C" to 
be replaced and  thus may  initiate  a different kind of operation. 
A  tic  may occur in either type of chaining, but  this affects C" 
only  indirectly. Any chained sequence of commands relates to a 
fixed device address, that initially set by the SIO instruction. 

Direct communication between the CPU and a channel is 
initiated  either  by  the CPU through an 1/0 instruction, or  by  the 
channel through an 1/0 interruption.  This communication with 
the CPU involves the variable B ,  and  in  particular  the four 
central  bits, B ~ , , , , , , , , .  The suffix ( w " / B )  and prefix (aR//) 
bytes  hold, respectively, a device address  and device status in- 
formation for the indicated device. 
B is formally identified with channel c, as distinguished from 

subchannel c,  which is formally identified with the variables neces- 
sary for sustaining an 1/0 operation.  These are c" and CAW", 
introduced  abovc,  and S ,  which has a  structure similar to  that 
of B .  The address (ux/S'.) in this case is the address of the device 
currently being serviced, and  the  byte d/Se holds channel  status 
information associated with this device. The variables C", C A W ,  
and s" comprise the only active  subchannel associated with a 
channel B ;  in  particular, the interruption-pending and worlcing 
states of the channel and of the subchannel are given, respectively, 
by B:, Bi, S:, and Si. 

A multiplexor charlncl has a  number of facilities Ti, each 
of which can store the active  subchannel  variables and respecify 
them when required. It is, therefore, said to have p T subchannels, 
and  it can  sustain p T  simultaneous data transfer  operations by 
time-sharing its active facilities. At  any  instant only one device 
can be in  contact  with  a multiplexor channel and  the operational 
information associated with this device will at  that time  preempt 
C', CAW', and So long enough to transfer a characteristic  number 
of bytes  or  to perform an initiation or tcrmination sequence. 

A selcctor channcl differs from a multiplexor channel pri- 
marily in  having no subchannel storage  other than C ,  C A W ,  
and s", so that only one data transfer  operation  can be in progress 
at  any time. Once an operation  with  a  particular device is initiated 
on  a selector channel, that device will stay connected a t  least 
until  all data called for by the opcrat>ion havc been transferred, 
or until  the operation is countermanded by an HIO instruction. 
There is no interleaving of data transfers from different devices, 
but between the termination of a sequence of commands with 
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one device and  the  initiation of a new sequence, the channel will 
service requests  from devices that have  outstanding  status in- 
formation to  transmit. 

A selector  channel  always works in  the  “burst” mode, and  the 
characteristic  operation of a multiplexor  channel  is the “nmlti- 
plex” mode. However, a multiplexor  channel is said to  operate 
in  the  burst mode if a particular device monopolizes its facilities 
for more than approxinmtely 100 lnicroseconds. This does not 
imply a difference in  channel  operation, but  relates only to  the 
question of availability, since efficient operation  requires that  the 
CPU be able to  distinguish  between a current  operation  that 
is likely to keep the channel  busy  for a relatively long time  and 
one that will soon be  over. I n   t e r m  of the variables used here, 
i t  is a question of how long B: remains  equal to I .  

The interface between a channel and  its  attached control units 
or  devices is represented by thc variables U arid P‘. The suffix 
09/ U is a 1)us that carries a byte of infornlatiorl (ox/Bc) and a 
bit ( e) for  odd parity. The prefix ax/ U comprises three  tag 
bits which specify the  type of information  on the bus.  When the 
interplay  bit Ui = 1, information on  the  bus is outgoing  (from 
channel to control  units) and  thc  tags are,  in  order, command-out 
service-out, and address-out; when = 0, information  is ingoing 
and  the  tags  are status-in, seruice-i’n, and address-in. In  operation 
only one tag may be set a t  a time,  and  its significance depends, 
in  part,  on  the  state of the channel. The remaining  elelnents of U 
are concerned with  establishing and holding a logical connection 
between the channel and a particular  control  unit.  They  are 
suppress-out ( U:) and operational-out (e,) which are  set only 
by the channel, and operational-in (&), which is set only by  the 
control unit.  The polling  line P is a vector that  has a position 
for each  control unit  on  the interface,  in the order  in which they 
are connected. Pi is called select-out and P w c ,  where w, has a value 
equal to  the number of control units connected, is called select-in.’ 

Control  units  may be physically separate from  or  integral 
with  their associated  devices; a multiplicity of similar  devices 
may  be  connected to a single control unit  or, conversely, a device 
may communicate  with more than one  control unit. Although the 
present  formal  description  does not include  details of this side 
of the interface, it will sometimes be necessary to refer to  it  in 
the  text.  The  term “device” will usually  be  used when speaking 
of specific tasks  that devices perform once an active  connection 
has been established  between  device and channel, and “control 
unit” will usually be used when emphasis is on  the  establishment 
of such a connection. 

The fornml description shows the generation and processing 
of all results of channel  operation to which a programmer has 
access, including the  data transferred to or  from  memory, a con- 
dition code setting (p,,, , ,7) for 1/0 operations, an  interruption 
code setting (p,18(,6,), and a channel  status word (CSW) which 
comprises CAW“,  a device status  byte a*//, a channel status 



data  t 
(lines 

Channel 
t ype  _ _ _ _  
mPx 
sel 

channel 
program 

ransfer 
7-3 1, 59-65) 

? 1 ? 1  
? l o 1  

222 

byte a8/Se, and  a  byte  count ol6/CC. 
In  the discussion that follows, major phases of the CH program 

will  be outlined, certain critical portions will  be examined in  detail, 
and  the operation of the four auxiliary programs will  be sum- 
marized. As before, the discussion is intended as a guide and 
introduction only, the complete description of channel operation 
being embodied in the programs. 

Functional segments of CH are listed in Table 10 in  the order 
in which they will  be considered. The  table gives the extent of 
each segment, its  entry  and exit points, and  the channel and sub- 
channel states  that predominate when the segment is active. 

It is assumed initially that  the channel is actively engaged 
in data transfer, i.e., a  byte  has been transferred  either to memory 
(line 18) or from memory (line 11). If an invalid address has been 
indicated  in Sg by the use of MAC on line 11, then line 12 branches 
to line 7 to place a signal on the interface that will  be interpreted 
by the device as  an order to  stop  data transmission. If instead 
the normal branch to line 13 is taken,  a  parity failure in  the byte 
from memory will  be recorded as a channel  data  check (S;) in 
the channel status byte,  but it will not cause termination of the 
operation. In  line 14 the  data  byte is placed on  the interface, to- 
gether  with the (possibly incorrect) parity  bit e J," and  the service- 
out  tag q. The interplay  bit Ui is set to 1, indicating that  this 
is an outgoing transmission. The unconditional branch to line 19 
updates the memory address, and line 20 reduces the  byte count. 
Had  the operation been a read (C: = 0) rather than a  write 
(C; = l),  a parity error on the interface would have been noted 
in line 15  and the receipt of the byte acknowledged to  the device 
on line 16  before the  attempt  to store the  byte  on line 18. Following 
this MAC,  however, read and write are  treated identically until 
they  separate  again  on line 10 during the next byte cycle. 

Certain  actions are peculiar to  the read operation.  First,  there 
is a conditional setting of U: on line 16 which  will  be  discussed in 
connection with data chaining. Second, certain  options  are avail- 
able during read: the s k i p  flag C& determines (line 17) whether 
the received byte should actually be stored; and if the  last four 
bits of the command code are 1100, indicating  a backward  read, 
the address will be decreased by one, rather than increased 
(line 19). 

If data chaining is not indicated by the test on line 21, the 
action moves to line 59 to  test for a program controlled interruption 
(pci). If the need for a pci is indicated by Si, and if no prior inter- 
ruption request is pending (& = 0), then  an  interruption request 
is initiated  on line 60 by setting Bg to 1 and loading into  the ap- 
propriate parts of B" an all-zero device status  byte  and  the address 
of the working device (os/Se). 

It is noteworthy that in  a selector channel a prior interruption 
pending at this point can only be a pci entered at an earlier time 
in the execution of the current sequence of commands, but in a 
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multiplexor channel it could be any kind of interruption. However, 
if the device for which the  interruption is pending in  a  multi- 
plexor channel is the device that is involved in the current se- 
quence ((as/ Bo) = as/SO), then  the  interruption is necessarily 
a pci. 

The foregoing remarks can be  confirmed by a study of the 
general topology of the CH program: if c # 0 the  entry  to line 
59 from outside the  data transfer segment can come only from 
lines 69 or 130; moreover, the  entry from line 69 occurs only 
during command chaining and therefore belongs to  the execution 
of the  current sequence of commands. The  entry from line 130, 
however, represents the initiation of a new command, and if this 
is not part of a sequence of chained commands, its source can be 
traced back through lines 94 and 96,  which together assure that 
Bi will be zero upon entry into a new command sequence in a 
selector channel. On the other  hand, for a multiplexor channel 
entering  through line 130, line 96 is skipped and a sequence of 
tests  and  settings  in lines 97-100 may allow Bi to remain set. 
More broadly, however, for c = 0 the  entry  to line 59 may  have 
come from lines 50 or 32, in which case nothing  can be said about 
B,O except that it  retains  its previous setting, whatever the source. 

Treatment of the pci  is  followed by a dwell at  lines 61 and 62. 
A multiplexor channel at  this point examines the  state of & 
(operational-in) to determine whether the presently connected 
device wishes to  extend the current  burst of information transfer. 
If = 0, exit is made from line 61 to line 58, storing the  state 
of the active subchannel, making the channel not busy ( B i  +- O), 
and resetting the burst  timer control (g2 + 0). In a selector channel, 
or  in a multiplexor channel where the device is maintaining 
the connection, line 62 controls the dwell. Here the channel 
waits for a response from the interface, indicated by Q = 0; 
for an order from the CPU to  halt  the 1/0 operation, indicated 
by BE, A go; or for a signal that  the device  response time  has 
been excessive and  there may be trouble on the interface, indi- 
cated  by an interface control check (Si), set, for example, by a 
TOL program. 

If the escape from line 62 was not  for HIO or an interface 
control check, and no improprieties were found on line 63, then 
the subsequent decision at line 65 depends on  whether the device 
desires data transfer (q = 1) or has  sent  in status information 
( e = 0 and lJ; = 1).  Data transfer  takes the program to line 1 
where an incorrect length indication (S; may be generated,  and 
then  to line 9 where the channel decides to terminate or continue 
the operation.  Termination a t  this point-where continued 
data transfer  has been requested by the device-may  be caused 
by a zero byte count (regardless of the setting of Si), or by a 
previously recognized but unfulfilled HIO, signalled by Si (possible 
only on a multiplexor channel), or by the presence of a nonzero 
channel status bit  other  than Sg (pci) or Si (data check). A pro- 
gram or protection check generated by MAC during the previous 
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beginning with the branch from line 10 for read or write. 
At different moments in  the discourse across the interface 

between a channel and a device only certain responses from the 
device are valid. Thus, upon escaping from the dwell on line 62 
because of a response on the interface, the channel expects cither 
status-in ( e) or service-in ( q), and a properly operating control 
unit will return only one of these tags  and no others. Any other 
response must be considered an interface error,  and is so recorded 
on line 63, which also includes a test for  parity failure on a status 
byte.  The action to be  talcen in case of interface control  check 
and  other  error conditions will  be discussed more fully in the 
treatment of HFC,  but it may be remarked here that  the branch 
to  the HIO sequence (line 78) is the mildest action appropriate 
under the circumstances. 

The  data transfer cycle has been described here as a  strictly 
byte-by-byte operation,  although  in most implementations a 
channel will  buffer a  certain number of bytes in order  to use t'he 
central memory more efficiently. While this may  have  a notice- 
able effect on the timing of 1/0 operations, the only observable 
effect of such buffering on the static  results is found in the case  of 
termination  due to a program or protection  check. In this case 
the byte  count subsequently stored as  part of a channel status 
word  will not necessarily reflect the  actual amount of data  trans- 
ferred, a state of affairs indicated by the expression ?(lli) appear- 
ing in lines 136 and 154, and in IOIE,  line 24. 

The number of bytes specified in a channel c o l m ~ ~ n d  word 
data  chaining will always be transferred to or from contiguous incnlory locations, 
(lines 22-31) as shown in line 19. When the count becomes  zero, however, the 

operation may be continued by fetching a new channel command 
Channel  State word with  a new count and a new memory address. Such a con- 
type & Bg s; S; tinuation is signalled on line 21, which tests for a zero count and 

both ? 1 0 1 
the presence of the chain  data flag C&. 

Line 23 fetches the double word indicated by the address in 
C A W ,  and  the address is updated on line 24. The four-bit pattern 
in the command code detected by line 25 signals a tic  (transfer 
in channel) which, if present, causes the replacement of the address 
in CAW" (line 31) and a repetition of the fetch, line 23.  If this 
produces another  tic,  a program check  is recorded on line 30 
because of the prior setting of j on line 31, and  the process is 
stopped by a branch to line 29. Line 30 also checks for a specifi- 
cation  or addressing error in the address field of the  tic command. 
This  test, which would normally occur in  the succeeding MAC 
on line 23, is done explicitly at this  point  in order to preserve 
the address of a faulty  tic for diagnostic purposes, since the  tic 
address would not be recoverable after  thc execution of line 31. 

If the  comnmld code  field of the double word fetched on line 23 
does not specify a tic, its overall format is  checked on line 26, 
and if satisfactory it is used to respecify all but  the command 
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code in C” (line 27). The pci bit is set if called for by C;,, and 
channel  overrun (S; )  is recorded if a read  operation is in progress 
and the device has  already signalled on  the interface. 

Thc  setting of Ui on line 16 is a signal that  data chaining is 
about  to  take place during a read  operation.  Certain devices can 
rcspond to  this signal by delaying the translnission of the next 
byte  until Ui bcconlcs zcro (line as), thus avoiding the possibility 
of channel ovcrrun. Othcrwisc, ovcrrun is a function of the rclativc 
speeds of device, channel, and lncmory, as wcll as of the  current 
melnory activity. 

A channel  cannot  break out of thc  data transfer  phase  on  its 
own irlitiativc unlcss it rccognizes an interface  control check 
(line 63). In  normal  operation it must  wait for a  stop  order (HIO) 

from the CPC‘ or a status  byte from the device, even  though it 
may have  initiatcd thc tcrnlination by issuing the command-out 
tag on line 7. .A nlultiplexor  channcl will leave from line 61 any 
time  during data transfer if the corlrlected dcvice scts = 0, 
but  this is not a ternlination of thc operation; the channel will 
return  to line 59 and continue in  the  data  transfer phase the next 
time the dcvice requests servicc and is reconnected. 

The first  action i n  a nornlal termination (line 6G) is a setting 
of the incorrect length  indication for a long count ( ie .  when term- 
ination occurs with a non-zero count). A prior  setting, possibly in- 
curred on line 8 for a short  count, will  bc preserved. In  both 
cases thc setting  dcpcnds on the  state of the control flags in CC, 
if data chaining is indicated ( Ci2 = 1), thc wrong length  indication 
cannot be suppressed by C:4. Howevcr, if a program, specification, 
or channel-overrun check has occurred, the indication of wrong 
length  may fail to appear (as shown by thc conjunction  with 

If thc possibility of comnand chaining is ruled out  on line 67, 
tcrnhation of dcvicc operation procceds with the setting of the 
subchannel state S i ,  to “intcrruption  pending” and “not working” 
on line 71. The  interruption condition mustj now he cntered  in 
the channel, if possiblc, and  to  this cnd it is necessary to cnsurc 
that a previously pending  intcrruption is not a t  this  instant being 
scrviccd by thc C P C  through IOIE. Line 7 2  is an interlock for 
this purposc. 

The  test 011 linc 7;3 is vacuous for a sclcctor channel, which 
always proceeds through thc next  two lincs, setting up  the channel 
interruption  and  branching to linc 57 and  then  to linc 56, where 
it  waits for scrvicc froin thc C‘F‘[l. A multiplexor channel, however, 
may bc unahlc to acccpt the  status  byte  and consequcnt  inter- 
ruption at  this tinw. If so, it skips lincs 74 and i 5  and, because of 
the setting of j ,  rcturns cotnmand-outt rather  than scrvicc-out 
on thc intcrface (linc 76). Thc  fornxr is intcrprctcd by thc device 
as an order to s/ack (i.c., save) the information just  transmittcd; 
the  latter, as permission to clear (i.e.,  destroy) the  status  and go 
about  other business which may, in  fact, be the completion of a 
phasc of the  current  operation  that does not require  channel 

?v-v/S;,,.,). 
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facilities. In either case, the multiplexor places the device address 
in  the field of the no-longer-needed data address (line 77), returns 
to line 59, passes through line 61 as soon as the device disconnects 
( Ut = 0), stores the subchannel information and makes the 
channel not-busy (line 58), and goes into the idle phase (lines 
35-55). 

It will  be observed that a selector channel will not  have 
signalled on  the interface a t  this time, thus keeping the device con- 
nected. The channel itself is not available for anything  but a clear- 
ance of the interruption  just set.  This  can be seen by  tracing IOIE 
and  the 1/0 instructions of the CPU with B;, Bi, Si, Si set to 
1, 0, 1, 0, respectively. A TIO addressed to  the proper device, 
or an interruption service, will cause program CH to follow the 
path - - .  , 56, 82, 83, 87, 88, 89, 92,  153,  154,  155,  160, , 
which clears the interruption condition and releases the device, 
and  then goes on  to make the channel available for new work. 
A TIO for another device, or an SIO, is rejected by the sequence . . , 
56, 82, 83, 87, 88, 89, 92,  93, 138, 134,  135,  32,  33,  56, . . . , and 
leaves the channel state unchanged. 

Termination  due to  the instruction HIO is indicated when the 
CPU tries to contact a channel through Bf, when the channel 
is busy ( E X C  c6-9). This is sensed in line 62 and causes a branch 
from line 64 to line 78, where a signal to  the device to disconnect 
is transmitted on the interface ( = 1 when P" is all zeros). 
The possibility of command chaining is then erased and  the CPU 
is released (line 79). A multiplexor channel will then  return  to 
line 35 through line 59, as described for normal termination,  and 
contact with the device will eventually be reestablished when 
the device has come to a  stopping  point  and generated a status 
byte  and  a request for service. To the multiplexor channel this 
request will  be indistinguishable from a service request for ad- 
ditional data transfer or normal termination. In  contrast, a selector 
channel at line 80 proceeds very much as if termination  had been 
signalled by the device, combining the operations of lines 66, 
71 and 74 in line 81, and returning to lines 57 and 56. The signifi- 
cant difference is the specification of zeros as  the device status 
byte (a"/ B") . 

There is a two-level hierarchy for device status bytes:  those 
associated with a  termination (evidenced by the  state of Sg) have 
an irrevocable hold on  the channel interrupt signal (Bg) until 
cleared; others, externally generated or arising after  the device 
is disconnected from the channel, may be displaced, without being 
accepted by the CPU, to allow a new operation to  start (in which 
case the information must be saved by the device). Non-dis- 
placeable status bytes  are usually characterized by the presence 
of channel end ( (a8/ B C ) J ,  but exceptions occur when a sequence 
is terminated  during command chaining and when, as just  noted, 
HIO is issued to a busy selector channel. In  the first case chan- 
nel end  may never appear;  in the second case, the channel-end 
byte, when it is received, will have the same significance for 
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channel operation as any  other  status  byte  submitted  after 
termination. 

Each device status  byte implies the formation of a channel 
status word (CSW), either  by  means of an interruption, a TIO, 

or an SIO. The execution of HIO by a busy selector channel will, 
therefore, cause an extra CSW to be generated, for a possible 
total of four associated with the subject command sequence. The 
three nonzero device status bytes which are always possible 
would contain, respectively, bits designating channel  end,  control 
uni t   end,  and device  end, together with whatever other conditions 
happened to be present. Any two, or all three, end conditions may 
appear in  the same byte,  but  in any case an operation is not 
actually completed until device end for it has been submitted and 
cleared at the device. Control unit end is supplied only under 
special circumstances but,  apart from the exceptions possible dur- 
ing command chaining, channel  end and device end are made 
available at  the termination of every sequence, and will appear 
in a CSW. 

Command chaining (the execution of a sequence of operations 
by the same device) is initiated (line 68) if the tests  in line 67 
are satisfied: the flag settings C:2,33 must be 01, no bit  other 
than pci (Si) may be present in the channel status  byte,  and  the 
device status byte on U must conform to one of the allowed 
patterns listed. (In  the absence of hardware failures it is possible, 
coming from line 66, for any  but  the busy bit (u’ /U)~ to be pres- 
ent in addition to channel end (as/U)4.) The inception of com- 
mand chaining is signalled to  the device on line 68 using the 
same signal as was used to signify data chaining (line IS), but 
this  time it is in response to status-in rather  than service-in. In 
response to  this signal the device will clear the  status,  but  the 
channel must note the presence of device-end to decide the branch 
on line 69. If device end is present ( j  = I), initiation of the next 
command takes place immediately, starting  with line 70, where 
the address  in C A W  of the next command word is increased 
one double word if the status  modifier bit (as/ U ) l  had been sent 
with device end. The program then branches to line 104 where 
it joins the SIO sequence described below under “CPU service”. 
If device end  has  not been  received, line 69 causes a branch to 
line 59, after which a selector channel dwells a t  lines 61 and 62, 
and a multiplexor channel exits at  line 61  when the device dis- 
connects by  setting to zero. 

When a device disconnects from a channel (for any one of a 
variety of reasons on a multiplexor channel, but only following 
the acceptance of a terminating device status  byte on a selector 
channel), the channel is free to respond to calls from the CPU 
or to service requests from its devices. Line 37 shows a dwell 
on  the two possibilities, and line 38 shows that requests from 
devices take precedence over CPU requests. The expression 
V / V ,  A Vlz = c corresponds to request-in, and rests upon the 
following formulations. Each control unit on a system is asso- 
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ciated with a MW of a  matrix V. Control unit u, desiring service 
for one of its attached devices, sets V i  = 1 and at  the same time 
indicates the channel wanted by holding the channel number in 
Vy,. If V;4 = 1 and Vt;, = c, this clearly represents a call for 
channel c, and all such possibilities are monitored by the or 
over the conjunction. The numbers available to control unit u 
for Vy, must, of course, be restricted to those of the channels 
on whose interfaces the control unit is indeed connected.' 

I n  response to request-in the channel attempts  to establish 
a working connection with a device by  setting select-out (PG) 
to 1 with the  tags a"/ U set to zeros (line 39). Control units  are 
connected serially on the interface with respect to select-out. 
Only the first control unit will sense Pi, and  it will pass the signal 
on (setting PE = 1 and Pg = 0) if it does not require service. 
Successive control units will pass the signal on in a similar way 
until  either a control unit responds with address-in or the last 
control unit, passing the signal on in turn,  sets select-in (P&) 
to 1. A tag other than address-in, or wrong parity on an incoming 
address, will cause an interface control check (line 41). 

For a multiplexor channel, two major  types of request for 
service from a device are possible: 

1. from a device still in the  data transfer state (Sg was 1 last 

2 .  a) from a device for which a  termination status  byte was 
time it disconnected at  line 61) ; 

stacked, 
b) from a device for  which  device end is due, or 
c) from a device presenting an externally generated signal such 

as attention or a change from not-ready to ready (which 
will  be indicated  as device-end) . 

For  a selector channel, only types  2b  and 2c are possible. 

A ndtiplexor channel always honors requests of the first type, 
but attempts  to suppress  others if the illterruption buffer (ax//" 
and os/ Bo) is loaded, as indicated by B: = 1. This is shown in 
lines 36 and 39 where suppress-out ( q) is set  to  the value of Bg. 
When e = I, a control unit  must  either suppress requests of' 
the second kind by not  activating Vl and Vr2 or else pass along 
select-out when the channel tries to establish a connection under 
these circumstances. On a selector channel, BE is  zero during the 
idle phase and all requests are,  therefore, honored. 

If a connection is established (Q  becomes 0 and lJi becomes 1, 
lines 40, 42), a lnultiplexor channel will immediately set select- 
out  to zero (line 44), giving the devicc control over the con- 
nection. Operational-in (q) will have become 1 with U;, and 
now the channel (always passing through lines 59 and 61 before 
returning to idle)  will  be constrained to hold the connection as 
long as 17: = 1. 

Line 44 has no effect on a selector channel, which simply con- 
tinues  by placing the device address  in the working address 
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register os/s" (line 45), acknowledging its receipt with command- 
out (line 49), waiting for the next response (line til), which this 
time  must be status-in (line 52), and loading both  status  byte 
and  address  into the channel registers as an interruption  request 
(line 53). It then dwells a t  line 56 waiting for a call from the CPU. 

A multiplexor channel has a slightly more complex sequence 
after line 45. It first uses the device address just received to gene- 
rate  an index to  the subchannel  storage facilities (line 47). All 
eight  bits of the address are used to generate this index if the 
zeroth bit is a zero. If not, only bits one, two, and  three  are used, 
thus allowing several devices to share  a sub-channel, i.e., a  storage 
location  in T. The stored  operational  information is then loaded 
into  the active  subchannel facilities, the channel is put  into  the 
working state by setting Bi to 1, and BII/IT (burst mode timer) is 
released from its dwell by setting g2. The device is signalled to pro- 
ceed (line 49), and  the  state of S: is sensed (line 50) to determine 
which phase of operation the device is in. 

If S: = 0, the device is requesting service of the second kind 
and  the program proceeds much as  in  the case of a selector channel. 
An additional malfunction is recognized in  this case if the control 
unit overlooks suppress-out and accepts service when BE = 1 
(line 52). If no malfunction is recognized, an interruption  request 
is entered  on line 53  and receipt of the  status is acknowledged 
on line 55. The earlier remarks concerning line 76 are relevant 
here, since the device may  still be required to stack  the information 
in  spite of the  fact  that  the  interruption facilities are now available. 
The criterion  this  time is whether the  byte  just received is termina- 
tion  status stacked at  the time of generation. The  state of S: 
determines  this,  and so is used to choose between command-out 
( 17:) and service-out ( U:), allowing the device to clear the  status 
if Si = 1. As noted before, the need to stack  arises because non- 
termination status information  can be displaced from B" without 
entry  into a CSW. Finally, the branch to line 59 returns  the 
channel to idle status through lines 61 and 58. 

If Si = 1 in line 50, there is an immediate  branch to line 59, 
and  the dwell a t  lines 61 and 62 would await  a response on  the 
interface,  just  as if the device had never disconnected from the 
channel. The device may be at  any stage  in its operation  and it is 
possible that  it will transmit  status information  rather than  data 
a t  this  time.  This would, of course, lead into  the  termination se- 
quence, as previously outlined. If data remains to be transferred, 
the device will transmit  or  accept its characteristic  number of 
bytes and  then  set U,O to zero, allowing the charmel to return to idle. 

Certain channel models, when idling, contiuuously scan  their 
interfaces for service requests  rather than waiting for request- 
in  to rise. This difference  is shown by the branch a t  line 35. The 
continuous-scan type follows the loop . . , 39,  40,  41,  42,  43, 
35, 39, . . , skipping the dwell a t  line 37 and responding (line 43) 
to  the CPU interlock BE, after each non-response from the inter- 
face ( U; = 0, line 42). The  other  type, largely described above, 
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CPU service 
(lines 82-165, 32-34) 

Channel 
type 

both 

State 
Bg Bg Sg Sg 

? ? ? ?  

state analysis 
(lines 82-101) 

State 
Bg  Bg 

? O  
? O  

would mainly dwell at  line 37, and normally proceeds through - , 
38, 39, 40, 41, 42, 44, . * for a device request, or leaves at  line 
38 for a CPU request. For certain control units, however, a non- 
response even after request-in has risen is a normal possibility, so 
the loop via line 43 may  be  followed. Interface control checks 
arising in  this phase of channel operation have again been  shown 
in  their weakest form, simply causing a  return to line 35, repetition 
of interface scan, and  testing of BE,. 

The channel responds to  the CPU in executing the SIO, TIO or 
HIO instructions and in processing interruptions. Provision is 
made in IOIE for  servicing certain interruptions, but otherwise 
interruption processing  is very like TIO. Although the initiation of 
a new command by command chaining is not  strictly part of 
CPU service, it is almost identical with SIO and  they will  be 
treated together, where appropriate. 

Except for  command chaining, it is assumed in  what follows 
that Bf, has been set to 1 in EXC line c13 or IOIE line 8, and  has 
caused C H  to branch t o  line 82 from line 38, 43, or 56. 

The first phase of CPU service starts by setting  a working 
device address either from the effective address a, supplied by 
the CPU or from the interruption register 0 8 / B c  (line 82). A 
selector channel passes over tests  in lines 83, 87 and 88 (and line 
89 if not HIO), and continues to line 92. The branch to line 153 

Sg Si is taken for interruption service (go = 1) or for TIO with termina- 
tion status (Si = l )  available for the addressed device. (Note 

? ? that if go = 1, then 08/S would have been set by 08 /F  on line 82. 
? The requirement that this be termination status is not imposed 

on interruption service,  because the desideratum here is the 
availability of status information at  the channel level, a condition 
that is always satiszed when B: = 1 in a selector channel.) 
Failing the branch to line 153, line 93 merely  checks, for c # 0, 
the  state of the subchannel, and if it is holding termination status, 
the branch to line 138 will  be taken. Otherwise, information is not 
available at  the channel level and the  path through line 94 is 
followed, leading ultimately to  the selection of a device on the 
interface. 

A multiplexor channel leaving line 82 must first determine the 
index to  its subchannel storage (line 84), and an invalid index 
causes a branch to line 140. Otherwise, the active subchannel 
facilities are loaded and a series of inquiries are  undertaken to 
determine, as  in  the selector  channel, whether the necessary in- 
formation is available at  the channel level. 

For interruption service a  totally inactive subchannel (line 87) 
implies that it is necessary to go to  the interface, but Si = 1 
or S: = 1 imply,  respectively, that termination status or a pci 
is available at  the channel level, and the branch from  line 88 to 
line 136 is  followed. For TIO to follow the same path requires, 
as in a selector channel, that  the channel be holding termination 
status for the addressed  device. In this case Si = 1 alone  does 
not distinguish the termination state, since the case Si = 1 
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and Si = 1 is  used to denote a pending order to stop,  set on line 
145 or 148  by a previously  issued IIIO, to be honored  (line  2) the 
next time the device requests service. If "'/So and 0 8 / B o  do not 
agree, it is  still possible for a termination status condition to be 
cleared, but only by going to the interface and selecting the 
device. This  situation is treated on line 93,  which  is  reached by a 
multiplexor channel if the sequence to  line 89 is followed and  the 
case  is not HIO. For both SIO and TIO at line  93, a multiplexor  will 
proceed to line 94 if the subchannel is both not working and not 
holding an interruption. For TIO the additional possibility of 
clearing an interruption is  signalled by the same criteria as in 
line 88, except that 0 8 / S o  must now match the address previously 
stored in the address field of c" in line 77. 

If there is an HIO at  line 89 and the subchannel has an inter- 
ruption pending  (line go), no action is taken in either type of 
channel, and the branch to line 161 sets the condition code. If 
no interruption is pending, the possibility of command chaining 
(in a multiplexor channel) is  cancelled (line 91) and  a branch to 
the interface selection  sequence (line 115)  occurs. Ultimately, an 
order to stop will  be  issued on the interface (line  151) or, for a 
multiplexor, the subchannel will  be set (line  145) to stop the 
operation the next time the device requests service. 

Lines 94-100 cancel interruption conditions arising from  non- 
termination status,  as discussed in regard to  termination. A 
selector channel must order the device to stack the information 
at  this point (line 96), but  a multiplexor channel does not, since 
it accepted non-termination status only provisionally in the first 
instance (line 55). Line 100 indicates that under some (indeter- 
minate) circumstances, a multiplexor channel may not cancel a 
non-termination interruption condition. 

A t  line 101, SIO and TIO are the only possible  cases. TIO causes 
a branch to line 115, but SIO proceeds through lines 102 and 103, 
to join  command chaining at  line 104. A channel address word is 
fetched in line 102 from a fixed location in main storage. It is 
checked  for protection key and format (line  103) and any non- 
conformity is recorded as a program check (Si) in the channel 
status byte. In line 104, the local variable j ,  set to  zero for com- 
mand chaining (B i  = l), will  be  used as  in  data chaining to 
prevent two successive tic's. Setting j to 1 for SIO, (when Bg = 0) ,  
precludes the possibility of a  tic as  the first or only command 
of a sequence. The pci bit is set, if necessary,  on  line  114. 

Lines 105-1 14 correspond  closely to the  data chaining segment, 
lines 23-31. The differences are largely in error indications, in- 
cluding an added aspect of the format check (compare lines 26 
and  log), but  the most  significant  difference  occurs in line 113 
(as compared to line  27)  where k now respeczes all of c" including 
the command  code portion. 

All program checks, including a  faulty CAW", cause a branch 
to line 112, which is entered only if there is a program check. 
From there, command chaining will  cause a branch to line  115, 
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channel-initiated 
selection 
(lines 115-130) 

Channel State 
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whereas SIO may or may not, depending upon the channel model 
and immediate circumstances. The  alternative for SIO is the 
branch to line 139  which stores the  status  byte portion of the CSW. 

At line 3 15, the possible  cases are command chaining, SIO, 

1710, or HIO for any  type of channel, and  interruption service for 
a multiplexor channel. Selection is started by setting select- 
out,  as in line 39, but  the working address is now on the interface 
bus (aH/ V) and address-out ( Q) is set.  The dwell on line 116 
differs from line 40 in the added  term Si, which  will  be set by the 
TOL (time-out limiter) program (line 0) if the response from the 
device is delayed beyond a maximum interval specified for the 
particular channel model. The interface control check Si may 
also be set (line 117) if this is an interruption service (go = 1) 
or command chaining ( B i  = 1) and no control unit acknowledges 
the address or address-in does not rise in response; if any com- 
bination of incoming tags  appears  other  than q or Q alone; 
if there is a  parity  error on the incoming interface; or if an address 
received in response does not match the address sent  out. 

For comnland chaining, the minimal response to an interface 
control check at  t>llis point is the h n c h  from line 11s to  the dis- 
connect sequence starting at  line 78, just  as for an interface control 
check in the  data transfer phase on line 63. The corresponding 
response for CPU service is the branch to line 143 and  storage 
of a complete CSW for int,erruption service or TIO (142), or of 
the  status portion only for SIO or HIO (144). Line 142  also may 
be entered by the sequence . , 85, 140,  141,  142, . . . in the case 
of an invalid subchannel index during interruption service. 

The branch to line 119 for Si = 0 implies that all  subsequent 
tests  are for normal possibilities. Thus, if P& = 1 in line 119 
or = 1 in line 120, it must be that SIO, TIO, or HIO are under 
consideration, for only in  these cases is a “not-operational” re- 
sponse or a “control-unit-busy” response possible without  error. 
The consequent action in each cme is shown by the respective 
branches to lines 145 and 147. 

At line 145,  which is also entered  by the sequence . , 85, 
140, 145, . . . , 1110 on a multiplexor channel sets the subchannel 
to  terminate as soon as it requests service, and  in line 146 the 
condition code is set  to indicate  “not-operational” in response 
to whichever of 1-110, SIO or TIO may be current. 

At line 147,  which  is entered only in the case of a control-unit- 
busy responsc, there is a division (like that on line 143) between 
interruption service and TIO on one hand,  and SIO and 1-110 on the 
other. For the former, the entire CSW is again specified (line 150), 
although useful information will appear only in the  status portion, 
which is the only part stored (line 149) by the SIO and HIO. For  a 
multiplexor channel HIO again  sets the subchannel to  terminate 
(line 148). The device status  byte stored a t  this point  contains 
the busy bit  and  status modifier only ( e ls3) .  In  the case  of SIO, 

the channel status  byte is  zero, except for a possible program 
check (Sg). 
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In  line 121 a multiplexor channel sets P" to zero. If HIO has 
lasted to  this point, it implies that  the device is able  to  accept 
the order to disconnect, and line 122 branches to line 151 to issue 
this order. The  terms Bi and go in line 122 ensure that  this is 
truly HIO and not a fortuitous value of P during command chaining 
or interruption service. 

The command byte is specified in line 123 in  preparation for 
its transmission to  the device in line 124. The  last  terms of line 
123 ensure that, regardless of the command code in CC, a pro- 
gramming error (Si = 1) carried over from line 112 will cause an 
all-zero byte (the interface command code for TIO or interruption 
service) to be transmitted.  The only legitimate response to a 
command code is a status  byte with correct parity (line 126) 
and, when this response arrives (within the allowed time-out 
limit), the program branches (line 127) to  line 153 for CPU service. 

At line 153 the possibility of an interruption pending in  the 
subchannel is checked. This could arise either because line 153 
was entered directly from line 92 by  a selector channel, as noted 
earlier, or because the special condition for a multiplexor channel 
in line 92 had been satisfied. In  both cases a TIO must be in prog- 
ress and a full CSW is stored  in line 154. For a selector channel 
the  interruption pending in  the subchannel nlust  have also been 
pending in the channel, and so both  are cleared in line 155. For a 
multiplexor channel, however, the subchannel interruption could 
not  have been in the channel, or the branch from line 88 to line 136 
would have been taken before reaching line 93, so in  this case 
(c  = 0) the  state of Bi is left  untouched. Line 155 is followed by 
line 160, which releases the device. The need for an interface 
signal is obvious for a multiplexor channel because the  status  has 
just been transmitted;  and, for the selector channel, it will  be 
recalled that  the interruption was entered in line 74 and simply 
held by the channel with no return signal to  the device at that time. 

The sequence just described, and  the sequence 88, 136, 
137, . . both  relate to  the formation of a CSW with termination 
status.  The  latter sequence, which obtains only in  a multiplexor 
channel, may also  be  followed for a pci  while the subchannel is 
still working. In this case the combination Si = S: = 1 would, 
as usual, be the result of a prior HIO, and it would  be improper 
to reset S: in line 137. But B: is unconditionally reset, providing 
a double contrast  with the action in line 155. In  both line 136 and 
line 154 the count field of the CSW is indeterminate if there  has 
been a program or protection check, and in line 136 this is also 
true for a pci. 

If Sg = 0 in line 153, further possibilities are checked in line 
156. If this is not  interruption service (go = 0), and  there  has 
been  no programming error (Si = 0), and  either the  status  byte 
on  the interface ( u s / U c )  is all zero or this is SIO with command 
chaining indicated, and  the  status  byte conforms to one of three 
allowable patterns,  then the branch is taken  to line 161. Otherwise 
the case is either interruption service to clear a non-termina- 



Table 11 Device status bytes stored in CSW 

device status  bits  channel  activity  and CH 
line  on  which stored 

control 
atten-  status  unit channel device unit  unit  inter- 
tion modifier end busy end  end check exception ruption TIO SIO HIO 

tion status from a device, SIO or TIO to  a device that is working 
or holding status information, or a rejected SIO. The status bytes 
subsequently stored in line  158 or line 159  will indicate the 
situation: no  device status at  this point should contain channel 
end;  a busy device  will return the busy bit to  SIO or TIO; a device 
holding status information will include the busy bit in response 
t o  SIO but  not TIO (in both cases the device  will  be  cleared, as  in 
interruption service); and the  status for a rejected SIO will contain 
a unit check or unit exception. 

All  possible configurations of device status bytes that may 
appear  in  a CSW are shown in Table 11. As usuaI, the symbol 2 de- 
notes the possibility of a zero or one in that position; the first line, 
for example, represents 8 possible status bytes. Altogether, 94 
possibilities are represented. 

A t  line 161 an HIO from  line 90 may be present as well as SIO 

or TIO from line 156. In all cases a condition code of zero is specified. 
HIO leaves immediately at line  162, TIO leaves at  line 164 after 
signalling  on the interface. If this is SIO, a command has been  suc- 
cessfully initiated  and the channel and subchannel state variables 
are  set  in line 165 to reflect this. For a multiplexor channel the 
timer is started. If the  status byte is all zero  (line 129), service-out 
is  signalled  on the interface (line 130) and the  data transfer phase 
is entered at  line  59. A non-zero status byte for SIO at line 129 
indicates an immediate command, usually a control operation 
that can be executed without help from the channel. It also means 
that command chaining was indicated by the bits  in c". Both 
of these factors were  checked  in line 156,  which strongly resembles 
line 67, and the branch from  line  129 therefore goes to line 68 
to prepare for  command chaining. 

If command  chaining had been in progress at  line  127, the 
branch to line 128  would have been  followed. Here, either a non- 
zero status byte or a program check  will  cause a branch to line  67 
where the choice is made between termination and  further com- 
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mand chaining. Alternatively, the branch from  line  128 to 130 
leads to  the  data transfer phase, as  in SIO. 

A program check during command chaining may produce one 
of the odd situations alluded t o  in  the section on termination. 
The device  involved in the sequence of commands  is available 
to  the channel at  this point  and it will ordinarily respond to TIO 

(the command actually issued-see line  123) with zero status. 
But Si will be detected on line 67 and the termination sequence 
starting at  line 71 will  be entered. The termination status byte 
may now  be zero, and both channel end and device end will have 
been lost. 

All exits in the segment 137-164  go to  line  131 if a CSW has 
been stored, otherwise to line 134. A t  line  131 the channel status 
byte is  cleared, and except in interruption service, the condition 
code is  set to  (0, 1) in line 133 to signify that CSW information is 
available. Except for interruption service, then, all entries to line 
134  occur immediately after  a  setting of the condition code.  Line 
135 is an interlock with IOIE, followed by a  return  to line  32. 
As usual, a multiplexor channel returns to idle through line 59, 
whereas a selector channel either returns to  the dwell at  line 56 
or sets PC to zero and goes on to idle. 

A channel that is not operational is  shown as dwelling at  
line 1. If it is on a system, it can be  moved  from this dwell only 
by system reset or some other external agency. A forced branch 
to line 2 (by RESET line  4) clears the various channel and sub- 
channel facilities and places  on the interface a system reset signal 
( i7:,5 = 0, 0) which is recognized as such by all control units at- 
tached to  the channel.' A multiplexor channel also resets the  state 
bits  and status bytes in subchannel storage (line 4). 

The channel selected for initial program loading  recognizes 
its number in  the load unit switch (line 5) and  sets  its working 
registers with the canonical information specified in line 6. It 
then branches to  the selection  sequence starting at  line  115,  from 
which point on it cannot be distinguished from any  other SIO. 

If the loading fails for any reason, a new attempt must be mounted 
at  the control panel, causing another system reset and returning 
the channel to line 2. 

The dwell a t  lines 1 and 2 of IOIE responds to  the CPU pro- 
gram. When the dwell  is broken, the interruption retraction bit 
g1 is set to  0 and the unmasked channel of highest priority with an 
interruption pending is selected for service (line 4). BI, is set to 
1 on line 8 if the channel is not working, with consequences that 
have been  explored above. If the channel is  working it will not be 
able to respond to Bf, directly. This  bit can therefore be  used as 
an interlock, and is set on line 11 for this purpose (see CH line 72). 

A selector  channel, or a busy  multiplexor channel with working 
and  interruption addresses that match, could only be  holding a 
pci at this point. This is  cleared in line 14  following the formation 
of a CSW in line 13. The  return  to line 0 then  sets Bi to zero, 
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loads the condition code in p ,  and signals the CPU by setting 
go to zero. 

A busy multiplexor channel with non-matching addresses must 
check the subchannel  storage location indicated by the inter- 
ruption  address  and, if the  interruption is for a pci or termination 
(line 15), generate  a CSW and clear the subchannel (lines 18 and 
19) much like CH lines 136 and 137. If the subchannel test (line 16) 
results in the branch to line 17, the bit 9, is set to 1 and  the program 
returns to  line 0 as in the other cases. I-Towever, the CPU will 
recognize g1 (line 30) as an indication that information for the 
proffered interruption was not available and it will not execute 
the usual interruption procedure. 

BMT is a time-limiting clock with two ways of stopping. It 
burst  mode  timer is started by  setting g2 in CHo, line 48 or 165, and it runs  until 
and  time-out stopped  by B: = 0 (line 5) or by its counter running out (line 4). 
limiter Where performance requirements  permit, channels make use 

of CPU facilities and controls to varying degrees. The effect of 
t'his on the logical behavior of the channels is confined to  the 
recognition of hardware failures and consequent corrective action. 
Program TOE is relevant where CPU controls are  preempted for 
channel interface operations, so that  an independent means for 
preventing indefinite delays is required. Two such levels are dis- 
tinguished in TOL". If CWa = 1, channel c uses CPU controls 
for  all interface  operations  other than polling in the channel 
idle phase, and if Cw = 1, it uses these controls for polling as 
well. Thus if CWa = 1, the dwell on line 1 is broken each time 
& = 1 and  either CW8 = 1 or one of the interface tag lines is 
nonzero. (The polling during channel idle is distinguished from all 
other  interface  operations  by Vi = 1 and (///a3/ UC) = 0.) 

In TOL" there  are two time-limiting clocks in series. The first 
clock,  which is started in line 2,  times either  the establishment of 
a connection (q = l),  or the return of select-in (PwG = l), or 
any response at  all ( = 0). The maximum time for the dwell 
encompassing lines 3-5 is of the order of 32 microseconds. When a 
connection is established (G = 1) (possibly, in the case of data 
transfer, even before the first clock  is started),  the maximum 
time is of the order of 500  milliseconds. This clock is stoppcd  either 
by Q = 0, indicating a response of some kind from the device, 
or by = 0, indicating that  the device wishes to disconnect. 
If either clock runs  out before it is stopped, an interface control 
check is set in linc 0 and  detected in CH" in one of lines 63,  117, 
or 126, or in HFC line 1. 

Program HFC" distinguishes between the case  where the chan- 
hardware nel shares  both data  paths  and controls with the CPU (Cw = 1) 
failure  in on the one hand,  and all other degrees of sharing and independence 
channel on the  other. Thus, in line 1, the dwell is broken in all cases for a 

channel control cl~eclc"' (Si) ,  but, is not  disturbed for either a chan- 
nel data check (Si) or interface control check (Si) unless CM; = 1. 
Whereas an interface  control check  will be acted upon by pro- 
gram CH" in any case, a channel data check  will not,  and hence 
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I it has no  effect on a  current  operation unless CPU hardware 
is involved. If the dwell is broken and C m  = 1 (line 2) the branch 
to line 3 is taken,  stopping CH” abruptly by a forced branch to 
its line 0. A machine check is then entered (line 4), which  will 
be  recognized by program MCIE. The subsequent  branch to 
line 0 invokes the defined operation MALFUNCTION  RESET 
(not  detailed in this description) which  will carry out  the (model- 
dependent) recovery procedure called for by the prevalent circum- 
stances, taking  into  account  the  fact that MCIE has been alerted 
by fc = 1. Whatever else it does, line 0 must  ultimately cause 
CH” to leave the dwell on line 1 with So reset to zero. 

Channels that do not use CPU hardware for data transfer 
disregard Si and, if they leave line 1, branch to line 5, where a 
malfunction reset signal ( e,5 = 1, 0) may be  issued on the 
interface.” 

If the channel is not working directly with the CPU a t  this 
moment (line 6), the program returns  to line 0. Otherwise, CH“ 
is immobilized (line 7) and HFC generates a CSW  (line 8) in 
which any field may be set to zero if there  happens to be a  parity 
error  in the associated register. After storing  either  all or part 
of the CSW  (lines 10 or 11) the model-dependent reset is executed 
on line 1 before returning to  the normal dwell. 

Appendix 
This  appendix  furnishes a number of examples to illustrate the 
use of the programs and Tables 3 and 5 for reference in answering 
specific questions concerning the operation of S Y S T E M ~ ~ O .  

What  events  can cause the CPU to enter  the stopped state; 
in  particular, can the stopped state be entered with any inter- 
ruptions pending? Table 3 shows that operating state can be set 
by CPU line 34 (to  “stop” if the console rate switch is not a t  “proc- 
ess”), by CP lines 12 and 15 (of which line 12 sets it to  “stop” when 
the stop key is depressed), by MAC line 6 (if the current  address 
to memory agrees with the setting of the address switch and  other 
conditions (line 5) are  met), by I P L  line 10 (during initial program 
load), and by RESET line 1.  The stopped state (CPU line 3.5) is 
actually  entered only by a branch from line 25 or by  a forced branch 
(RESET line 2). In  the former case the branch is taken only after 
all pending interruptions  are exhausted, while in  the  latter case all 
pending interruptions  are cancelled by the reset of h on RESET 
line 0. 

Can  any of the effective addresses constructed in the instruc- 
tion  fetch phase be captured and  stored? A scan of the EXC 
program (limited to  the references to a1 and a2 indicated in  Table 3)  
shows that LA places the second  effective address (prefixed by 
zeros) in a general register. LA also provides a convenient means 
of setting  any register R”‘ to zero. 

By  what  instructions can the system mask a’/# be set?  Table 3 
shows that all of p is set on EXC line a26 (that is, by LPSW) and 



instructions are suppressed  by t2 (lines a1 and a25), both are 
privileged and could, in a normal operating system, be executed 
only in the supervisor program. 

What instructions are included in the floating-point feature? 
Table  3 shows that  the feature options are specified  by the machine 
characteristics vector m, and that m, identifies the floating-point 
option. The occurrences of m2 in column No of Table 5 therefore 
identify the floating-point instructions. 

Can data be transferred directly (i.e., not via memory)  be- 
tween a general register Ri and  a floating-point register F’? 
Comparing the ‘(Results” column of Table  5 with column No 
shows that F is set only by floating-point instructions and R 
is  never set by floating-point instructions. Since R is set only 
by non-floating-point instructions and since Table 3 shows that 
F is  referred to  only in floating-point instructions (segment k 
of E X C ) ,  direct transfer from F to R is impossible. Similarly, 
since F is set only by segment k of E X C ,  it remains only to scan 
the argument fetch portion (k0-16) to  see that R does not occur. 

Under what circumstances does the interval  timer fail t o  
record  elapsed time?  The  entry for timer alarm in  Table 3 refers 
to  the T U  program whose  dwell  on  line 0 contains the conditions 
of interest. In particular, the last term prevents normal decremen- 
tation during the dwell on line  a17 of the read direct instruction. 
Moreover, normal decrementntion is delayed by the use of MAC8 
on TU line 1 if the channels (which have  a higher priority) keep 
the memory-access facility occupied. 

Can the console operator display the contents of the interval 
timer  and tell if it is decreasing appropriately by watching the 
display lights flicker?  Line 18 of the C P  program  shows that any 
memory location (in this case 80) selected by the address switch 
can be displayed. However, this segment of the program (15-25) 
can, because of line  13, be reached  only if the CPU is first stopped. 
Any displayed value is therefore fixed. In particular, the timer is 
not updated when the CPU is stopped ( T U  line 0). 

How are program interruptions caused by shift instructions; 
what determines the amount of shift? Line el  sets te (which the 
footnote to Table  5 shows to be the “specification  exception”) 
for an odd first address in instructions SLDA, SRDA, SLDL, and SRDL. 

Line e9 sets t8 (fixed point overflow)  for instructions SLA and 
SLDA if the mask fisc is  on and  a significant  (differing  from the 
sign) bit  has been  lost in the shift.  The shifting is  performed  on 
lines  e5,  e6,  e8 and e10, and the amount of shift is determined 
on  line  e3 as the residue  modulo 64 of the second  effective address. 

What instructions employ three specifiable addresses? Table 3 
refers to E X C  b18,  19,  d17,  23  for  effective address a,; the in- 
structions involved are therefore BXH, BXLE, LM, and STM. 
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w"/p 4" /(aZ4/R"2; (a, = 0); (a'"p)/ b13 

k ,  t (I ~ " 1 )  - RE, x 232 b17 
k ,  4" (I RU3) - E3 x 2'' b18 

~ " ' 4 " / ~ 3 2 ~ T ( k ~ + k , ) ; ( O > k o + k 1 ) ; - ( 3 2 ) T ~ ( 1 + k 0 + k 1 ) /  h20 
k +- (I R"') - @ x 2" b21 
-+ (b23, b24)., b22 
uz4/P +- /(a"/P); ( k  > k,);  (24)Ta2/ b23 
yZ4/P 4" /b"/P) ; ( k  5 k J ;  (24) T a d  b24 
1 : t ,  co 
i + Ia3/a1'/(24)TaI C l  

0 : B;, c2 
P34.35 4" 1, 1 c3 
0 : i  c4 
1 : 9 2  C 5  
0 : Bj CG 

P34.35 4" 1, 0 c7 
4 (exit, C9)n4 c8 
B;, +- 1 c9 
1 : B;, c10 

kz 4" (Ip1V(4~Ta3) - R ; W I V ( I ) T U ~ ~  232 b l 9  

-+ ( ~ 1 2 ,  ~ 1 3 ,  c15)n5 c11 
P31.35 +- 0, Bi c12 
B;, 4" 1 c13 
I : B ; A ~ = O  Cll 
1 : B;, c15 

TCll  

H I 0  810 
TI0 
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do + 
d l  -j 
d2 -+ 
d3 
d4 
d5 4 

d6 4 

d7 --j 
d8 
d9 

dl0 
dl1 
dl2 -+ 
dl3  
dl4 
dl5 
dl6 
dl7 
dl8 
dl9 e- 
d20 t- 
d21 - 
d22 
d23 C 

d24 - 
e0 - 
e l  3 
e2 
e3 + 
e4 
e5 

e9 
e10 
e l l  
e12 
e13 
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MI'C r 
E D  

EDMK " 

EDMK 

E D  

E D  

YVN YVZ 
TR MVC 

g56 
g57 
g58 
g59 
g60 
g61 
g62 
hO 
h l  
h2 
h3 
h4 
h5 
h6 
h7 
h8 
h9 

h10 
h l l  
h12 
h13 
h14 
h15 
h16 
h17 
h18 
h19 
h20 
h21 
h22 
h23 
h24 
h25 
h26 
h27 
h28 
h29 
h30 
h31 
h32 
h33 
h34 
h35 
h36 
h37 
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E R ; +  MR 8R 

AH CR M I  8H 

AL ALR 
tJL 8LR 

A AI1 AR 

8 SH BR 
AL ALR 

SL BLR 
MIX 

AL ALR 

8L BLR 

A AH AR 
0 0 H  0 R  

C CH CR 

M Ma 

D DR 

io 
i 1. 
i2 
i3 
i4 
i5 
i6 
i7 
i8 
i9 

i10 
ill 
i12 
i13 
i14 
i15 
i16 
i17 
i18 
i19 
i20 
i21 
i22 
i23 
i24 
i25 
i26 
i27 
i28 
i29 
i30 

j0 
j l  
j2 
j3 
j4 
j5 
j6 
j7 
j8 
j9 

j l0  
j l l  
j 12 

--+ - 
4 

MH 

4 

=+ 
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AP CP DP 
MP BP 

CVB 
ZAP 

CVB 

z;;} 

CP 

BP 

MP 

DP 

AP MP BP 
ZAP CVD 

DP 

j13 C-r 

j14 
j 15 
j16 
j17 
j l8 
j19 
j20 
j21 

j22 
j23 

j24 c 
j 25 
j26 + 
j27 + 
j 28 

= 

- 
- - 

f 

- 

9 9  -- - 
j30 
j31 
j32 
j33 

j34 6 
j35 
j36 
j37 
j38 

j39 
j40 

j41 
j42 

j43 + 
j44 
j45 
j46 

' 

#= 

= 

j47 I 
+ (exit, j49,  j50, j51, j52),, 

CVB Ral +- ?(32) 

P34.35 +- 

P34.35 + 7(2) 

MACg(j, 1, s, d; ?(8)) 
j : a1 

YP j +- 2241u1 + I ,  
DP 

j +- 2241j - 1 

j48 
j49 
j 50 
j51 
j52 
j 53 
j54 
j55 r; 
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ZE 0TE 

LD  STD 

L E R  

LDR 

AE AU CE  DE 
ME 8 E  8U 

DER  MER BER BUR 
AER AUR CER 

HER  LPER 
LNER  LTEE  LCER 

DD MD BD 8W 
AD A W  CD 

ADR AWR CDR 
DDR YDR a m  awx 

LNDR  LTDR  LCDR 
HDR  LPDR 

HER HDR 

LNER  LNDR 
LPER LPDR 

LTER  LTDR 
LCER  LCDR P 

CD CDE 

SER  SUR 
BE 8 D  AER ADR 

SU SW AUR AWE 
SUR aWR CE  CER 

A E A E R A U A U R  

SE SER SU BUR 
CE  CER 

AD ADR A W  AWR 
CD CDR 

SD SUR 8W SWR 

AU AUR 
SU SUR 

A U  AUR A W  AWR 
8 U  SUR SW 8WR 

s 

k2 
k3 + 
k4 4 

k5 4 

k6 + 
k7 

k l l  - 
k12 
k13 t 
k14 C- 

k15 
k16 - 
k17 
k18 
k19 
k20 
k21 
k22 
k23 
k24 t 
k25 
k26 
k27 
k28 
k29 
k30 
k31 
k32 
k33 
k34 
k35 
k36 
k37 
k38 
k39 
k40 - 
k41 t 
k42 
k43 1 
k44 , 

- 

- 

- 

-- 

- 

= 

CE 
CER 
CDR 
CD 
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k45 
k46 
k47 
k48 
k49 
k50 
k51 
k52 
k53 
k54 
k55 
k56 
k57 
k58 
k59 
k60 
k61 
k62 
k63 
k64 
k65 
k66 
k67 
k68 
k69 
k70 
k71 
k72 
k73 

10 
11 
12 
13 
14 

15 

exit 

- 3  CD  CDR 
CE  CER 

1 

-+ 

-+ 
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Table 3 System reference table  for programs and variables 

svmbol 

BMT 
CH 
CP 
CPU 
EZE 
EP 
ES 
HFC 
IOZE 

IPL  
MCIE 

T 
TOL 
TU 
DELAY (k units) 
DIAGNOSE 
EXC 
MAC; ( j ;  k) 

MALFUNCTZON 
RESET 

MODEL-DEPEND- 
ENT  RESET 

POWER-OFF 
SEQUENCE 

SEQUENCE 
POWER-ON 

RESET 
SYSTEM  STOP 
B 

d / B  

Bo 
B1 
BZ 
BB 
B4 
B5 
B0 

B7 
B8 

iimension 

5 7 ,  20 

igni'cance 

mrst mode timer 
:hannel 
:ontrol panel 
:entral processing unit 
3xternal interruption  entry 
?mergency  pull 
:xternal signals 
lardware failure in channel 
.nput/output  interruption 

Initial program  load 
machine-check interruption 

timer 
time-out limiter 
timer update 
time delay 
recovery procedure 
instruction execution 
memory access 

entry 

entry 

channel recovery  procedure 

model-dependent system 

power-off sequence 
reset 

power-on sequence 

system  reset 
system shutdown 
channel state 

device status  byte 

attention 
status modifier 
control unit  end 
busy 
channel end 
device end 
unit check 
unit exception 

channel 
interruption pending in 

eferences: set, used, [via local variable] 

TFC 3,7; RESET 3 
TP 3 
'PL 1; MCIE 2 ;  RESET  2 

PESET 4 

BMT 3; EXC a l l ,  15; MCZE 4; T 0 ;  TOL 3 , 7  
FXC a21; MCIE 7 
7PU 20 
7H 11, 18, 23, 102, 105, 136-159; CP 18, 23; 

CPU 3, 31, 32; EXC; ZOIE 13, 18; ZPL 
6 , 7 ;  MCZE 8; TU 1, 3 

KFC 0 

RESET 6 

YP 0 

CP 2 

CP 3 , 9  
EP 1 

CH2, 53, 60, 74,  81, 136; HFC 8; ZOIE 18; 
IPL 5 

CH 70 [i] 

CH 69 

CH 2, 33,  36,  39,  52, 53, 59, 60, 73, 74,  81, 94, 
96,  98,  100,  137,  155; CPU 25, 26; EXC 
c12; IOIE 0, 1, 4 
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Table 3 Continued 

symbol dimension 

- <7, 64 

- <7, 32 

1 7 ,  4 

4, 8 

4, 64 
3, 16 

- 7  9 

significance 

channel working 

interplay  with CPU 

not operational 
device address for 

interruption 
channel  command 

command code 

read/write 
data address 
device address  (temporary 
chain-data 
chain-command 
suppress length indication 
skip 
program-controlled 

interruption 
unused positions 
ignored positions 
count 

channel  address word 

protection key 
unused positions 
command  address 

channel model characteristic 
scan  always/on  request- 

in only 
degrees of hardware  shar. 

ing between CPU and 
channels 

ext.erna1 lines 
direct  control out 
direct  control in 
timing signal out 
timing signal in 

floating-point registers 
instruction register 

instruction code 

immediate data  byte 
from  memory in M A C i  

operation 

references: set, used, [via local variable] 

BMT 5; CH 2,48, 57,  58, 104,  112, 115,117, 
118, 122,  127, 165; E X C  c6, 14; IOIE 7, 9 

CH 2, 37,43, 56, 62,64,72, 79,  134,  165; EXC 
c9, 10, 13, 15; HFC 6; IOIE 8, 10, 11,  14 

CH 0, 1, 2; E X C  c2 
CH 53,  60, 73, 74,  81, 82, 88, 92,  97, 99; IOIE 

CH 2, 6, 27,  48, 58, 86,  113 
CH 2,  6, 19, 25 [k],  48,  86, 108 [k] ,  111 [k] ,  
113, 123 

CH 10, 28 
CH 11, 18, 19 
CH 77, 93 
CH 8, 16, 21, 66,  67, 81, 156 
CH 67, 79,  91, 156 
CH 8, 66, 81 
CH 17 
CH 28, 114 

0, 12, 15 

CH 26 [k],  111 [k] 

CH 8, 9, 16, 20, 21,  26 [k], 66,81, 111 [k],  136, 

CH 2, 48,58, 86,  102, 136, 154; HFC 8; 

CH 103; M A C  10 
CH 103 
CH 6,  23, 24,  31,  70, 105, 106,  110 

154; HFC 8 

IOIE 13 

CH 35 

HFC 1 , 2 ;  TOL 1 

EXC a10 
EXC a18 
EXC a10,  12,  14,  16 
ES 
C P  20, 25; EXC k 3-13,  69,  70; Table 5 
CPU 3, 12-19; EXC bl; EXC 
CH 88-93, 101,  122,  123,  143-163; C P U  7, 8; 

E X C  bl,  3, 5, d9, g58, kl, 19,10,4, 5; HFC 9 
EXC a10, 14, 27, b4, 7, f4, g53 
CH 13, 14; MAC 19, 20,  22 
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dimension 

- <213, 4 

- <224, 9 

144, 11 
16, 16 
1 7 ,  9 

16, 32 
1 7 ,  18 

- <256, 110 
1 7 ,  16 

556, 21 

~~ 

signiJicance 

memory protection  keys 

main memory 
(one per bank of 211 bytes) 

parity column 
navigation matrix 
decoding matrix 
polling lines 

general registers 
active  subchannel status 

channel status  byte 

program-controlled 
interruption 

incorrect  length 
program check 

protection check 
channel data check 
channel  control check 
interface  control check 

chaining check 

subchannel 
interruption pending  in 

subchannel working 

working-device address 

subchannel  storage 
channel/control unit 

interface 
command-out or status-in 
service-out or service-in 
address-out or address-in 
interplay  in/out 

suppress-out 
operational-out 
operational-in 
parity  bit  for  bus 
bus for data or device 

status 
:ontrol unit  status 

service request 
channel  number 

references: set, used,  [via local  variable] 

EXC a6, 7; MAC 10 

CH 30,109; EXC a3,19,11; MAC 8,9,19,23; 
Table 5 cola. A and P 

CH 13, 14 [‘.lo] 

CPU 9 
CPU 8 
CH 2, 34,  39, 40. 44,  78,  115, 116,  117,  119, 

121; TOL 5 
CP 19, 24; CPU 14-19; EXC; Table 5 

CH 2, 9, 48, 58,  67, 86,  131, 136-159; HFC 8; 
IOIE 13; IPL 5 

CH 28, 59, 114, 136; IOIE 14 

CH 8,  66, 81 
CH 12, 26, 30, 66, 81, 103, 107, 109,  111, 123, 

128,  136,  154, 156; M.4C 16 
CH 66, 81, 136, 154; M A C  16 
CH 13,  15; HFC 1 
HFC 1 
CH 41, 51, 52, 62, 63, 116, 117, 125, 126, 141; 

CH 28, 66, 81 
HFC 1;  TOL 0 

CH 2, 9, 48, 55,58, 71, 81, 86,87-93, 136, 137, 
145,  148, 153, 155 

CH 2,  48, 50,  58, 71, 81, 86, 87-93,  137,  145, 
148,  165 

CH 6,  45, 47,  53,  60,  73,  74,  77, 81, 82, 84, 88, 
92, 93, 115, 117; IOIE 12 

CH 4, 48, 58, 85, 86, 99; IOIE 16, 18, 19 
CH 7,  14,  16,  39,  49, 55, 68,  76,  78,  96,  115, 

7 H  36, 41,  52,  63,  117,  120, 126; TOL 1 
7 H  36, 41,  52, 63, 65,  117, 126; TOL 1 
7 H  36, 41,  42,  52, 63,  117, 126; TOL 1 
7 H  28,  40,  41,  51,  52,  62,  63,  116,  117, 125; 

7 H  2,  29,  36; HFC 5 
7 H  2; HFC 5 
7 H  61; TOL 5,  9 
7 H  15, 41,  52,  63,  117, 126 

124,  130,  151,  160,  164 

TOL 1, 5,  9 

7 H  11, 13-15, 18,41,45, 52,  53,  63,  67,  68,  74, 
117,  126,  128,  129,  149-159 

7H 37, 38 
7 H  37, 38 
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dimension 

4 

24 
12 
8 

8 X m6 

32 
32 
6 

6 

8 
3 

5 

signijicance 

effective addresses 
temporary address 
first  address 

second address 

third address 
address switch 
alternate prefix 
console buttons 

load key 
reset key 
interrupt key 
stop  key 
start  key 

set-instruction-counter kej 
display key 
store  key 

CPU registers stored  in 
diagnosis 

ia ta  switch 
iisplay lights 
?xternal signal lines 

write out 
read out 
hold in 
machine-check out 
IPL in-lines 

let by Ea 
'ailures (parity,  etc.) 

ill character 
:eneral interlock bits 

interruption interlock 

1/0 interruption retractio~ 
burst-timer  control 

interruption holder 
machine check 
program check 
supervisor call 
external 
I /o 

references: set, used, [via local variable] 

CH 82; CPU 16, 19; EXC a, b l l ,  b, cl, d, e, 
f, g, h, io-5,  19-30, j, kl-13, 69,  70, 11-3 

24, d6, d, e3, f0, 1, 16, 18, g, h18, 19, i7-9, 
j0-16, kl-12,ll-3 

CPU 12,  15, 18; EXC a3-7, bl ,  2, 13, 14, 23, 

CPU 13; EXC b18, 19, d17, 23 
CP 16-25; MrlC 6 
MAC 4 
CP 5-7 

MCIE 8 

C P  16, 23-25 
CP 18-21 

EXC a10, 12 
EXC a14, 16 
EXC a17; TU 0 
MCIE 3,s 
CP 5-7 
EIE 0, 2, 3; ES 0 

HFC 4; IPL  9; MAC 22; MCIE 0, 9; 

EXC h13, 16, 25 
RESET 0 

RESET 0 

7H 62,  64,  72, 82, 87-92,  117,  122,  123,  132- 
157; CPU 27, 28; EIE 1, 4; HFC 9; IOIE 
0,2 ;  MCIE 9 

CPU 30; IOIE 3, 17 
BMT 0, I; CH 48,  58, 165; EXC c 5 ;  IOIE 6 
CPU 25,  26, 29; RESET 0 
MCIE 1 
CPU 24; MCIE 9 
EXC a27; MCIE 9 
EIE 0 

IOIE 1 
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Table 3 Continued 

symbol limension 

3 
11 
11 

12 
11 

64 

8 

S 
" 

1 
f 
1 
I 

- 

ignifiance 

oca1 variables 
ield lengths 
oad unit switch 
nachine  (model)  char- 

protection feature 
decimal feature 
floating-point feature 
direct  control feature 
interlock feature 
memory width  in  bytes 
number of bytes in 

machine check 
number of final 0's in 

acteristics 

diagnose 

option 
diagnose completion 

set I C  key  option 
burst mode interval 

main prefix 
navigation  vector 

instruction  set options 
(mol ml, m2, m3, m4) 

privileged operations 
format (RR, RX, RS, 

starting line in EXC 
branch control in EXC 

ss, SI) 

program status word 
system mask 
protection key 
(extended  BCD/Ameri- 

can  standard) code 
machine check mask 
(running/wait)  state 
(supervisor/program) 

interruption code 

instruction  length code 
condition code 
fixed-point overflow masl 
decimal overflow mask 
exponent underflow masl 
lost significance mask 
instruction address 

character  from  pattern 

state 

field 

eferences: sef, used, [via local variable] 

:PU 17; EXC f22, 26, 31, g, h5, 36, j 
:H 5, 6; I P L  5, 6 

:H 103; CPU 2; MAC 11; No 
vo 
VO 
vo 
vo 
:P 18, 23; MAC 6 
MCIE 8 

TXC a19 

YXC a22 

7 P  16 
BMT 2 
WAC 4 
7PU 9 
7PU 10 

YPU 10 
CPU 11 

CPU 21; EXC 0; TU 0 
EXC 
CPU 31, 32; EXC a26; I P L  7 
CPU 25, 26; EXC a2; IOIE 4 
CPU 2 ;  MAC 10 
EXC g24, h2, j19, 36 

MCIE 0 
CPU 36 
CPU 10 

CPU 24,  33; EIE 2, 3; EXC a27; IOIE 0 ;  
I P L  8; MCIE 6 

CPU 1-7,  23,  33; EXC b10; I P L  8 
CH 133,138,146,161; EXC b10, b l l ;  Table 5 
EXC aO, b10, d12, e9, i24 
EXC aO, b10, j29 
EXC aO, b10, k73 
EXC aO, b10, k41, 42, 72 
CP 16,21; CPU 3, 5 ;  EXC b10, 13,  14,23,  24 
EXC hll, 12, 13 
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Table 3 Continued 

symbol 

9 
r 
rank 

S 

source 
f 

ti 
time-out limit 
u, v 
W 

address  compare  sw 
b 

C 

class 

console  interrupt 
emergency  pull  sw 
h 

i 
ipl  
j, k 
load light 

manual  light 
operating  state 

P f X  sw 
P f X  tgr 
power-off key 
power-on  key 
rate sw 
S 

storage select sw 
t 
tick 
timer  alarm 
timer  frequency 

W 

wait  light 

dimension 

10 
10 
10 

8 
16 

2 

- <7 

signijicance 

memory-access queue 
memory-access request 
MAC priority (7 channels 

with 0 in arbitrary posi- 
tion, timer  update, CPU) 

local variable 
character from source field 
program exceptions 

exception with code i 
time limits 
local variables 
number of control units on 

interface 
address compare switch 
index of console button 

being serviced 
channel index 

distinction  between se- 
lector and multiplexor 
channels 

(digit select/significance 
start/field  separator/ 
other) 

set  by  interrupt  key 
emergency  pull  switch 
index of interruption 
being serviced 

local variable 
initial program  load 
local variables 
on during initial  program 

on when CPU stopped 
CPU operate or stop 

prefix select switch 
prefix trigger 
power-off key 
power-on key 
rate switch 
local variable 
storage select switch 
subchannel  index 
timer pulse 
interval  timer alarm 
50, 60, 300 X 2i C.P.S. 

wait for timer update 
on during wait state 

load 

(0 5 i 5 8 )  

references: set, used,  [via local variable] 

MAC 0, 1, 24 
MAC 0,2,24 
IOIE 4; MAC 1 

EXC h18, 20-23 
CPU 1-10,  21-24; EXC;  MAC 15; Table 5 

TOL 2 , 6  

CH 40,  116, 117, 119; TOL 5 

MAC 5 
CH 5; CP 6, 7-14; IPL  3,  4 

CH 5, 37, 38; C H ;  HFC;  TOL 
CH 3, 32, 36, 39, 44,  46,  50, 52, 54, 61, 73,  75, 

80, 83, 87-95, 121, 145, 148, 155, 165; 
EXC [i]  c4, 14; IOIE [i] 5, 9, 12 

EXC h7, 8, 12, 14, 15 

CP 11; EIE 0, 2, 3 
EP 0 , 2  
CPU 26,  27-32; EIE 1; IOIE 2 

CH 5; CP 10; CPU 0;  IPL  0, 10; RESET 1 

IPL  2, 10; RESET 5 

CPU 35, TU 0 
CP 12, 13, 15; CPU 34,35; IPL 10; MAC 5, 

6; RESET 1 
IPL 3 
IPL  3; MAC 4 
CP 4 
CP 1 
CPU 34; TU 0 

CP 17, 22 
CH 47, 48, 58, 84, 85, 86, 97 
T 1; TU 0, 5 
EIE 0, 2, 3; TU 4 
T O ; T U 2  

MAC 2, 24 
CPU 36 
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Table 5 Navigation  matrix and reference table r - 1 -  
Nauigalion m l r i z  NO 

I 1 2 3 4  5 6 7 8 910 Inda n a i c  
Mm- 

- 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

20 
21 
22 
23 
24 
25 
26 
27 
28 
29 

30 
31 
32 
33 
34 
35 
36 
37 
38 
39 

40 
41 
42 
43 
44 
45 
46 
47 
48 
49 

50 
51 
52 
53 
54 
55 
56 
57 
58 
59 

60 
61 
62 
63 
64 
65 
66 
67 
68 
69 

70 
71 
72 
73 
74 
75 
76 
77 
78 
79 

- 

- 

- 

- 

__ 

- 

- 

56 

I oLI; , , lo"-"--  
L 0 1 i 4 1 0 0 2 0 - -  
nl 0 1 k O 7 2 2 0 0 2 1  
n2 0 0 k O 8 2 2 0 0 2 1  
nr 0 1 k O 4 2 0 0 0 1 1  
n2 0 0 k O 5 2 0 0 0 1 1  
I 0 1 i 4 2 0 0 2 1 - -  
I 0 1 i 5 1 0 0 0 2 - -  
I 0 0 i 5 0 0 0 0 2 - -  
n, 0 3 i 5 2 0 0 2 0 3 -  

A 
AD 
ADR 
AE 
AER 
AH 
AL 
ALR 
AP 

AR 
AU 
AUll 
AW 
AWR 
BAL 
BALR 
BC 
BCR 
BCT 

BCTR 
BXH 
BXLE 
C 
CD 
CDR 
CE 
CER 
CH 
CL 

CLC 
CLI 
CLR 
CP 
CR 
CVB 

D 
CVD 

DD 
DDR 

DE 
DER 
diagnose 
D P  
DR 
ED 
EDMK 
E X  
HDR 
HER 

H I 0  
IC 
ISK 
L 
LA 
LCDR 
LCER 
LCR 
LD 
LDR 

LE 
LER 
LH 
LM 
LNDR 
LNER 
LNR 
LPDR 
LPER 
LPR 

__ 

~ 

___ 

~ 

~ 

~ 

undefined operation codes 

Add Normalized (Long) 
Add 

Add Normalized (Long) 
Add Normalized (Short) 
Add Normalized (Short) 
Add Halfword 
Add Logical 
Add Logical 
Add Decimal 

4 
1 4  
1 4  
( 4  
$ 4  

4 
4 
4 
4 

S 

3 
5.4 
6A 
2A 
7.4 
3A 
4A 
5E 

FA 
1E 

7E 
1A 

SE 
6E 
2E 
45 
05 
47 
07 
46 

06 
86 
87 
59 

29 
69 

39 
79 

49 
55 

95 
D5 

F9 
15 

4F 
19 

4E 
5D 
6D 
2D 

7D 
3D 
83 
F D  
1D 
DE 

44 
D F  

24 
34 

9E 
43 
09 
58 
41 
23 
33 

68 
13 

28 

78 
38 
48 
98 
21 
31 
11 
20 
30 
10 

82 
18 
22 
32 

5 c  
12 

6C 
2C 
7C 
3C 

- 

- 

- 

- 

- 

- 

- 

S S 
S T S  
S S 

T S  C 
T S  

S T T  T C 
~~ 

I 0 0 i 4 0 0 0 2 0 - -  
n2 0 1 k O 4 2 1 0 0 1 1  
n2 0 0 k O 5 2 1 0 0 1 1  
na 0 1 k 0 7 2 3 0 0 2 1  
nl 0 0 k 0 8 2 3 0 0 2 1  
1 0 1 b 1 0 1 1 - - - - -  
I 0 0 h 1 0 0 1 - - - - -  
I 0 1 b l l 1 0 - - - - -  
1 0 0 h l l O O - - - - -  
I 0 1 b S l l - - - - -  

4 
: 4  
+ 4  
1 4  
1 4  

Add 
Add Unnormslired (Short) 
Add Unnormalired (Short) 

Add Unnormalized (Long) 
Add Unnormalired (Long) 

Branch and Link 
Branch snd  Link 
Branch on Condition 
Brsneh on Condition 
Branch on Count 

Branoh on Count 
Branch on Index High 
Branch on Index Low or Equal 
Compare 
Compare (Long) 
Compare (Long) 
Compare (Short) 
Compare (Short) 
Compare Halfword 
Compare Logical 

Compare Logical 
Compare Logical 
Compare Logical 
Compare Decimal 
Compare 
Convert to Binary 
Convert to Decimal 
Divide 
Divide (Long) 
Divide (Long) 

Divide (Short) 
Divide (Short) 
Diagnose 

Divide 
Divide Decimal 

Edit 
Edit  and  Mark 
Execute 
Halve (Long) 
Halve (Short) 

Halt 110 
Insert  Character 
Insert Storage Key 
Load 
Load Address 
Load Complement (Long) 
Load Complemcnt (Short) 
Load Complement 
Load (Long) 
Load (Long) 

I 0 0 M o l - - - - -  
1 0 2 b 1 7 0 - - - - - -  
I 0 2 b 1 7 1 - - - - - -  
1 0 1 i 4 1 1 1 - 0 - -  
n2 0 1 k 0 7 2 2 2 0 0 -  
nz 0 0 k 0 8 2 2 2 0 0 -  
n, 0 1 k O 4 2 0 2 0 0 -  
nz 0 0 k 0 5 2 0 2 0 0 -  
1 0 1 i 4 2 1 1 - 1 - -  
1 0 1 f O O " " - -  

I 0 3 f 1 4 O - - - - - -  
I 0 4 f30""" 
1 0 0 f 1 0 - - - - - -  
*, 0 3 j 5 2 0 1 1 0 2 -  
1 0 0 i 4 0 1 1 - 0 - -  
1 0 1 j 3 - 1 - 0 - 1 -  
1 0 1 jo""00- 
I 0 1 i O 1 3 3 - 0 1 -  
mr 0 1 k O 7 3 - 1 1 2 2  
m* 0 0 k O 8 3 - 1 1 2 2  

mr 0 1 k O 4 3 - 1 1 1 2  
m, 0 0 k 0 5 3 - 1 1 1 2  
I 1 4 s19--""- 
m, 0 3 j 5 1 0 3 4 1 4 -  
I 0 0 i O O 3 3 - 0 1 -  
m, 0 3 h 0 0 1 - - - - -  
m, 0 3 b o l o - - - - -  

mr 0 0 k 0 9 0 - - 1 2 0  
ml 0 0 k 0 6 0 - - 1 1 0  

[ O 1 b O  _ _ _ _ _ _ _  

3 
3 
3 
3 
3 
3 
3 

3 
3 
3 
3 
3 

__ 

1 
1 

~ 

k 
1 

4 

3 
t 3  

1 

~ 

4 

1 3  
4 3  

4 
1 
1 

T S  
s T S  
S S 
s 
s 

s 
C 

-I- 
S T T  T 
S T T  1' 

s s s  
S S 
S S ~ _ _ _ _  

S 
T 

s s  s s  
T S  

S S 
S S 

S T S  
S S 

S T S  
S S 

T S  
T S  

S S 
S S 

S S 
S S 

C 

~~ 

C 

- I -  

Load (Short) 
Load (Short) 
Load Halfword 
Load Multiple 
Load Negative (Long) 
Load Negative (Short) 
Load Negative 
Load Positive (Long) 
Load Positive (Short) 
Load Positive 

I 

1 1 4 a24"""- 

mr o o k 0 9 1 - - 0 2 a  
1 O O d O  - _ _ _ _ _ _  
me 0 0 k 0 6 1 - - 0 1 0  
1 0 0 d g - - - - - - -  

m2 0 1 k O 7 4 - 0 1 2 2  
1 0 1 i 0 1 2 2 - 0 0 -  

m2 0 0 k 0 8 4 - 0 1 2 2  
ml 0 1 k 0 4 4 - 0 1 2 2  
ml 0 0 k 0 5 4 - 0 1 2 1  

LPSW 
LR 
LTDR 
LTER 
LTR 
M 
MD 
MDR 
ME 
MER 

Load PSW 
Load 
Load and  Test  (Long) 
Load and Test  (Short) 
Load and Test 
Multiply 
Multiply (Long) 
Multiply (Long) 
Multiply (Short) 
Multiply (Short) 

S T I S  

S 
S I: 
s 
S 
S 
S 
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I Navigation molriz NO 

0 1 2 3 4 5 6 7 8 910  Inde 

Program ezeeplions@ 

OP M EX P A S D IF 16 DF DK E U L8 F 
1 2 3 4 5 6 7 8 9 10 111213141 

Mm- 
m a i c  

__ 
MH 
MI' 
MR 

MVI 
MYC 

MVN 
MVO 

N 
MVZ 

NC 

NI  
NR 
0 
oc 
01 
OR 
PACK 
RDD 
S 
SD 

SDR 
SE 
SER 
SH 
SI0 

SLA 
SL 

SLDA 

SLL 

SLR 
SP 
SPM 
SR 
SRA 
SRDA 
SRDL 
SRL 
SSK 
SSM 

ST 
STC 
STD 
STE 
STH 
STM 
SU 

svc 
SUR 

SW 

SWR 
TCH 
T I 0  
TM 
T R  
TRT 
TS 

WRD 
UNPK 

X 

~ 

~ 

s L n L  

~ 

~ 

~ 

ivarne Code 

__ 
80 
81 
82 

84 
85 
86 
87 
88 
89 

90 
91 
92 
93 
94 
95 
96 
97 
98 
99 

w 
01 

03 
02 

04 
05 
06 
07 
08 
09 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

20 
21 
22 
23 
24 
25 
26 
27 
28 
29 

30 
31 
32 
33 
34 
35 
36 
37 
38 
39 

40 
41 
42 
43 

a? 

- 

- 

- 

- 

- 

~ 

~ 

- 
4c 
FC 
IC 

92 
D l  
F1 

54 
D3 

D 4  

94 
14 
56 

96 
D6 

16 
n 
85 
5B 
6B 

2B 
7B 
3B 
4B 
SC 
SF 
8B 
8 F  
8D 
89 

I F  
FB 
04 
1B 
8A 
8E 
8C 
88 
08 
80 

50 
42 
60 
70 
LO 
90 
IF 
3F 
3A 
SF 

ZF 
3F 
3D 
31 
DC 
DD 
J3 
F3 
54 
57 

117 
a7 
17 
F8 

n2 

- 

- 

- 

~ 

- 

- 

1 

2 

I 2  
2 

T I S  I 1 0 1 i 4 2 2 0 3 1 - -  
m, 0 3 j 5 1 0 2 3 0 4 -  
1 0 0 i 0 0 2 2 - 0 0 .  
I a 3 g x 1 2 - - - - -  
1 0 4 g 5 3 - - - - - - -  
1 0 3 g 5 4 0 2 " " -  
1 0 3 9 0  
1 0 3 g5402""- 
1 0 1 f 0 1 0 0 " "  
1 n 3  IO----- 

1 0 4 f3101"" 
1 0 0 f 1 1 0 0 " "  

1 0 3 f l 4 1  
1 0 4 f 3 1 1 1 - - - -  
1 0 0 f l 1  1 0 " "  
I n 3 g 1 2 - - - - - - -  
ma 1 4 a 1 3 - - - - - - -  
1 0 1 i O 1 1 0 2 0 - -  
rnr 0 1 k 0 7 2 2 1 0 2 1  

mz 0 0 k 0 8 2 2 1 0 2 1  
m9 0 1 k 0 4 2 0 1 0 1 1  

1 0 1 f n 1 1 0 - - - -  

Multiply Halfword 

Multiply 
Multiply Decimal 

Move 
Move 

Move with Off& 
Move Numerics 

And 
Move Zones 

And 

S T T S T  
S 

T T  

T T  
s s  
T T  
T T  

I 
-1- 

T T  

s s  

T S  I 

T T  
s s  
T T  

S S  T T  

S T S  

S S 
S 1' s 
S S 

T S  

T S  C 

T S  C 

T S  
S 

c 
S C  
S 

And 
And 
Or 
Or 
Or 
Or 
Pack 
Read Direct 

2 
1 2  
I 2  

2 
2 

1 2  

1 4  
1 4  

- 1  

Subtract 
Subtract Normalized (Long) T C C  

1 4  
1 4  

1 4  
1 4  

4 
1 3  
1 4  
! 4  

T C C  
T C C  
T C C  

Subtraot Normalized (Long) 
Subtract Normalized (Short) 
Subtract Normslized (Short) 
Subtract Halfword 
start  I/O 
Subtract Logical 
Shift  Left Single 
Shift Left Double 
Shift Left Double Logical 
Shift  Left Sinale Loaieal 

mi 0 .0 k 0 5 2 0 1 0 1 1  
1 0 1 i 4 2 1 0 2 1 - -  
1 1 4 c 0 0 2 - - - "  
I 0 1 i 5 1 1 0 1 ? - -  
1 0 2 e o 2 0 " " -  
1 0 2 e 1 2 1 " " -  
1 0 2 e 1 0 1 " " -  
1 0 2 e 0 0 0 - - - - -  

m, 0 3 j 5 2 0 1 2 0 3 -  
1 0 0 i 5 0 1 0 1 2 - -  

1 0 o a 0  

1 0 2 e 0 3 0 " " -  
I 0 0 i 4 0 1 0 2 0 - -  

1 0 2 e 1 3 1 - - - - -  

mo 1 0 a30------ 
1 0 2 e 0 1 0 - - - - -  

1 1 4 a l  """_ 

- 

I n 2 e ~ l ~ - - - - -  

Subtract Logical 
Subtract Decimal 
Set Program Mask 
Subtract 
Shift Right Single 
Shift  Right Double 
Shift Right Double Logioal 
Shift  Right Single Logical 
Set Starsge  Key 
Set System Mask 

3 
4 
4 
4 
3 

1 3  

S T T I  T C 

C 

S 
S 

s s  s s  
S T  

Store 
Store Character 
Store (Long) 
Store (Short) 
Store Halfword 
Store Multiple 
Subtract Unnormalized (Short) 
Subtrsct Unnormalized (Short) 
Supervisor Call 
Subtract Unnormslized (Lon=) 

s s  s 
s s  

s s s s  
s s s s  

s s  s 
T T  S 

s T S  
S S 

s T S  

9 S 
~~ 

S 
S 

T 
T T  

T 
S T S  

T T  
9 s  T 

T S  ________ 
T T  
s s  

9 T T  T C 

1 4  
t 4  

1 4  

1 4  
4 
4 
3 

~ 

$ 3  
2 

2 

2 
2 
2 
4 

~ 

T c 
T C  

T c 
T C  ml 0 0 k 0 8 2 3 1 0 2 1  

1 1 4 C O O O - " "  
1 1 4 c 0 0 2 " " -  
1 0 4 b 6  - _ _ _ _ _ _  
1 0 3 g46-2----- 
I 0 3 g 3 6 - - - - - - -  
m, 0 4 a 2 8 - - - - - - -  
1 0 3 g23-""-- 

4 """_ 
I n I f o 1 2 ' 0 - - - -  

Subtract Unnormslized (Long) 
Test Channel 
reet I/O 
rest under Mask 
Translate 
rrsnslate and Test 
rest and  Set 
Unpack 
Write Direct 
Exclusive Or 

I i  XC 
XI 
XR 
ZAP 

Exclusive Or 
Exclusive Or 
Exclusive Or 
Zero and Add 11 

0 Specifies the number of Ken- 0 ProKram  exceDtians occurrine in instruction execution cause the instNCtion to 
era1 and floating-point regis 

distinct values to which the 
ters  set, and the number of 

condition code may be set. 
t RL is set  (not specified 

by address) 
f RL snd R' are set  (not 

specified by address) 
One to sixteen cyclically 
contiguous registen me 
set. 

be suppressed-(S), terminated ( T ) ,  or completed (0). (Exceptions 5 and 6 may 
also occur during instruction fetch.)  The exception codes are: 
codc abbr name code obbr name 

8 I F  Fixed-point Overflow 

2  M Privileged Operation 10 D F  Decimal Overflow 
1 OP Operation 9 IK Fixed-point Divide 

3 EX Execute 
4 P Protection 
5 A Addressing 
6 S Specification 
7 D Data 

11 DK Decimal Divide 
12 E Exponent Overflow 
13 U Exponent Underflow 
14 LS Significance 
15 FK Floating-Paint Divide 

0 Feature options 

2 Format 
1 Privileged operation 

3 Starting line in EXC 
4-10 Branches in EXC 

@ The mnemonics, names, and 
hexadecimal codes assigned in 
Reference 1. 
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Table 6 Operation decoding matrix 0 

Second Hexadecimal Digit 

0 1  

+ LPDR  LNDR 
67 64 

LPEll  LXER 

68 65 

STH LA 

124  54 

ST 

120 0 

STD 

122 0 

STE 

123 n 
SSM 

119 0 

STM TM 

125 133 t 

-I" 
MVN 

3 4 5  

136 t 

Table 7 Normal uses of effective addresses 

6 7 8  9 A B C D E Y  
BCTR BCR SSK 

20 18 11s 

OR XR LR 

95 142 71 

LDR 

0 0 5c 

LER 

n 0 GI 

BCT BC LH 

18 17 62 

O X L  

92 139 53 

LD 

o n 5s 

LE 

n o 61 

BXH BXLE  SRL 

21 22 117 

01 XI LM 

94 141 63 

ZAP CP  AP SP MP 

33 111 

Format  First  operand  Second  operand 

RR (register, register) Ral or Fat Raa or F a .  

RX (register, storage indexed) Ra1 or F a .  Ma. 

RS (register, storage) Ra1 Ma. 

SI (storage, immediate) Ma. W/ZO 

SS (storage, storage) Ma. Ma1 

RIl 

RX 

It5 

SI 
Or 

ss 
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1 

M C I E ,  machine check interruption  entry system  program 

0 A V / f  0 
h, + 1 1 
-+ CPU; 26 2 
e, + 1 3 
D E L A Y  (4 t o  1 microsecond) 1 
e3 + 0 5 
f i 1 ~ ~ ( 1 6 )  (I6) 6 
DIAGNOSE 7 
MAC'(128, m6, s, g; cpustatusl 8 

h, ,   h , ,  g o t f  + F 9 

E I E ,  external  interruption entry system  program 

h, t V /timer  alarm, console interrupt, external signals 0 
0 : go A (h  = 3) - 1  
p,~n(~n)  + @), timer  alarna, console interrupt, externalsignals 2 
timer  alarm, console interrupt, external signals +- 3 
6 

(timer  alarm, console interrupt, external signals) A j j , 2 1 ( g )  

go 4- 0 4 

ES, external signals system  program 

d external signals +- (w6/E3) V  external  signals 
~~ 

T U ,  timer update system  program 

3 = 0 :  tick A (manual  light = off) A (rate sw = process) A 0 
(-e2 A n3 = a13) 

MAC'(80, 4, f ,  g; j )  1 
k t (32) T (1 j ) - 2' X 300 f timer  frepuency 2 
MAC8@0, 4, s ,  g; k)  3 
timer  alarm + timer  alarm V (I k )  > I j 4 
tick c 0 5 

T ,  timer system  program 

D E L A Y  ((I + timer  frequency) seconds) 0 
tick + 1 1 

R E S E T ,  reset defined  operation 

+ f ,  g ,  h, 9,  r ,  w + 0 
operating  state, ip l  +- stop, 0 1 
"-f CPU; 35 2 

-+ I P L ;  0 4 
-+ (CHo,,-CH',   CH2,  CH3,  CH',  CH5 CH'); 2 3 

- - .. 
load light + off 5 
MODEL-DEPENDENT  RESET 6 



CPU, central processing unit svstem  program 
.. 

lPL 

EBET 

-E 

C 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

b31 
32 
33 
34 
35 
36 



Ti, qi +- 1, -v/q 0 
i : (qrandrank)o 1 
Ti, s,.w c ~ ( 4 ) ,  /w; i = 8; j, = f/ 2 
j0 : 212 3 
jo  c I / m a i n  pjx; pfx tgr; alternate pjx/, (12) T jo 4 
1: (operating  state = stop) V (address  compare sw = normal) V 5 

operating stateeloperate; A /ams/address sw = (24) T j o ;  stop/ 6 
7 

0 : s l + - j o  2 PM 8 

- .  - 

(address  compare sw = instruction) A ( j ,  # i) 

so + 0 z jlljo 

io +- (WW I I ~ 4 )  9 
), I/p8.9.10.11; i 5 7; (a4/C-4V)/ 10 ( l ~ ~ d 3 / ( 2 4 ) T i 0  

s2 +- m, A ( j , , ,  As, d) A (uo f u,) A (uo Z 0) A (ul # 0) 11 
1 : (j, = g) v - V / S  12 

(3) 13 

f 4 , 5 , 8  4" f 4 , 5 , 6  v s 2 . 1 . 0  15 
si.3 s . 3  v s1,2 16 

e?l/s/to 

i : 7  14 

1 : so v ( j ,  = s) 17 
i, : s  18 
' J  c (jo -1 ~u'~)//lM 19 
k e E/08/'J 20 
i : 7  21 
fi + V/- #/'J 22 
l i 0  L ail)//M +- (= / W I I  8)\k) @ E(jlt 8)\k 23 
q +- /rAzJV P o ;  j, = h; q/ 24 
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IOIE,  input/output interruption entry system program 

TOL", time-out limiter system program 

s: + 1 0 
Z O : c i % A G A C W V V / a 3 / U  1 

i + time-out limit, 2 
DEL A Y (1 time-out limit unit) 
0 : i+i  - 1  4 - - 

- 0 : P L V G V i 3  4 5  
i + time-out limit, 6 
D E L A  Y (I time-out limit  unit) 7 

8 
- 1 : l Z v n  - - 9 

HFC", hardware failure in channel c system program 

1 



C h d  s a  
i v p a 8 : K s ; s ;  

mpx ? 1 I 
&I ? I O 1  

both 1 1 n I 

both 1 0 1 0 

both 7 1 0 I 

mpx ? 0 7 7 
e 1  0 0 0 0  

both ? 7 7 ? 

mpx ? 0 ? ? 
&I ? 0 ? 0  

mpx 1 0 0 0 
as1 0 0 0 0  

both 1 I 0 1 

mpr ? ? ? ? 
rsl 1 ? 0 7 

mpx ? 0 ? ? 
d 1 0 1 0  

npx ? 0 1 7 
El ? O ? O  

loth 0 0 0 0 

7-31, 5 B S  

2231 

8B-81, 56-5 

bg70 

35-55 

82-185,32i 

82-101 

l o Z l l 4  

10%-114 

116130 

138-185 

131-135.324 

c6 

I4 I :  f 

1 

34 1 

0, 

5H 

22 

58, 68, 87, 88, 71 

B 

I5 

12, 104 

12 

02, 104 

15 

38,138,139,140 
143, 145, 147, 
151,153,161 

31, 134 

, 2  

E M  

01, a,%, 05 

M 

58, 68, 70,  77, 80 

6%  (70) 

38.43, 50, 54, 55 

128, 128. 130, 32.33,31 

85,81,88.90,91,92.93, 
101 

112, 114 

112, 114 

118, 119, 120, 122, 127, 
128, 128, 130 

137,  138. 139, 142, 144, 
146, 149, l.?Q, 152, 
160. 182. 164, 185 

12,33, 34 

3, ti 

J 




