
1/18/00

Palm OS ® Programming
Development Tools

Guide

Document Number 3011-002
Print Date 1/00

1/18/00 Document Number 3011-002

CONTRIBUTORS

Written by Gary Hillerson
Production by <dot> PS document production services
Engineering contributions by Keith Rollin, Derek Johnson, Ken Krugler, and Jesse Donaldson.

Copyright © 1996 - 2000, Palm Computing, Inc. All rights reserved. This documentation may be printed
and copied solely for use in developing products for Palm OS software. In addition, two (2) copies of this
documentation may be made for archival and backup purposes. Except for the foregoing, no part of this
documentation may be reproduced or transmitted in any form or by any means or used to make any de-
rivative work (such as translation, transformation or adaptation) without express written consent from
Palm Computing.

Palm Computing reserves the right to revise this documentation and to make changes in content from time
to time without obligation on the part of Palm Computing to provide notification of such revision or
changes. PALM COMPUTING MAKES NO REPRESENTATIONS OR WARRANTIES THAT THE DOCU-
MENTATION IS FREE OF ERRORS OR THAT THE DOCUMENTATION IS SUITABLE FOR YOUR USE.
THE DOCUMENTATION IS PROVIDED ON AN “AS IS” BASIS. PALM COMPUTING MAKES NO WAR-
RANTIES, TERMS OR CONDITIONS, EXPRESS OR IMPLIED, EITHER IN FACT OR BY OPERATION OF
LAW, STATUTORY OR OTHERWISE, INCLUDING WARRANTIES, TERMS, OR CONDITIONS OF MER-
CHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND SATISFACTORY QUALITY.

TO THE FULL EXTENT ALLOWED BY LAW, PALM COMPUTING ALSO EXCLUDES FOR ITSELF AND
ITS SUPPLIERS ANY LIABILITY, WHETHER BASED IN CONTRACT OR TORT (INCLUDING NEGLI-
GENCE), FOR DIRECT, INCIDENTAL, CONSEQUENTIAL, INDIRECT, SPECIAL, OR PUNITIVE DAM-
AGES OF ANY KIND, OR FOR LOSS OF REVENUE OR PROFITS, LOSS OF BUSINESS, LOSS OF
INFORMATION OR DATA, OR OTHER FINANCIAL LOSS ARISING OUT OF OR IN CONNECTION
WITH THIS DOCUMENTATION, EVEN IF PALM COMPUTING HAS BEEN ADVISED OF THE POSSI-
BILITY OF SUCH DAMAGES.

Palm Computing, Palm OS, Graffiti, HotSync, and Palm Modem are registered trademarks, and Palm III,
Palm IIIe, Palm IIIx, Palm V, Palm Vx, Palm VII, Palm, More connected., Simply Palm, the Palm Comput-
ing platform logo, Palm III logo, Palm IIIx logo, Palm V logo, and HotSync logo are trademarks of Palm
Computing, Inc. or its subsidiaries. All other product and brand names may be trademarks or registered
trademarks of their respective owners.

IF THIS DOCUMENTATION IS PROVIDED ON A COMPACT DISK, THE OTHER SOFTWARE AND
DOCUMENTATION ON THE COMPACT DISK ARE SUBJECT TO THE LICENSE AGREEMENT AC-
COMPANYING THE COMPACT DISK.

Palm Computing, Inc.
a 3Com Company
5400 Bayfront Plaza
Santa Clara, CA 95052
USA
www.palm.com/devzone

Palm OS Programming Development Tools Guide
Document Number 3011-002
January 18, 2000

Palm OS Programming Development Tools Guide 3
1/18/00

Table of Contents
 About This Document 9

Palm OS® SDK Documentation 9
What This Volume Contains 9
Conventions Used in This Guide 11

1 Using the Palm OS ® Emulator 13
About the Palm OS Emulator. 13

Standard Device Features 15
Extended Emulation Features 15
Debugging Features 15
Using ROM Images. 16

Downloading and Running Palm OS Emulator 16
Palm OS Emulator Runtime Requirements. 17
Downloading Palm OS Emulator 17
Versions of Palm OS Emulator 18
Command Line Options. 20
How Palm OS Emulator Starts Execution 23

The Palm OS Emulator User Interface 25
The Palm OS Emulator Display 26
Using the Menus . 26
Using the Hardware Buttons. 31
Entering Data . 32
Control Keys . 32

Loading ROM Images 33
Downloading a ROM Image Obtained From Palm 33
Transferring a ROM Image From a Handheld 34
Transferring a ROM File in Windows 34
Transferring a ROM File On a Macintosh 35
Using a ROM Image in Palm OS Emulator 36

Using the Binder to Create an Executable 37
Testing and Debugging With Palm OS Emulator 37

Testing Software . 37
Debug Options. 37
Logging Options . 40

4 Palm OS Programming Development Tools Guide
1/18/00

Using Gremlins . 44
Setting Breakpoints 49
Source Level Debugging 52
Connecting the Emulator With Palm Debugger. 52
Profiling Your Code 53

Palm OS Emulator Session Features 54
Configuring a New Session 55
Dragging and Dropping Files 56
Saving and Restoring Session State 57
Saving the Screen. 57
Changing the Emulator’s Appearance 58

The Palm OS Emulator Runtime Environment 59
Palm OS Emulator Properties 59
Installing Applications 61
Serial Communications and Palm OS Emulator. 61
Using the HotSync Application With the Palm OS Emulator . 62

Palm OS Emulator Error Handling 64
Detecting an Error Condition 64
Error Condition Types 65
Error Messages . 66

Sending Commands to Palm OS Emulator 71
The RPC2 Packet Format 72

Getting Help With Palm OS Emulator 73

2 Using Palm Debugger 75
About Palm Debugger. 76
Connecting Palm Debugger With a Target 78

Connecting to The Palm OS® Emulator 78
Connecting to The Handheld Device 78
Using the Console and Debugging Windows Together . . . 82

Entering Palm Debugger Commands 83
Palm Debugger Menus 84
Palm Debugger Command Syntax 86

Using the Debugging Window 88
Using Debugger Expressions 90

Palm OS Programming Development Tools Guide 5
1/18/00

Performing Basic Debugging Tasks 96
Advanced Debugging Features. 104

Using the Source Window 107
Debugging With the Source Window 108
Using Symbol Files 109
Using the Source Menu 109
Source Window Debugging Limitations 111

Palm Debugger Error Messages. 112
Palm Debugger Tips and Examples 112

Performing Calculations 113
Shortcut Characters. 113
Repeating Commands 113
Finding a Specific Function 114
Finding Memory Corruption Problems 117
Displaying Local Variables and Function Parameters 120
Changing the Baud Rate Used by Palm Debugger 123
Debugging Applications That Use the Serial Port 124
Importing System Extensions and Libraries 124
Determining the Current Location Within an Application . . 125

3 Palm Debugger Command Reference 129
Command Syntax. . 129

Specifying Numeric and Address Values 131
Using the Expression Language 131

Debugging Window Commands 131
Debugging Command Summary 167

Flow Control Commands 167
Memory Commands 167
Template Commands 169
Register Commands 169
Utility Commands 169
Console Commands 170
Miscellaneous Debugger Commands 170
Debugger Environment Variables. 170
Predefined Constants 171

6 Palm OS Programming Development Tools Guide
1/18/00

4 Using the Console Window 173
About the Console Window 173
Connecting the Console Window 174

Activating Console Input 174
Using Shortcut Numbers to Activate the Windows 175

Using the Console Window 177
Command Syntax. . 181

Specifying Numeric and Address Values 183
Console Window Commands 183
Console Command Summary 222

Card Information Commands 222
Chunk Utility Commands 222
Database Utility Commands 223
Debugging Utility Commands 223
Gremlin Commands 223
Heap Utility Commands 223
Host Control Commands 224
Miscellaneous Utility Commands 224
Record Utility Commands 224
Resource Utility Commands 225
System Commands 225

5 Using the Palm Simulator 227
About the Simulator 227

The Simulator Compared to The Emulator 229
Differences Between the Simulator and Actual Hardware . . 229

Simulator Menu Commands Summary 232
File Menu . . 232
Edit Menu. . 233
Window Menu . . 233
Replay Menu . 234
Gremlin Menu . . 235
Serial Port Menu 235
Panel Menu . 236

Using the Simulator 236

Palm OS Programming Development Tools Guide 7
1/18/00

Building a Project for Use With the Simulator 237
Tracing Events . . 238
Scripting Pen and Key Events 239
Using Gremlins . 240
Saving Memory Information to File 241

A Debugger Protocol Reference 243
About the Palm Debugger Protocol 243

Packets . 243
Packet Structure . 244
Packet Communications. 246

Constants . 246
Packet Constants 246
State Constants . 247
Breakpoint Constants 247
Command Constants 247

Data Structures . . 248
_SysPktBodyCommon 248
SysPktBodyType 249
SysPktRPCParamType 249
BreakpointType . 250

The Debugger Protocol Commands 250
Summary of Debugger Protocol Packets 271

B Host Control API 273
Constants . 273

Host Error Constants 273
Host Function Selector Constants. 275
Host ID Constants 277
Host Platform Constants 278
Host Signal Constants 278

Data Types. . 280
HostFILE . 280
HostBool . 280
HostGremlinInfo 280
HostID . 281

8 Palm OS Programming Development Tools Guide
1/18/00

HostPlatform . 281
HostSignal . 281

Functions . 281
Summary of Host Control API Functions 311

Host Control Database Functions 311
Host Control Environment Functions 312
Host Control Gremlin Functions 312
Host Control Logging Functions 313
Host Control Preference Functions 313
Host Control Profiling Functions 313
Host Control RPC Functions 314
Host Control Standard C-Library Functions 314
Host Control Tracing Functions 316

C Simple Data Types 319

D Resource Tools 321

 Glossary 323

 Index 325

Palm OS Programming Development Tools Guide 9
1/18/00

About This
Document
Palm Developer’s Tools describes the various tools you can use to help
in the development of software for Palm Computing® handhelds.

Palm OS ® SDK Documentation
The following documents are part of the SDK:

What This Volume Contains
This volume is designed for random access. That is, you can read
any chapter in any order. You don’t necessarily have to read some
before others, though the first few chapters are designed for
programmers who are new to the Palm OS. The first four chapters
help you learn necessary tasks and possible features for your
application.

Document Description

Palm OS® SDK Reference An API reference document that contains descriptions of all
Palm OS® function calls and important data structures.

Palm OS® Programmer’s
Companion

A guide to application programming for the Palm OS. This
volume contains conceptual and “how-to” information that
compliments the Reference.

Palm OS® 3.0 Tutorial A number of phases step developers through using the
different parts of the system. Example applications for each
phase are part of the SDK.

Debugging Palm OS®
Applications

A guide to debugging Palm OS applications with the various
debugging tools available.

About This Document
What This Volume Contains

10 Palm OS Programming Development Tools Guide
1/18/00

Here is an overview of this volume:

• Chapter 1, “Using the Palm OS® Emulator.” Describes Palm
OS Emulator, the emulator program that you can use to test
and debug your Palm OS® programs.

• Chapter 2, “Using Palm Debugger.” Provides an introduction
to the Palm Debugger, which is an assembly language and
limited source code level debugger for Palm OS programs.
This chapter describes how to use Palm Debugger, including
a description of its expression language and a variety of
debugging strategies and tips.

• Chapter 3, “Palm Debugger Command Reference.” Provides
a complete reference description for each command available
in Palm Debugger.

• Chapter 5, “Using the Palm Simulator.” Describes the Palm
Simulator program, which you can use to simulate program
execution on Macintosh computers.

• Appendix A, “Debugger Protocol Reference.” Describes the
API for sending commands and responses between a
debugging host, such as Palm Debugger, and a debugging
target, which can be a Palm Computing handheld ROM or an
emulator program such as the Palm OS Emulator.

• Appendix B, “Host Control API.” Describes the host control
API, which provides functions that an emulated application
can use to call into Palm OS Emulator for certain services.

• Appendix C, “Simple Data Types.” Describes the simple data
type name changes made in recent versions of the Palm OS
software.

About This Document
Conventions Used in This Guide

Palm OS Programming Development Tools Guide 11
1/18/00

Conventions Used in This Guide
This guide uses the following typographical conventions:

This style... Is used for...

fixed width font Code elements such as function,
structure, field, bitfield.

fixed width underline Emphasis (for code elements).

bold Emphasis (for other elements).

blue and underlined Hot links.

Palm OS Programming Development Tools Guide 13
1/18/00

1
Using the Palm OS ®
Emulator
This chapter describes how to use the Palm OS® Emulator program,
a hardware emulator for the Palm Computing® platform. You can
use the Palm OS Emulator to test and debug programs that you
have developed for this platform.

NOTE: The Palm OS Emulator has previously been referred to
as POSE or Poser. The name Palm OS Emulator is used
throughout this book and in new versions of other Palm
documentation. In this chapter, Emulator is sometimes used as an
abbreviated form of Palm OS Emulator.

About the Palm OS Emulator
The Palm OS Emulator is a hardware emulator program for the
Palm Computing platform, which means that it emulates the Palm
hardware in software, providing you with the ability to test and
debug Palm OS software on a Macintosh, Unix, or Windows-based
desktop computer.

When you run a Palm OS application with the Palm OS Emulator on
your desktop computer, the Palm OS Emulator fetches instructions,
updates the handheld screen display, works with special registers,
and handles interrupts in exactly the same manner as does the
processor inside of Palm Computing platform handhelds. The
difference is that the Palm OS Emulator executes these instructions
in software on your desktop computer.

The Palm OS Emulator displays an on-screen image that looks
exactly like a Palm™ connected organizer, as shown in Figure 1.1.
You can select which type of Palm handheld device you want to

Using the Palm OS ® Emulator
About the Palm OS Emulator

14 Palm OS Programming Development Tools Guide
1/18/00

emulate, and you can also specify that you want the Palm OS
Emulator to display the screen in double size, which continues to
provide an accurate representation and makes the Palm screen
easier to view.

Figure 1.1 The Palm OS Emulator display

You can use the mouse on your desktop computer just as you use
the stylus on a Palm connected organizer. You can even use the
Graffiti® power writing software with Palm OS Emulator and your
mouse. And Palm OS Emulator includes additional keyboard
shortcuts that you can use on your desktop computer. These
shortcuts are described in Using the Hardware Buttons.

You can use the Palm OS Emulator to perform some debugging of
your applications, and you can use the Emulator with Palm
Debugger to perform extensive debugging of your applications.
When you connect the Emulator with Palm Debugger, you can
debug in exactly the same manner as debugging with your
application running on an actual hardware handheld device.

Using the Palm OS ® Emulator
About the Palm OS Emulator

Palm OS Programming Development Tools Guide 15
1/18/00

Standard Device Features
Palm OS Emulator accurately emulates Palm Computing platform
hardware devices, and includes the following features:

• an exact replica of the Palm device display, including the
silkscreen and Graffiti areas

• emulation of the Palm stylus with the desktop computer
pointing device

• emulation of the Palm device hardware buttons, including:

– power on/off button

– application buttons

– up and down buttons

– reset button

– HotSync® button

• ability to zoom the display for enhanced readability and
presentation

• screen backlighting

• communications port emulation for modem communications
and synchronizing

Extended Emulation Features
Palm OS Emulator also provides the following capabilities on your
desktop computer that extend the standard Palm device interface.

• ability to enter text with the desktop computer

• configurable memory card size, up to 8MB

Debugging Features
Palm OS Emulator provides a large number of debugging features
that help you to detect coding problems and unsafe application
operations. Palm OS Emulator includes the following debugging
features and capabilities:

• ability to use an automated test facility called Gremlins,
which repeatedly generates random events

Using the Palm OS ® Emulator
Downloading and Running Palm OS Emulator

16 Palm OS Programming Development Tools Guide
1/18/00

• support for external debuggers, including Palm Debugger,
the Metrowerks CodeWarrior debugger, and gdb.

• monitoring of application actions, including various memory
access and memory block activities

• logging of application activities, including events handled,
functions called, and CPU opcodes executed by the
application

• profiling of application performance

For more information about testing and debugging applications
with Palm OS Emulator, see Testing and Debugging With Palm OS
Emulator.

Using ROM Images
To run Palm OS Emulator, you need to transfer a ROM image to it.
The ROM image contains all of the code used for a specific version
of the Palm OS. You can obtain ROM images for different Palm OS
versions from the Palm developer zone web site, or you can tell
Palm OS Emulator to download the ROM from a handheld that has
been placed in the device cradle and connected to the desktop
computer. For more information about transferring a ROM image to
Palm OS Emulator, see Loading ROM Images.

When you download a ROM image from the Palm web site, you can
obtain a debug ROM image, which contains information that Palm
OS Emulator uses to help you debug Palm OS applications. For
more information about the debugging capabilities in Palm OS
Emulator, see Testing and Debugging With Palm OS Emulator.

Downloading and Running Palm OS Emulator
You run Palm OS Emulator just like you would any other program.
When Palm OS Emulator starts up, it displays an image of a
handheld device, as shown in Figure 1.1.

Using the Palm OS ® Emulator
Downloading and Running Palm OS Emulator

Palm OS Programming Development Tools Guide 17
1/18/00

NOTE: The first time that you start the Emulator, it does not
display an image of a handheld device; instead, it asks you to
create a new session. After you have defined a session
configuration, the Emulator creates a new session based on those
settings when it launches.

You can then use the keyboard and mouse to interact with the
emulated device, as described in The Palm OS Emulator User
Interface, and use the menus to interact with Palm OS Emulator.

Palm OS Emulator Runtime Requirements
The Palm OS Emulator requires one of the following runtime
environments:

• Windows 98

• Windows 95

• Windows NT

• MacOS 7.5 or later

• Unix: some versions, including Linux

The Emulator is a multi-threaded 32-bit program. It does not run on
Windows 3.1, even with Win32s installed.

Downloading Palm OS Emulator
The most recent released version of Palm OS Emulator for both the
Macintosh and Windows is always posted on the Internet in the
Palm developer zone:

http://www.palm.com/devzone

Follow the links from the developer zone main page to the emulator
page to retrieve the released version of the Emulator. If you want to
test-drive the version of Palm OS Emulator that is currently under
development, you can follow links from the developer zone page to
the Emulator seed page.

The Palm OS Emulator package that you download includes the
files shown in Table 1.1.

http://www.palm.com/devzone

Using the Palm OS ® Emulator
Downloading and Running Palm OS Emulator

18 Palm OS Programming Development Tools Guide
1/18/00

Versions of Palm OS Emulator
Each released version of Palm OS Emulator has a version number
that uses the following scheme:

<majorVers>.<minorVers>.<bugFix>[dab]<preRel>

Each field has the following semantics:

majorVers The major version number.

minorVers The minor version number.

Table 1.1 Files included in the Palm OS Emulator package

File name Description

Binder.exe (Windows NT) A program that binds the Palm OS
Emulator with a ROM image for kiosk and
demonstration purposes.

Emulator.exe (Windows)
Palm OS Emulator (Macintosh)
pose (Unix)

Main Palm OS Emulator executable

Emulator_Profile.exe (Windows)
Palm OS Emulator - Profile
(Macintosh)

Palm OS Emulator with added profiling
facilities

Docs (directory) Palm OS Emulator documents, including:

• _ReadMe.txt , which describes the
files in the Docs directory

• _News.txt , which describes
changes in the most recent version

• _OldNews.txt , which describes
previous version changes

ROM Transfer.prc Palm OS program to send the Palm.ROM
file to your desktop.

HostControl.h C/C++ header file declaring functions that
can be used to control the Palm OS
Emulator.

Using the Palm OS ® Emulator
Downloading and Running Palm OS Emulator

Palm OS Programming Development Tools Guide 19
1/18/00

bugFix The optional bug repair revision number.

dab The prelease stage of the product, as follows:

d Indicates that the version is currently
under development, and features are still
being added.

a Indicates alpha status, which means that
the feature set is complete and some
quality assurance testing has been
performed.

b Indicates beta status, which means that
bugs uncovered in the alpha version
have been addressed, and more
extensive testing has been performed.

preRel The developmental, pre-release version
number.

Some examples of version numbers are shown in Table 1.2

Profile Versions

Some releases of Palm OS Emulator include a profile version, with
the word profile appended to the program name. Each profile
version adds the ability to perform selective profiling of your
program’s execution, and to save the results to a file.

The code required to add profiling capability slows down your
application, even when you are not using profiling. That means that
you are better off using the non-profiling version of Palm OS
Emulator if you don’t expect to use the profiling capabilities.

For more information about profiling with Palm OS Emulator, see
Profiling Your Code.

Table 1.2 Version number examples

Version Description

2.0 Official release version 2.0

2.1d19 The 19th developmental release of version 2.1.

2.1a2 The 2nd alpha release of version 2.1.

Using the Palm OS ® Emulator
Downloading and Running Palm OS Emulator

20 Palm OS Programming Development Tools Guide
1/18/00

Command Line Options
If you are running Palm OS Emulator on a Windows-based desktop
computer or on a Unix system, you can supply the session
parameters as command-line parameters. For example:

Emulator -psf C:\Data\Session1.psf

Table 1.3 shows the options that you can specify on the Windows
command line. You can also change most of these options by
starting a new session with the New menu command, as described
in Configuring a New Session.

NOTE: The command line options are not available on
Macintosh computers.

Note that the command line option specifications are not case
sensitive.

Table 1.3 Palm OS Emulator command line options

Option syntax Parameter values Description

-horde <num> A Gremlin number The number of the Gremlin to
run after the session is created
or loaded.

Note that this is equivalent to
supplying the same Gremlin
number for the horde_first
and horde_last options.

-horde_first <num> A Gremlin number The first Gremlin to run in a
horde.

-horde_last <num> A Gremlin number The last Gremlin to run in a
horde.

-horde_apps <app
name list>

A comma-separated
list of applications

The list of applications to which
the Gremlin horde is allowed to
switch.

The default is no restrictions.

Using the Palm OS ® Emulator
Downloading and Running Palm OS Emulator

Palm OS Programming Development Tools Guide 21
1/18/00

-horde_save_dir
<path>

A path name The name of the directory in
which to save session and log
files.

The default log location is the
directory in which the Palm OS
Emulator application is stored.

-horde_save_freq
<num>

An event count The Gremlin snapshot
frequency.

The default value is to not save
snapshots.

-horde_depth_max
<num>

An event count The maximum number of
Gremlin events to generate for
each Gremlin.

The default value is no upper
limit.

-horde_depth_switch
<num>

An event count The number of Gremlin events
to generate before switching to
another Gremlin in the horde.

The default is to use the same
value as specified for the
horde_depth_max option.

-psf <fileName> Any valid .psf file
name

The emulator session file to load
upon start-up. You can also load
a session file with the Open
menu command.

-rom <fileName> Any valid ROM file
name

The name of the ROM file to
use.

Table 1.3 Palm OS Emulator command line options

Option syntax Parameter values Description

Using the Palm OS ® Emulator
Downloading and Running Palm OS Emulator

22 Palm OS Programming Development Tools Guide
1/18/00

-ram <size>

or

-ramsize <size>

One of the following
kilobyte size values:

128
256
512
1024
2048
4096
8192

The amount of RAM to emulate
during the session.

-device <type> One of the following
device type values:

Pilot
PalmPilot
PalmIII
PalmIIIx
PalmV
PalmVx
PalmVII
PalmVIIEZ
ColorDevice

The device type to emulate
during the session.

Note that Pilot1000 and
Pilot5000 are synonyms for
Pilot .

Also note that
PalmPilotPersonal and
PalmPilotProfessional are
synonyms for PalmPilot .

-load_apps <file
name list>

A list of valid file
names, separated by
commas

A list of .prc or other files to
load into the session after
starting up.

-log_save_dir <path> A path name The name of the directory in
which to save the standard log
file.

The default log location is the
directory in which the Palm OS
Emulator application is stored.

Table 1.3 Palm OS Emulator command line options

Option syntax Parameter values Description

Using the Palm OS ® Emulator
Downloading and Running Palm OS Emulator

Palm OS Programming Development Tools Guide 23
1/18/00

How Palm OS Emulator Starts Execution
When Palm OS Emulator starts execution, it determines its
configuration by sequencing through the following rules:

1. If the Caps Lock key is on, the Startup dialog box is always
displayed. The Startup dialog box is shown in Figure 1.2.

Figure 1.2 The Palm OS Emulator startup dialog box

-quit_on_exit None If the -run_app option was
specified, this option indicates
that Palm OS Emulator should
quit after that application
terminates.

-run_app <app name> Application name The name of an application to
run in the session after starting
up. You must specify the name
of the application, not the name
of the application’s file.

-silkscreen <type>
or
-skin <type>

One of the following
silkscreen types:

english
japanese

The silkscreen type to emulate
during the session.

Table 1.3 Palm OS Emulator command line options

Option syntax Parameter values Description

Using the Palm OS ® Emulator
Downloading and Running Palm OS Emulator

24 Palm OS Programming Development Tools Guide
1/18/00

NOTE: The dialog box shown in Figure 1.2 is displayed when
you are running Palm OS Emulator on a Windows-based
computer.

If you are using a Macintosh computer, the New Session dialog
box, shown in Figure 1.6 is displayed instead.

If you are using a Unix system, Palm OS Emulator does not
provide an automatic startup sequence; instead, it presents you
with a window that displays a device graphic, and you must right-
click in that window to display the new session menu.

2. If the Caps Lock key is not on, Palm OS Emulator scans the
command line for options. If an error is encountered on the
command line, Palm OS Emulator displays an error message
and then presents the Startup dialog box.

3. If a session (.psf) file was specified on the command line,
Palm OS Emulator attempts to load the file. If the file cannot
be loaded, Palm OS Emulator displays an error message and
then presents the Startup dialog box.

4. If any other options are specified on the command line, Palm
OS Emulator attempts to start a new session with those
values. If any of the four values is missing, Palm OS
Emulator displays the session configuration dialog box, as
shown in Figure 1.3.

If any of the command line options are not valid, or if the
user cancels the dialog box, Palm OS Emulator displays an
error message and then presents the Startup dialog box.

Using the Palm OS ® Emulator
The Palm OS Emulator User Interface

Palm OS Programming Development Tools Guide 25
1/18/00

Figure 1.3 The session configuration dialog box

5. If no command line options are specified, Palm OS Emulator
attempts to reopen the session file from the most recent
session, if one was saved. If the file cannot be opened, Palm
OS Emulator displays an error message, and then presents
the Startup dialog box.

6. Palm OS Emulator attempts to create a new session based on
the setting most recently specified by the user. If an error
occurs, Palm OS Emulator displays an error message, and
then presents the Startup dialog box.

Probably the most common scenario is when you start Palm OS
Emulator without any command line parameters, and it restarts
with saved information from the previous session.

NOTE: When it starts up, Palm OS Emulator looks for the most
recently saved .psf file. On Windows and Unix, the Emulator uses
the full path name of that file; on Macintosh systems, the Emulator
uses aliases to locate the file. If it cannot find that file, Palm OS
Emulator looks for the file name in the directory in which the Palm
OS Emulator executable is located.

The Palm OS Emulator User Interface
This section provides a description of the user interface for Palm OS
Emulator, including descriptions of the menus and keyboard usage.

Using the Palm OS ® Emulator
The Palm OS Emulator User Interface

26 Palm OS Programming Development Tools Guide
1/18/00

The Palm OS Emulator Display
The Palm OS Emulator display looks very much like a real Palm
Computing handheld device. You can use your mouse to perform
actions that you perform with the stylus on handheld devices, and
you can use the menus to access the Palm OS Emulator
functionality.

Using the Menus
You can also access features that are specific to Palm OS Emulator
by choosing menu commands:

• If you are using Windows, you right-click on the Palm OS
Emulator screen display to access the menu items, or press
the F10 key. The Palm OS Emulator menu displays, as shown
in Figure 1.4.

Figure 1.4 The Windows version of the Palm OS Emulator
menu

• If you are using a Macintosh, select menu commands from
the menu bar. The Macintosh menu presents the same

Using the Palm OS ® Emulator
The Palm OS Emulator User Interface

Palm OS Programming Development Tools Guide 27
1/18/00

commands in four different menus, as described in Table 1.4.
The Macintosh version is only slightly different:

– The Macintosh version of Palm OS Emulator uses the
Preferences command instead of the Properties
command to access the option-setting dialog box.

– The Macintosh version of the Emulator features the
Undo, Cut, Copy, Paste, and Clear commands, which are
not available in the Windows version.

– The Macintosh version of the Emulator uses the Quit
command instead of the Exit command.

– The Macintosh version does not feature the Breakpoints
command.

Using the Palm OS ® Emulator
The Palm OS Emulator User Interface

28 Palm OS Programming Development Tools Guide
1/18/00

Table 1.4 Palm OS Emulator Macintosh menus

Menu Commands

File New
Open
Close

Save
Save As
Save Screen

Install Application/Database
HotSync
Reset
Transfer ROM

Quit

Edit Undo

Cut
Copy
Paste
Clear

Preferences
Logging Options
Debug Options
Skins

Gremlins New

Step
Resume

Stop

Profile Start
Stop
Dump

Using the Palm OS ® Emulator
The Palm OS Emulator User Interface

Palm OS Programming Development Tools Guide 29
1/18/00

• If you are using Unix, Palm OS Emulator provides the same
commands as are included with the Windows version, except
that the Breakpoints command is not available. The Unix
version of the menu pops up like the Windows version, and
uses a different hierarchy, but presents the same commands.

Table 1.5 provides a brief description of the Palm OS Emulator
menu commands, listed in alphabetical order.

Table 1.5 The Palm OS Emulator menu commands

Command Description

Close Closes and optionally saves the current
emulator session.

Exit Exits Palm OS Emulator. If you have
unsaved changes in your session file, Palm
OS Emulator optionally prompts you to
save the file before exiting.

Gremlin:New

Gremlin:Step

Gremlin:Resume

Gremlin:Stop

Gremlin: Resume
from control file

Create a new Gremlin and start running it.

Step a Gremlin, after stopping.

Resume running of the Gremlin. NOTE: this
command is only shown in Windows
versions, and is not yet implemented.

Stop running the Gremlin.

Resumes running of Gremlins from data
that was previously saved in a file.

For more information, see Using Gremlins.

HotSync Allows you to synchronize the emulator
session environment with the desktop
computer. See Using the HotSync
Application With the Palm OS Emulator for
more information about the cabling
requirements and other considerations for
this command.

Using the Palm OS ® Emulator
The Palm OS Emulator User Interface

30 Palm OS Programming Development Tools Guide
1/18/00

Install App/DB Allows you to install an application into the
emulator session, in the same way that a
user would install it on the handheld with
the Palm Install tool. For more information,
see Installing Applications.

Export Database... Exports a database to your desktop
computer as as a .pdb or .pqa file, or
exports an application to your desktop
computer as a .prc file.

New Displays the new configuration dialog box
for initiating a new session.

Open Displays the open file dialog box for
opening a saved emulator session file.

Profiling:Start

Profiling:Stop

Profiling:Dump

Start profiling your application.

Stop profiling your application.

Save the profiling information to a file.

For more information, see Profiling Your
Code.

Reset Resets the current emulation session, as if
the reset button on the back of the handheld
was pressed.

Save Saves the current emulator session to an
emulator .psf file.

Save As Saves the current emulator session to an
emulator .psf file.

Table 1.5 The Palm OS Emulator menu commands

Command Description

Using the Palm OS ® Emulator
The Palm OS Emulator User Interface

Palm OS Programming Development Tools Guide 31
1/18/00

Using the Hardware Buttons
Palm OS Emulator emulates each of the hardware buttons on Palm
Computing devices. You can click on a button to activate it, and you
can press and hold down a button just as you would on a handheld.
Palm OS Emulator also allows you to activate the hardware buttons
with keyboard equivalents, as shown in Table 1.6.

Save Screen Saves the current screen image as a bitmap
file.

TIP: The Save Screen command is a
very convenient means of capturing
screen images for documentation of Palm
OS® applications.

Settings:
Properties

Settings:
Logging

Settings:
Debug

Settings:
Skins

Settings:
Breakpoints

Presents the properties dialog box, as
described in Palm OS Emulator Properties.

Presents the logging options dialog box, as
described in Logging Options.

Presents the debug options dialog box, as
described in Debug Options.

Presents the skins dialog box, as described
in Changing the Emulator’s Appearance.

Presents the breakpoints dialog box, as
described in Setting Breakpoints.

Transfer ROM Allows you to download a ROM image and
save it to disk. You can then initiate a new
session based on that ROM image. For more
information, see Transferring a ROM Image
From a Handheld.

Table 1.5 The Palm OS Emulator menu commands

Command Description

Using the Palm OS ® Emulator
The Palm OS Emulator User Interface

32 Palm OS Programming Development Tools Guide
1/18/00

Entering Data
Palm OS Emulator allows you to use your desktop computer
pointing device to tap and to draw Graffiti characters, just as you do
with the stylus on the handheld.

Palm OS Emulator also allows you to enter text from the desktop
computer keyboard. For example, you can type the text for a note by
tapping in the note text entry area and then using the keyboard.

Control Keys
Palm OS Emulator also supports a set of control keys that you can
use for input. These keys, which are shown in Table 1.7, are the same
control keys that you can use with the Palm OS Simulator program.

Table 1.6 Keyboard equivalents for the hardware buttons

Button Keyboard equivalent

On/off Esc

Palm Date Book F1

Palm Address Book F2

Palm To Do List F3

Palm Memo Pad F4

Up Page Up

Down Page Down

Table 1.7 Palm OS Emulator Control Keys

Control key combination Description

Control - A Displays the menu

Control - B Low battery warning

Control - C Command character

Contorl - D Confirmation character

Using the Palm OS ® Emulator
Loading ROM Images

Palm OS Programming Development Tools Guide 33
1/18/00

Loading ROM Images
Since the Palm OS Emulator emulates the Palm Computing
Platform hardware, all components of the hardware must be
present. This includes a ROM image file, which is not shipped with
the Emulator. There are two ways to obtain a ROM image:

• download a ROM image from the Palm web site

• transfer a ROM image from a handheld

Downloading a ROM Image Obtained From
Palm
To download a debug ROM image from Palm, go to the Palm
developer zone web site, which is a rich source of resources for Palm
OS developers. The developer zone URL is:

http://www.palm.com/devzone

The ROM image files are found in the Palm Provider Pavilion.

Control - E Displays the application launcher

Control - F Displays the onscreen keyboard

Control - M Enters a linefeed character

Control - N Jumps to the next field

Control - S Automatic off character

Control - T Sets or unsets hard contrasts

Control - U Turns backlighting on or off

Table 1.7 Palm OS Emulator Control Keys

Control key combination Description

http://www.palm.com/devzone

Using the Palm OS ® Emulator
Loading ROM Images

34 Palm OS Programming Development Tools Guide
1/18/00

Transferring a ROM Image From a Handheld
To transfer a ROM image from a handheld, you need to follow these
steps:

1. Install the Palm OS application named ROM Transfer.prc
on your handheld device. You can use the Install program in
the Palm Desktop organizer software and then synchronize
with the handheld to install this program.

2. Place the handheld in the HotSync cradle that is connected to
your desktop computer.

3. Follow the steps in the appropriate section below.

Transferring a ROM File in Windows
This section describes how to transfer a ROM image from a
handheld on a Windows-based desktop computer. Before
proceeding, you must have the ROM Transfer.prc program
installed on the handheld, as described in the previous section.

If you are running the program for the first time, Palm OS Emulator
presents the Startup dialog box shown in Figure 1.5. Click on
Download to begin the transfer of a ROM image from a handheld.

Figure 1.5 The Palm OS Emulator startup dialog box

If you are not running Palm OS Emulator for the first time, it usually
restarts the session that you most recently ran, as described in How
Palm OS Emulator Starts Execution. To transfer a new ROM image
for Palm OS Emulator to use, you can right-click on the Palm OS

Using the Palm OS ® Emulator
Loading ROM Images

Palm OS Programming Development Tools Guide 35
1/18/00

Emulator display (the Palm device image) and select the Transfer
ROM menu choice.

Once you have chosen to transfer a ROM image, Palm OS Emulator
presents you with a sequence of dialog boxes that guide you
through the process.

Transferring a ROM File On a Macintosh
This section describes how to transfer a ROM image from a
handheld on a Macintosh desktop computer. Before proceeding,
you must have the ROM Transfer.prc program installed on the
handheld, as described in the previous section.

If you are running the program for the first time, Palm OS Emulator
presents the dialog box shown in Figure 1.6.

Figure 1.6 Running Palm OS Emulator for the first time on a
Macintosh system

You can dismiss this dialog box and choose the Transfer ROM
command from the File menu.

If you are not running Palm OS Emulator for the first time, it usually
restarts the session that you most recently ran. To transfer a new
ROM image for Palm OS Emulator to use, select the Transfer ROM
command from the File menu.

Once you have chosen to transfer a ROM image, Palm OS Emulator
presents you with a sequence of dialog boxes that guide you
through the process.

Using the Palm OS ® Emulator
Loading ROM Images

36 Palm OS Programming Development Tools Guide
1/18/00

Using a ROM Image in Palm OS Emulator
Once you have transferred a ROM image to disk, you need to create
a new session that is based on the image. To initiate the new session,
you select the New command. Table 1.8 shows the first step in
creating a new session for each transfer method.

After you initiate the session, Palm OS Emulator presents the new
configuration dialog box, which is described in Configuring a New
Session. The Windows version of this dialog box is shown in Figure
1.7.

Figure 1.7 The New Configuration dialog box

Table 1.8 Initiating a new session after transferring a ROM
image

Method used to
initiate ROM transfer

New session method

Clicked Download
initial dialog in
Windows

Click New in the dialog box.

Selected Transfer
ROM command in
Windows

Select either the New command or the
Close command from the File menu.

Selected Transfer
ROM menu command
on a Macintosh

Select the New command from the File
menu.

Using the Palm OS ® Emulator
Using the Binder to Create an Executable

Palm OS Programming Development Tools Guide 37
1/18/00

After you select your parameters and click OK, Palm OS Emulator
begins an emulation session.

Drag and Drop a ROM Image

You can use drag and drop to start a new Emulator session in either
of two ways:

• Drag and drop a ROM image file onto the Emulator screen to
start a new session.

• Drag and drop a ROM image file onto the Emulator
executable or shortcut (alias) to start the Palm OS Emulator
program.

You can also drag and drop other file types, as described in
Dragging and Dropping Files.

Using the Binder to Create an Executable
If you are running the Palm OS Emulator on Windows NT, you can
use the Binder program to create an executable that binds the
Emulator program with a ROM image and optionally a RAM image.
The bound program can then be used for demonstrations, training,
and kiosk systems.

Testing and Debugging With Palm OS Emulator
This section provides an overview of testing and/or debugging an
application with Palm OS Emulator.

Testing Software
Testing software is probably the most common use of Palm OS
Emulator. This section provides a quick summary of the steps to
load and test an application.

Debug Options
The Palm OS Emulator monitors the actions of your application
while it is emulating the operation of the handheld device. When
your application performs an action that does not strictly conform

Using the Palm OS ® Emulator
Testing and Debugging With Palm OS Emulator

38 Palm OS Programming Development Tools Guide
1/18/00

to Palm Computing’s programming guidelines, the Emulator
displays a dialog box that explains what is happening.

The debugging options dialog box, which is shown in Figure 1.8,
allows you to enable or disable the monitoring activities applied to
your application. Use the Debug Options command to display this
dialog box.

Figure 1.8 The Palm OS Emulator debugging options dialog
box

Table 1.9 describes each of the debugging options.

Table 1.9 Emulator debugging options

Option Description

Low-Memory Access Monitors low-memory access by applications.

Low-memory access means an attempt to read from or
write to a memory location in the range 0x0000 to
0x00FF .

System Globals Access Monitors access to system global variables by
applications.

System global variable access is defined as reading
from or writing to a memorylocation in the range from
0x0100 to the end of the trap dispatch table.

Using the Palm OS ® Emulator
Testing and Debugging With Palm OS Emulator

Palm OS Programming Development Tools Guide 39
1/18/00

Screen Access Monitors LCD screen buffer access by applications.

LCD screen buffer access is defined as reading from or
writing to the memory range indicated by the LCD-
related hardware registers.

Hardware Register Access Monitors accesses to hardware registers by
applications.

Hardware register access is defined as reading from or
writing to memory in the range from 0xFFFFF000 to
0xFFFFFFFF.

MemMgr Data Structure Monitors access to Memory Manager data structures,
which is restricted to only the Memory Manager.

Memory Manager data structures are the heap
headers, master pointer tables, memory chunk
headers, and memory chunk trailers.

Storage Heap Access Monitors naked access to the storage heap by
applications. To access the storage heap, your
application should use the DmWrite functions.

MemMgr Semaphore Monitors how long the Memory Manager semaphore
has been acquired for write access using the
MemSemaphoreReserve and
MemSemaphoreRelease functions.

Your applications should not be calling these
functions; however, if you must call them, you should
not hold the semaphore for longer than 10
milliseconds.

Low Stack Access Monitors access to the range of memory below the
stack pointer.

Table 1.9 Emulator debugging options (continued)

Option Description

Using the Palm OS ® Emulator
Testing and Debugging With Palm OS Emulator

40 Palm OS Programming Development Tools Guide
1/18/00

Logging Options
The Palm OS Emulator also logs various actions taken by your
application to help you debug and performance tune your code. The

Free Chunk Access Monitors access to free memory chunks.

No process should ever access the contents of a chunk
that has been deallocated by the MemChunkFree,
MemPtrFree , or MemHandleFree functions.

Unlocked Chunk Access Monitors access to unlocked, relocatable memory
chunks, which is restricted to the Memory Manager.

Uninitialized Stack Access Monitors read accesses to uninitialized portions of the
stack. You can use this option to detect read accesses to
uninitialized local variables.

Uninitialized Chunk Access Monitors read access to uninitialized portions of
memory chunks that have been allocated by the
MemChunkNew, MemPtrNew, and MemHandleNew
functions.

You can use this option to detect read accesses to
uninitialized portions of dynamically allocated
memory chunks. Note that your application’s global
variables are stored in memory chunks allocated by
these functions, so enabling this option also detects
read accesses to uninitialized global variables.

Stack Almost Overflow Ensures that the stack pointer has not dipped below
the space allocated for it by the kernel.

When this option is enabled, Palm OS Emulators
warns you when the application stack is getting close
to full.

Note that you are always warned of a stack overflow,
even if this option is disabled.

Table 1.9 Emulator debugging options (continued)

Option Description

Using the Palm OS ® Emulator
Testing and Debugging With Palm OS Emulator

Palm OS Programming Development Tools Guide 41
1/18/00

logged information is automatically written to a text file that is
saved in the same directory as the Emulator executable.

You can control the logging activity with the logging options dialog
box, which is shown in Figure 1.9. Use the Logging Options
command to display this dialog box.

Figure 1.9 Palm OS Emulator logging options

The logging options dialog box features separate tabs for logging
during normal operations, and for logging while a Gremlin is
running. Both tabs offer the same options, which are described in
Table 1.10

Table 1.10 Emulator logging options

Option Description

Error Messages Not yet implemented.

Warning Messages Logs any message that is displayed in a dialog box
that can be dismissed by tapping the Continue
button.

Misc Gremlin Info Logs information about Gremlins that is mostly
useful for debugging the Gremlins themselves.

Using the Palm OS ® Emulator
Testing and Debugging With Palm OS Emulator

42 Palm OS Programming Development Tools Guide
1/18/00

Assembly Opcodes Logs assembly-level trace information, including
registers, the program counter, opcodes, and related
information.

This option is not yet implemented.

Posted Events Logs events that have entered into the system by
way of calls to the EvtAddEventToQueue ,
EvtAddUniqueEventToQueue ,
EvtEnqueuePenPoint , and EvtEnqueueKey
functions.

Received Events Logs events returned by calls to the EvtGetEvent ,
EvtGetPen , and EvtGetSysEvent functions.

System Calls Logs calls to Palm OS® functions.

Application Calls Logs calls to functions in your application.

This option is not yet implemented.

Serial Activity Logs changes in serial port settings, and the opening
and closing of the serial port.

Table 1.10 Emulator logging options (continued)

Option Description

Using the Palm OS ® Emulator
Testing and Debugging With Palm OS Emulator

Palm OS Programming Development Tools Guide 43
1/18/00

Serial Data Logs data sent and received over the serial port.
Data is logged as it is being transferred over the host
serial port

Incoming data follows this path:

1. Serial port

2. Emulated hardware registers

3. Palm OS

4. Palm application

Palm OS Emulator logs the serial port data.

Outgoing data follows this path:

1. Palm application

2. Palm OS

3. Emulated hardware registers

4. Serial port

Again, Palm OS Emulator logs the serial port data.

NetLib Activity Logs calls to NetLib functions, including
parameter and return values.

NetLib Data Logs data sent and received via NetLib calls.

ExgMgr Activity Not yet implemented.

ExgMgr Data Not yet implemented.

High-level Debugger Activity Logs messages received back from an external
debugger, and the messages sent back to the
debugger.

High-level Debugger Data Logs details of the messages sent to and received
from an external debugger.

Table 1.10 Emulator logging options (continued)

Option Description

Using the Palm OS ® Emulator
Testing and Debugging With Palm OS Emulator

44 Palm OS Programming Development Tools Guide
1/18/00

Using Gremlins
You can use Gremlins to automate testing of an application. A
Gremlin generates a series of user input events that test your your
application’s capabilities. You can have a Gremlin to run a specified
number of times, or to loop forever, which allows you to set up a
Gremlin and allow it to run overnight to thoroughly test your
application.

A Gremlin horde is a range of Gremlins that you want Palm OS
Emulator to run. The Emulator generates a stream of events for each
Gremlin and then moves onto the next Gremlin. The Emulator
cycles through the Gremlins until the maximum number of events
have been generated for the horde.

The Palm OS Emulator generates a stream of events for each
Gremlin in the horde until one of the following conditions occurs:

• An error such as a hardware exception or illegal memory
access is generated.

• The maximum number of events for a single Gremlin have
been generated.

• The maximum number of events for the horde have been
generated.

• You stop the horde by choosing the Stop or Step command
from the Emulator menu or from the Gremlin Status dialog
box.

If a Gremlin generates an error, it is halted and the Palm OS
Emulator does not include it when cycling through the horde again.

Low-level Debugger Activity Traces the low-level mechanisms that receive raw
data from external debuggers and send data back to
external debuggers.

Low-level Debugger Data Logs the raw data being sent to and received from
an external debugger.

Table 1.10 Emulator logging options (continued)

Option Description

Using the Palm OS ® Emulator
Testing and Debugging With Palm OS Emulator

Palm OS Programming Development Tools Guide 45
1/18/00

Gremlin Characteristics

Each Gremlin has the following characteristics:

• it generates a unique, random sequence of stylus and key
input events to step through the user interface possibilities of
an application

• it has a unique “seed” value between 0 and 999

• it generates the same sequence of random events whenever it
is run

• it runs with a specific application or applications

• it displays a report immediately when an error occurs

Gremlin Horde Characteristics

Each Gremlin horde has the following characteristics:

• The number of the first Gremlin to run. This must be a value
between 0 and 999.

• The number of the last Gremlin to run. This must be a value
between 0 and 999.

• The switching depth of the Gremlin horde. This is the
number of events to run for each Gremlin. After this many
events have been generated for the Gremlin, it is suspended,
and the next Gremlin in the horde starts running.

• The maximum number of events for each gremlin in the
horde. The Emulator stops running the Gremlin after it posts
this many events, or after it terminates with an error.

• With which applications the Gremlins are to run. You can
select a single application, a group of applications, or all
applications.

• Errors that occur are logged to the log file and the emulation
continues with the next Gremlin in the horde.

When Palm OS Emulator runs a Gremlin horde, it actually
maintains a separate stream for each Gremlin in the horde. When it
starts a horde, the Emulator first saves the complete state of the
emulation to a session (.psf) file. Then, the Emulator:

• Starts the first Gremlin. When the Gremlin has posted a
number of events equal to the specified switching depth, the

Using the Palm OS ® Emulator
Testing and Debugging With Palm OS Emulator

46 Palm OS Programming Development Tools Guide
1/18/00

Emulator saves its state to a new file and suspends the
Gremlin.

• Reloads the original session state.

• Starts the second Gremlin andruns it until it posts that
number of events, at which time its state is saved to another
file, and the Gremlin is suspended.

• Runs each Gremlin in the horde, until each has been
suspended or terminated:

– A Gremlin is terminated when an error occurs while the
Gremlin is posting events.

– A Gremlin is suspended when it has posted a number of
events equal to the switching depth for the horde.

• Returns to the first suspended Gremlin in the horde, reloads
its state from the saved file, and resumes its execution as if
nothing else had happened in the meantime.

• Continues cycling through the Gremlins in the horde until
each Gremlin has finished. A Gremlin finishes when either of
these conditions occurs:

– the Gremlin has terminated due to an error

– the Gremlin has posted a total number of events equal to
the maximum specified for the horde.

Running a Gremlin Horde

Select the New Gremlin command to start a Gremlin. The new
Gremlin dialog box displays, as shown in Figure 1.10. You use this
dialog box to specify the characteristics of the Gremlin horde that
you want to run.

NOTE: If you wish to run a single Gremlin, simply set the
Gremlin Start Number and Gremlin End Number fields to the
same value.

Using the Palm OS ® Emulator
Testing and Debugging With Palm OS Emulator

Palm OS Programming Development Tools Guide 47
1/18/00

Figure 1.10 The Gremlin horde dialog box

When Palm OS Emulator runs the example shown in Figure 1.10,
the horde will operate as follows:

• The Emulator will only run the Address application when
generating key and stylus events for this horde.

• The Emulator will use a seed value of 2 for the first Gremlin
in the horde and a seed value of 14 for the last Gremlin in the
horde. It also runs all intervening Gremlins: numbers 3
through 13.

• The Emulator will generate 25 events for each Gremlin before
switching to the next Gremlin in the horde.

• The Emulator will cycle through the Gremlins in the horde
until a total of 1000 events have been generated for each
Gremlin. Thus, a total of 13,000 events will be generated.

This means that the Emulator will generate the following sequence
of Gremlin events:

1. Gremlin #2 runs and receives twenty-five events, after which
Gremlin 2 is suspended.

Using the Palm OS ® Emulator
Testing and Debugging With Palm OS Emulator

48 Palm OS Programming Development Tools Guide
1/18/00

2. Gremlin #3 runs and receives twenty-five events, after which
Gremlin #3 is suspended.

3. Similarly, each Gremlin (#4 through #14) runs and receives
twenty-five events, after which it is suspended.

4. The Emulator loops back to Gremlin #2 and runs it, sending
it twenty-five events before again suspending it.

5. Gremlin #3 runs again, receives twenty-five events, and
suspends.

6. This looping through the Gremlins and sending each events
until the switch depth (25) is reached continues until the
maximum number of horde events (1000) have been
generated.

7. All activity for the Gremlin horde completes.

NOTE: If an error occurs while a specific Gremlin is running,
Palm OS Emulator halts that Gremlin rather than suspending it.
This means that the Gremlin is not run when the Emulator next
iterates through the horde.

Stepping and Stopping Gremlins

After the horde starts running, Palm OS Emulator displays the
Gremlin control dialog box, which is shown in Figure 1.11. You can
use the commands in this dialog box to stop, resume, and single-
step a Gremlin. You can also use the Gremlins menu command to
perform these actions.

Figure 1.11 The Gremlin status dialog box

Using the Palm OS ® Emulator
Testing and Debugging With Palm OS Emulator

Palm OS Programming Development Tools Guide 49
1/18/00

Gremlin Snapshots

When you start a new Gremlin horde, you can specify that you want
the Palm OS Emulator to take a snapshot on a regular basis. You
specify a frequency value, as shown in Figure 1.10, and the
Emulator saves a session file each time that many Gremlins have
run. Each snapshot is a .psf file that captures the current state of
the emulation. You can open the snapshot in the Emulator as a new
session and begin debugging from that state.

Logging While Gremlins Are Running

Palm OS Emulator allows you to specify separate logging options to
use while Gremlins are running. Figure 1.12 shows the Gremlin
logging options dialog box. Each of the options is described in
Logging Options.

Figure 1.12 Gremlin logging options

Setting Breakpoints
You can set breakpoints in your code with the Emulator. When the
Palm OS Emulator encounters a breakpoint that you have set, it
halts and takes one of the following actions:

Using the Palm OS ® Emulator
Testing and Debugging With Palm OS Emulator

50 Palm OS Programming Development Tools Guide
1/18/00

• If you are running the Emulator connected to a debugger, the
Emulator sends a message to the debugger, informing it that
the breakpoint was hit. The debugger then handles that
command as it sees fit.

• If the Emulator is not connected to a debugger, the Emulator
displays an error message. This message will typically say
something like “TRAP $0 encountered.”

To set a breakpoint, select the Breakpoints command from the
Settings menu. The Breakpoints dialog box is displayed, as shown
in .

NOTE: You cannot use the Breakpoints feature on the
Macintosh or Unix versions of the Palm OS Emulator.

Figure 1.13 Setting a breakpoint

Using the Palm OS ® Emulator
Testing and Debugging With Palm OS Emulator

Palm OS Programming Development Tools Guide 51
1/18/00

Setting the Data Breakpoint

You can set exactly one data breakpoint. While your program is
executing, the Emulator watches the specified address range; if it is
written to, the Emulator generates a break. You can specify both the
address and number of bytes fields in either hexadecimal (0x) or
decimal.

Setting Conditional Breakpoints

You can set up to six independent conditional breakpoints. The
Emulator generates a break for a conditional breakpoint when both
of the following are true:

• the program counter reaches the specifies address

• the specified condition is true

To set one of these breakpoints, select the breakpoint number in the
list at the top of the dialog box, and click on the Edit button. This
displays the Code Breakpoint dialog box, which is shown in Figure
1.14.

Figure 1.14 Setting a code breakpoint

To set the breakpoint, specify an address and the break condition.
You can specify the address in hexadecimal (0x) or decimal.

The condition that you specify must have the following format:
<register> <condition> <constant>

register One of the registers: A0, A1, A2, A3, A4, A5, A6,
A7, D0, D1, D2, D3, D4, D5, D6, or D7.

condition One of the following operators: ==, != , <, >, <=,
or >=.

Using the Palm OS ® Emulator
Testing and Debugging With Palm OS Emulator

52 Palm OS Programming Development Tools Guide
1/18/00

constant A decimal or hexadecimal constant value.

WARNING! All comparisons are unsigned.

Source Level Debugging
Palm OS Emulator provides an interface that external debugger
applications can use to debug an application. For example,
Metrowerks has developed a plug-in module that you can use to
debug an application that Palm OS Emulator is running, in exactly
the same manner as you would debug an application running on
the handheld. This plug-in module is shipped with the latest
version of CodeWarrior for Palm OS.

Connecting the Emulator With Palm Debugger
You can use the Palm Debugger with the Palm OS Emulator to
perform extensive debugging of your applications. To use Palm
Debugger with the Emulator, follow these steps:

1. Start the Palm Debugger and Palm OS Emulator programs.

2. In the Palm Debugger Communcations menu, select
Emulator. This establishes the emulator program as the
“device” with which Palm Debugger is communicating.

3. In the debugger window, type the att command.

You can now send commands from the Palm Debugger to the Palm
OS Emulator.

Connecting the Emulator With External Debuggers

Palm OS Emulator can communicate with external debuggers using
the methods shown in Figure 1.11.
Table 1.11 Palm OS Emulator Connections

Connection type Platforms

TCP All

PPC Toolbox Macintosh

Memory-mapped files Windows

Using the Palm OS ® Emulator
Testing and Debugging With Palm OS Emulator

Palm OS Programming Development Tools Guide 53
1/18/00

NOTE: Currently, PalmDebugger uses TCP only when running
on Windows. The CodeWarrior plug-in uses TCP if you select the
Use sockets checkbox in the debugger preference panel.

However, although you can configure the TCP port that Palm OS
Emulator uses, you cannot configure which TCP port that either
PalmDebugger or the CodeWarrior plug-in uses.

If you are communicating with a debugger using TCP, you can
configure which socket port the debugger connects to by editing the
value of the DebuggerSocketPort preference setting in your
preferences file. You can disable the TCP connection by setting the
value of the DebuggerSocketPort preference to 0.

NOTE: In some versions of Palm OS Emulator, you may notice
that an unwanted PPP dial-up starts whenever you begin a new
emulation session. You can disable this behavior by disabling the
use of TCP for commmunications, which you do by setting the
DebuggerSocketPort preference to 0.

Profiling Your Code
One of the features of the Palm OS Emulator that is most useful for
developers is the ability to profile your application while it is
running, and to save the resulting data to a file that you can
examine.

When the Emulator profiles your application, it monitors and
generates statistics about where your code is spending its time,
which enables you to focus your optimization efforts in the most
productive manner.

You can start a profiling session by choosing the Profiling Start
command. While profiling is active, the Palm OS Emulator monitors
which application and system functions are executed, and the
amount of time executing each. The Emulator collects the timing
information until you select the Profiling Stop command.

Using the Palm OS ® Emulator
Palm OS Emulator Session Features

54 Palm OS Programming Development Tools Guide
1/18/00

You can then save the profiling information to a file by selecting the
Profiling Dump command. The information is saved to file in two
different formats. Both of these files are stored in the directory in
which the Emulator executable is located:

You do not have to prepare your code in any special way for Palm
OS Emulator to profile it, because the Emulator can determine when
functions are entered and exited on its own. And the Emulator
performs its profiling calculations between cycles, thus the timing
information is quite accurate.

NOTE: It is a good idea to set your compiler’s switch to embed
debug symbols in your code so that you can easily interpret the
profiling results.

Palm OS Emulator Session Features
Palm OS Emulator uses the concept of an emulation session, which
is a testing or debugging session for a combination of the following
items:

• the handheld device type to emulate

• the amount of RAM to emulate

• the ROM file to use for the emulation

File name Description

Profile Results.txt A text version of the profiling results.

Profile Results.mwp A Metrowerks Profiler version of the
results, which can be used with the
MW Profiler application bundled
with CodeWarrior Pro.

IMPORTANT: The MW Profiler is
only available on Macintosh
computers.

Using the Palm OS ® Emulator
Palm OS Emulator Session Features

Palm OS Programming Development Tools Guide 55
1/18/00

You can start new emulation sessions during a single run of Palm
OS Emulator. You can also save the current state of a session and
restore it in a later session. This session describes these features of
Palm OS Emulator.

Configuring a New Session
You can start a new session in Palm OS Emulator by choosing the
New command from the Palm OS Emulator menu. If you are
already running an emulation session, Palm OS Emulator will
optionally ask if you want to save the session in a Palm OS
Emulator session (.psf) file before starting the new session. You set
this option in your preferences.

Figure 1.15 shows the New Configuration dialog box, which Palm
OS Emulator displays when you choose the New command from
the menu.

Figure 1.15 Configuring a new session

You need to make the following choices in this dialog box:

• Select the Palm handheld device that you want to emulate in
the session. You can choose from among the following
choices:

– Pilot (1000/5000)

– PalmPilot (Personal/Pro)

– Palm III

– Palm IIIx

– Palm V

Using the Palm OS ® Emulator
Palm OS Emulator Session Features

56 Palm OS Programming Development Tools Guide
1/18/00

– Palm VII

– Palm VII EZ

– Color Device

• Select the silkscreen that you want displayed on the
emulation screen. Alternative silkscreens, such as the
Japanese silkscreen, are only available for certain device
types. The Default choice is always available, even when
alternatives are not available.

• Select the amount of memory that you want emulated. You
can choose from the following RAM sizes:

– 128K

– 256K

– 512K

– 1024K

– 2048K

– 4096K

– 8192K

Note that 1 MB is most often the right amount of RAM to
emulate.

• Select the ROM file on your desktop computer that you want
to use for the session. You can use the Browse button to
navigate to the file. For more information about ROM files,
see Loading ROM Images.

After you click the OK button, Palm OS Emulator begins an
emulation session.

Dragging and Dropping Files
You can drag and drop the following file type categories onto the
Palm OS Emulator LCD screen:

• .prc , .pdb , and .pqa files

• .rom files

• .psf files

Using the Palm OS ® Emulator
Palm OS Emulator Session Features

Palm OS Programming Development Tools Guide 57
1/18/00

When dragging and dropping files, you must observe the following
rules:

• You can drag and drop only one .rom file at a time.

• You can drag and drop only one .psf file at a time.

• You can drag and drop any number of .prc , .prb , and
.pqa files.

• You cannot drag and drop files from more than one of the file
type categories in the same operation.

Saving and Restoring Session State
You can save the current state of a Palm OS Emulator session to a
session file for subsequent restoration. Palm OS Emulator saves a
session to a session file. The Emulator uses Save and Save As in the
standard manner, with one addition: you can automate what
happens when closing a session by changing the Save options.

Saving the Screen
You can save the current screen to a bitmap file by selecting the Save
Screen menu command, which saves the contents of the emulated
Palm handheld device screen.

Figure 1.16 A Palm OS Emulator screen shot

Palm OS Emulator saves screen images on Windows-based systems
as .bmp bitmap images, and saves screen images on MacOS-based
systems as SimpleText image files.

Using the Palm OS ® Emulator
Palm OS Emulator Session Features

58 Palm OS Programming Development Tools Guide
1/18/00

Changing the Emulator’s Appearance
You can change the appearance of the Palm OS Emulator by
choosing the Skins command from the Settings submenu. This
displays the Skins dialog box, which is shown in Figure 1.17.

Figure 1.17 Changing the Palm OS Emulator appearance

The Skins dialog box provides three appearance options that you
can use:

• Select or deselect the Double scale option to display the
emulated device in double size or actual size on your
monitor.

• Select or deselect the White Background option to display
the emulated device LCD background color in white or green
on your monitor.

NOTE: The term “skin” is used to refer to a set of graphics that
an application uses to creates its appearance. You can change
the appearance of an application by changing its skin.

Using the Palm OS ® Emulator
The Palm OS Emulator Runtime Environment

Palm OS Programming Development Tools Guide 59
1/18/00

The Palm OS Emulator Runtime Environment
This section describes how you can modify the Palm OS Emulator
runtime environment, including changing the properties and
installing applications in the emulator session.

Palm OS Emulator Properties
You can use the Properties dialog box to modify characteristics of
your Palm OS Emulator sessions. To display this dialog box, choose
the Properties menu command on a Windows system, or the
Preferences menu command on a Macintosh system. The Properties
dialog box is shown in Figure 1.18.

Figure 1.18 Changing the Palm OS Emulator properties

Table 1.12 describes the options available in the properties dialog
box.

Using the Palm OS ® Emulator
The Palm OS Emulator Runtime Environment

60 Palm OS Programming Development Tools Guide
1/18/00

Preferences Files

Your properties are stored in a preferences file on your computer.
Each property is stored as a text string that you can view with a text
editor. The location of your preferences file depends on the type of
computer that you are using, as shown in Table 1.13.

Table 1.12 Palm OS Emulator properties

Option Description

Serial Port Specifies which serial port the Palm OS
Emulator uses to emulate serial
communications on the handheld device.

Redirect Netlib calls Redirects Netlib calls in emulated software
to TCP/IP calls on the desktop computer.

Session saving Selects what action the Palm OS Emulator
takes when you close a session or quit the
program.

User name Selects the user account name for
synchronizing from Palm OS Emulator
with the desktop computer HotSync
application.

Table 1.13 Palm OS Emulator preference file locations

Platform File name File location

Macintosh Palm OS Emulator Preferences In the Preferences
folder.

Windows Palm OS Emulator Preferences.ini In the Windows System
directory.

Unix .poserrc In your home directory.

Using the Palm OS ® Emulator
The Palm OS Emulator Runtime Environment

Palm OS Programming Development Tools Guide 61
1/18/00

Installing Applications
You can use the Install command to load applications or databases
directly into the current Palm OS Emulator emulation session.

• in Windows, right-click on the Palm OS Emulator screen
display and choose the Install Application/Database
command

• on a Macintosh, select the Install Application/Database
command from the File menu

The Install command displays an open file dialog box in which you
can choose the application (.prc), database (.pdb), or Palm Query
Appplication (.pqa) file that you want installed.

Palm OS Emulator immediately loads the file into emulated RAM. If
Palm OS Emulator finds another application or database with the
same creator ID, that application or database is deleted before the
new version is loaded.

WARNING! If you install an application while the Palm OS
Launcher is running, the Launcher does not update its data
structures, and thus does not reflect the fact that a database has
been added or modified. It is best to use the Install command
while an application is running in the emulated session.

Serial Communications and Palm OS Emulator
The Palm OS Emulator supports emulation of the Palm device serial
port connection. It does so by mapping Palm OS serial port
operations to a communications port on the desktop computer. To
select which port the Emulator uses, use the Properties (on
Macintosh computers, this is Preferences) menu command, as
described in Palm OS Emulator Properties.

When emulated software accesses the Dragonball or Dragonball EZ
serial port hardware registers, Palm OS Emulator performs the
appropriate actions on the specified serial port on the desktop
computer. This means that serial read and write operations work as
follows:

Using the Palm OS ® Emulator
The Palm OS Emulator Runtime Environment

62 Palm OS Programming Development Tools Guide
1/18/00

• when outgoing data is written to the UART’s tx register, the
Emulator redirects that data to the desktop computer’s serial
port.

• when the emulated software attempts to read data from the
UART’s rx register, the Emulator reads data from the
desktop computer’s serial port and places the data into that
register.

Using the HotSync Application With the Palm
OS Emulator
You can perform a HotSync operation from your emulated session
in one of two ways:

• If you are using a Windows-based computer, you can use the
Network HotSync option, which greatly simplifies your
communications efforts.

• If you are not using a Windows-based computer, or your
computer is not connected to a network, you can use a null-
modem cable to connect two ports together and perform a
HotSync operation.

Synchronizing From Palm OS Emulator With a Network

To synchronize when you are connected to a network, you need to
set up your HotSync Manager application to perform a network
synchronization. You do not need to use a null-modem cable when
performing a network synchronization with the Palm OS Emulator.

Synchronizing From Palm OS Emulator Without a Network

To synchronize when you are not connected to a network, you need
to connect the serial port that the HotSync application uses to
communicate with the handheld device to another serial port that
the Palm OS Emulator uses. You connect these ports together with a
null modem cable, such as a LapLink cable.

For example, if your are using a Windows-based computer and your
HotSync application uses the COM1 port, follow these steps:

1. Select the Properties (Preferences on a Macintosh) command
and specify the COM2 port for use the Palm OS Emulator.

Using the Palm OS ® Emulator
The Palm OS Emulator Runtime Environment

Palm OS Programming Development Tools Guide 63
1/18/00

2. Connect COM1 and COM2 together with a null modem
cable.

3. Select the HotSync command from the Palm OS Emulator
menu.

The HotSync application synchronizes with the Palm OS Emulator
just as it does with an actual hardware handheld device.

TIP: The desktop HotSync application is CPU intensive, which is
not generally an issue; however, when you are using the HotSync
application with the Palm OS Emulator, the two programs are
sharing the same CPU, which can dramatically the
synchronization down.

A handy trick to deal with this problem is to click on the Palm OS
Emulator window after the HotSync process starts. This brings the
Emulator back into the foreground and allows it to use more CPU
time, which improves the speed of the overall process.

If your desktop computer has two ports and you use a serial mouse
on one of them, you can temporarily disable the mouse, perform a
synchronization, and reenable the mouse. Follow these steps:

1. Disable your mouse.

2. Restart Windows.

3. Connect the serial ports together with a null modem cable.

4. Start the Palm OS Emulator.

5. Press F10 to display the menu, then H to begin the HotSync
operation.

6. After the HotSync operation completes, reenable your
mouse.

7. Restart Windows again.

Using the Palm OS ® Emulator
Palm OS Emulator Error Handling

64 Palm OS Programming Development Tools Guide
1/18/00

TIP: When you first perform a HotSync operation with the Palm
OS Emulator, the HotSync application asks you to select a user
name. It is a good idea to create a new user account, with a
different name, for use with the Emulator.

Palm OS Emulator Error Handling
This section describes the error handling and reporting features of
the Palm OS Emulator program, including the following
information:

• which conditions are detected

• what the Emulator does upon detecting an error condition

• the message displayed for each error condition

• the options available to the user when an error condition
occurs

Detecting an Error Condition
When Palm OS Emulator detects an error condition, it generates
error message text and displays the error dialog box. If you select
the Debug button in the error dialog box, the Emulator attempts to
send the text to an external debugger such as Palm Debugger or
MWDebug; if successful, the Emulator then stops emulating
opcodes until the external debugger sends a command specifying
that it can resume emulation.

If the Emulator cannot send the text to a debugger, it presents the
error text to the user in a dialog box like the one shown in Figure
1.19.

Using the Palm OS ® Emulator
Palm OS Emulator Error Handling

Palm OS Programming Development Tools Guide 65
1/18/00

Figure 1.19 Palm OS Emulator error dialog box

You can click one of the three buttons in the dialog box:

Error Condition Types
The Palm OS Emulator detects condition types:

• A processor exception involves the CPU pushing the current
program counter and processor state onto the stack, and then
branching through a low-memory vector.

• A memory access exception involves access to a memory
location that the application is not supposed to access.

• An application error message is a message displayed when
software running on the handheld device calls a system
function such as ErrDisplayFileLineMsg or
SysFatalAlert .

The Palm OS Emulator uses four levels of accessibility when
checking memory accesses:

• Applications have the least access to memory. An application
is any software running in RAM on the handheld device.

Button Description

Continue Continues emulation, if possible.

Debug Enters the external debugger, if one is running.

Reset Performs a soft reset on the emulated device ROM.

Using the Palm OS ® Emulator
Palm OS Emulator Error Handling

66 Palm OS Programming Development Tools Guide
1/18/00

• The system has more access to memory than do applications.
The system is any software running in ROM on the handheld
device.

• The memory manager has the most access to memory. The
memory manager is any function operating within the
context of a memory manager call, which means any function
that runs while a memory manager function is still active.

• Some sections of memory cannot be accessed by any
software.

Error Messages
Table 1.14 shows the Palm OS Emulator error messages. Note that
you can prevent some of these messages by disabling the relevant
debugging option, as described in Debug Options.

Table 1.14 Palm OS Emulator error messages

Error type Description Message example

Hardware
register access

The application or system
software has accessed a
Dragonball or Dragonball EZ
hardware register.

"Mytest" 1.0 has just read
directly from the hardware
registers.

Low-memory
access

The application or system
software has accessed low
memory (the first 256 bytes),
which contains the exception
vectors.

"Mytest" 1.0 has just read
directly from low memory.

or

"Mytest" 1.0 has just read
directly from NULL (memory
location zero)

System variable
access

The application or system
software has accessed a
system variable, which
resides in a memory location
between low memory and the
the end of the system function
dispatch table.

"Mytest" 1.0 has just read
directly from Palm OS
global variables.

Using the Palm OS ® Emulator
Palm OS Emulator Error Handling

Palm OS Programming Development Tools Guide 67
1/18/00

LCD screen
buffer access

The application or system
software has accessed the
screen buffer, which is
defined by the LCD-related
hardware registers.

"Mytest" 1.0 has just read
directly from screen
memory.

Memory
Manager data
structure access

The application or system
software has accessed a
memory manager data
structure, which includes
heap headers, master pointer
tables, chunk headers, and
chunk trailers.

"Mytest" 1.0 has just read
directly from memory
manager data structures.

Unlocked chunk
access

The application or system
software has accessed an
unlocked memory chunk.

"Mytest" 1.0 has just read
directly from an unlocked
memory chunk.

Low-stack
access

The application or system
software has accessed an area
of the stack below the stack
pointer.

The stack is defined by values
returned by the
SysGetAppInfo function
when it is called during
system startup.

If Palm OS Emulator cannot
determine the stack range, it
does not monitor low-stack
accesses.

"Mytest" 1.0 has just read
directly from an invalid
section of memory known as
the "stack" .

Table 1.14 Palm OS Emulator error messages (continued)

Error type Description Message example

Using the Palm OS ® Emulator
Palm OS Emulator Error Handling

68 Palm OS Programming Development Tools Guide
1/18/00

Uninitialized
stack access

The application or system
software has accessed
uninitialized memory, which
is memory that has not
previously been written.

"Mytest" 1.0 has just read
directly from an
uninitialized section of
memory known as the
"stack" .

Free chunk
access

The application or system
software has accessed an
unallocated memory chunk.

"Mytest" 1.0 has just read
directly from an
unallocated chunk of
memory.

Uninitialized
chunk access

The application or system
software has attempted read
access to uninitialized
memory.

"Mytest" 1.0 has just read
directly from an
uninitialized chunk of
memory.

Storage heap
access

The application has accessed
the storage heap.

"Mytest" 1.0 has just
tried to write to the
storage heap and that's
just plain not allowed!
Try using DmWrite.

Stack overflow The application pushed more
information onto the stack
than is allocated for the stack.

"Mytest" 1.0 has just
overflowed its stack.

Stack almost
overflowed

The stack is close to
overflowing, which means
that the stack pointer is
within a small number of
bytes (typically 100) of the
end of the stack.

"Mytest" 1.0 is getting
close to overflowing the
stack.

Table 1.14 Palm OS Emulator error messages (continued)

Error type Description Message example

Using the Palm OS ® Emulator
Palm OS Emulator Error Handling

Palm OS Programming Development Tools Guide 69
1/18/00

Memory
Manager
sempahore
aqcuisition time

The application or system
software has acquired the
Memory Manager semaphore
for write access, and has held
it for more than 10
milliseconds.

"Mytest" 1.0 has held the
"Memory Manager semaphore"
for approximately 20
milliseconds. It is
recommended that
applications not hold the
semaphore longer than 10
milliseconds.

Invalid heap Heap corruption detected
during a regular heap check.
The Palm OS Emulator
regularly checks the heap.

During a regular checkup,
the Emulator determined
that the dynamic heap got
corrupted.

(corruption type) is one
of the following message
fragments: · The chunk was
not within the heap it was
supposed to be · The size
of the chunk (chunk_size)
was larger than the
currently accepted maximum
(chunk_max) · Some unused
flags were set to "1" ·
The "hOffset" field of the
chunk header did not
reference a memory
location within a master
pointer block · The master
pointer referenced by the
"hOffset" field in the
chunk

Table 1.14 Palm OS Emulator error messages (continued)

Error type Description Message example

Using the Palm OS ® Emulator
Palm OS Emulator Error Handling

70 Palm OS Programming Development Tools Guide
1/18/00

Invalid program
counter

The program counter has
been set to an invalid
memory location, which is a
location outside of a 'CODE'
resource.

"Mytest" 1.0 has just set
the Program Counter (PC)
to an invalid memory
location.

Unimplemented
trap.

The application or system
software has attempted to
invoke an unimplemented
system function.

An unimplemented system
function is one with a trap
number outside of the the
numbers in the system
function dispatch table, or
one whose table entry
matches that of the
SysUnimplemented
function.

"Mytest" 1.0 tried to call
Palm OS routine trapNum
(trapName). This routine
does not exist in this
version of the Palm OS.

Table 1.14 Palm OS Emulator error messages (continued)

Error type Description Message example

Using the Palm OS ® Emulator
Sending Commands to Palm OS Emulator

Palm OS Programming Development Tools Guide 71
1/18/00

Sending Commands to Palm OS Emulator
You can use RPC packets to send commands to the Palm OS
Emulator. You can invoke any function in the Palm OS dispatch
table, including the Host Control functions, which are described in
Appendix B, “Host Control API.”

The RPC packets use the same format as do packets that are sent to
the debugger interface, which is described in Appendix A,
“Debugger Protocol Reference.”

You use the socket defined by the RPCSocketPort preference to
make RPC calls to Palm OS Emulator. When you send a packet to
the emulator, you must set the dest field of the packet header to the
value defined here:

#define slkSocketRPC (slkSocketFirstDynamic+10)

SysFatalAlert The application or system
software has called the
SysFatalAlert function.

The Palm OS Emulator
patches the SysFatalAlert
function and present the
message in its own dialog
box, to allow the user to
choose how to respond to the
error.

"Mytest" 1.0 has failed,
reporting "attempted
divide by 0". If this is
the latest version of
"Mytest”, please report
this to the application
author.

Unhandled
exception

The application or system
software has caused an
exception that the Palm OS
Emulator cannot handle itself.

"Mytest" 1.0 has just
performed an illegal
operation. It performed a
"exception". If this is
the latest version of
"Mytest" 1.0, please
report this to the
application author.

Table 1.14 Palm OS Emulator error messages (continued)

Error type Description Message example

Using the Palm OS ® Emulator
Sending Commands to Palm OS Emulator

72 Palm OS Programming Development Tools Guide
1/18/00

NOTE: You can disable the RPC command facility by setting the
value of the RPCSocketPort preference to 0.

You can send four kinds of command packets to the emulator:

• ReadMem

• WriteMem

• RPC

• RPC2

The first three packet types are described in Appendix A,
“Debugger Protocol Reference.” The fourth packet type, RPC2, is an
extension of the RPC packet format that allows support for a wider
range of operations.

The RPC2 Packet Format
#define sysPktRPC2Cmd 0x20
#define sysPktRPC2Rsp 0xA0

struct SysPktRPCParamInfo
{

UInt8 byRef;
UInt8 size;
UInt16 data[1];

};

struct SysPktRPC2Type
{

_sysPktBodyCommon;
UInt16 trapWord;
UInt32 resultD0;
UInt32 resultA0;
UInt16 resultException;
UInt8 DRegMask;
UInt8 ARegMask;
UInt32 Regs[1];
UInt16 numParams;
SysPktRPCParamTypeparam[1];

Using the Palm OS ® Emulator
Getting Help With Palm OS Emulator

Palm OS Programming Development Tools Guide 73
1/18/00

};

Almost all of the RPC2 packet format is the same as the RPC format
that is described in Appendix A, “Debugger Protocol Reference.”
The RPC2 packet includes the following additional fields:

resultException
Stores the exception ID if a function call failed
due to a hardware exception. Otherwise, the
value of this field is 0.

DRegMask A bitmask indicating which D registers need to
be set to make this call.

ARegMask A bitmask indicating which A registers need to
be set in rder to make this call.

Regs[1] A variable length array containing the values to
be stored in the registers that need to be set.

Only the registers that are being changed need
to be supplied. Most of the time, DRegMask
and ARegMask are set to zero and this field is
not included in the packet.

If more than one register needs to be set, then
the register values should appear in the
following order: D0, D1, ..., D6, D7, A0, A1, ...,
A6, A7. Again, only values for the registers
specified in DRegMask and ARegMask need to
be provided.

Getting Help With Palm OS Emulator
Palm OS Emulator is constantly evolving, and Palm Computing is
always interested in hearing your comments and suggestions.

Palm provides a forum (emulator-forum@ls.palm.com) for
questions and comments about Palm OS Emulator.

You can the latest information about Palm OS Emulator in the Palm
developer zone on the Internet:

http://www.palm.com/devzone.

http://www.palm.com/devzone

Using the Palm OS ® Emulator
Getting Help With Palm OS Emulator

74 Palm OS Programming Development Tools Guide
1/18/00

NOTE: The source code for Palm OS Emulator is available on
the Palm OS Emulator seed page: http://www.palm.com/
devzone. You can create your own emulator by modifying this
code.

For more information on the protocol used in Palm OS Emulator
to send requests to and receive responses from a debugging
target, see Chapter , “Debugger Protocol Reference.”

http://www.palm.com/devzone/pose/seed.html
http://www.palm.com/devzone/pose/seed.html

Palm OS Programming Development Tools Guide 75
1/18/00

2
Using Palm
Debugger
Palm Debugger is a tool for debugging Palm OS® applications. Palm
Debugger is available for use on both Mac OS and Windows 95/98/
NT platforms.

This chapter provides an introduction to and overview of using
Palm Debugger. The commands that you can use are described in
Chapter 3, “Palm Debugger Command Reference.”

This chapter contains the following sections:

• About Palm Debugger provides a broad overview of the
program and a description of its windows.

• Connecting to The Handheld Device describes how to
connect Palm Debugger with the Palm OS Emulator or with a
Palm Computing Platform handheld device.

• Using the Console and Debugging Windows Together
describes how to use the menus and keyboard to send
commands to the handheld device from the debugging and
console windows.

• Using the Debugging Window and Using the Source
Window describe the command and display capabilities
available in each of these windows. The debugging window
section also includes a full description of Using Debugger
Expressions.

• Palm Debugger Error Messages describes how to decode the
error messages you receive from Palm Debugger.

• Palm Debugger Tips and Examples provides a collection of
tips to make your debugging efforts easier and examples of
performing common debugging tasks.

Using Palm Debugger
About Palm Debugger

76 Palm OS Programming Development Tools Guide
1/18/00

About Palm Debugger
Palm Debugger provides source and assembly level debugging of
Palm OS executables, and includes the following capabilities:

• support for managing Palm OS databases

• communication with Palm handheld devices

• communication with Palm OS Emulator, the Palm emulation
program

• command line interface for system administration on Palm
handheld devices

NOTE: You can use Palm Debugger with a Palm Computing
platform handheld device, or with the Palm OS Emulator program.
Debugging is the same whether you are sending commands to
the emulator or to actual hardware. Connecting with either a
handheld device or the Emulator is described in Connecting Palm
Debugger With a Target.

Palm Debugger provides two different interfaces that you can use to
send commands from your desktop computer to the handheld
device:

• The console interface is provided by the console nub on the
handheld device. You can connect to the console nub and
then send console commands to the nub from Palm
Debugger’s console window. The console commands are
used primarily for administration of databases on the
handheld device.

The console can also be used with the Palm Simulator and
the CodeWarrior Debugger, and is documented in a separate
chapter. For more information about the console window
and the console commands, see Chapter 4, “Using the
Console Window.”

• The debugging interface is provided by the debugger nub on
the handheld device. You can attach to the debugger nub and
then send debugging commands to the debugger nub from
Palm Debugger’s debugging window. For more information

Using Palm Debugger
About Palm Debugger

Palm OS Programming Development Tools Guide 77
1/18/00

about using the debugging window and the debugging
commands, see Using the Debugging Window.

The console window and the debugging window each has its own
set of commands that you can use to interface with the handheld
device. The debugging commands are described in Chapter 3,
“Palm Debugger Command Reference.”, and the console window
commands are described in Chapter 4, “Using the Console
Window.”

NOTE: The Palm OS Emulator emulates the console and
debugging nubs, which allows Palm Debugger to send the same
commands to the Emulator as it does to a handheld device.

On certain platforms, Palm Debugger also provides a multi-pane
source window for source-level debugging. You can use this
window if you have compiled your program with certain compilers
that generate an appropriate symbol file. Table 2.1 summarizes the
Palm Debugger windows.

Table 2.1 Palm Debugger windows

Window name Usage

Console Command language shell for performing
administrative tasks, including database
management, on the handheld device.

CPU Registers Assembly language debugging output only
window.

Debugging Assembly language debugging command
window.

Source Source level debugging window.

NOTE: Source level debugging is not
currently available in the Macintosh version of
palm Debugger.

Using Palm Debugger
Connecting Palm Debugger With a Target

78 Palm OS Programming Development Tools Guide
1/18/00

Connecting Palm Debugger With a Target
You can use Palm Debugger to debug programs running on a Palm
Computing Platform handheld device or to debug programs
running on a hardware emulator such as the Palm OS Emulator.
This section describes how to connect the debugger to each of these
targets.

Connecting to The Palm OS ® Emulator
You can interact with the Palm OS Emulator from Palm Debugger
just as you do with actual hardware. With the emulator, you don’t
need to activate the console or debugger stubs. All you need to do is
follow these steps:

1. In the Palm Debugger Communications menu, select
Emulator. This establishes the emulator program as the
“device” with which Palm Debugger is communicating.

2. In the debugger window, type the att command.

Connecting to The Handheld Device
You can interact with the handheld device from Palm Debugger by
issuing commands from the console window or from the debugging
window.

You must activate the console nub on the handheld device before
sending commands from the console window. For more information
on activating console input, see Chapter 4, “Using the Console
Window.”

WARNING! When you activate either the console nub or the
debugger nub on the handheld device, the device’s serial port is
opened. This causes a rapid and significant power drain. The only
way to close the port and stop the power drain is to perform a soft
reset.

Using Palm Debugger
Connecting Palm Debugger With a Target

Palm OS Programming Development Tools Guide 79
1/18/00

Activating Debugging Input

If you are debugging with the Palm OS Emulator, you can activate
debugging input by sending the att command from the debugging
window to the emulator.

To send debugging commands to a hardware device, you must
connect your desktop computer to the handheld device, halt the
device in its debugger nub, and then type commands into the
debugging window of Palm Debugger.

IMPORTANT: When the handheld device is halted in its
debugger nub, a tiny square flashes in the upper left corner of the
screen, and the device does not respond to pen taps or key
presses.

You can use the following methods to halt the handheld in its
debugger nub:

1. Use the Graffiti Shortcut-1 to enter debugger mode on the
handheld device, as described in Using Shortcut Numbers to
Activate the Windows.

2. If you have already activated the console nub, you can use
the Break command in the Source menu to activate the
debugger nub. The Break command sends a key command to
the handheld device that is identical to using the Graffiti
Shortcut-1 sequence.

3. Compile a DbgBreak() call into your application, and run
the application until you encounter that call.

This method only works if you have already entered
debugger mode once, or if you have set the low memory
global variable GDbgWasEntered to a non-zero value,
which tricks the handheld into thinking that the debugger
was previously entered. For example, you can use the
following code in your application to ensure that your break
works:

GDbgWasEntered = true;
DbgBreak();

Using Palm Debugger
Connecting Palm Debugger With a Target

80 Palm OS Programming Development Tools Guide
1/18/00

4. You can hold the down button and press the reset button in
the back of the device.

This halts the device in the SmallROM debugger, which is the
bootstrap code that can initialize the hardware and start the
debugger nub. Enter the g command, and the system jumps
into the BigROM, which contains the same code as the
SmallROM and all of the system code.

If you press the down button on the handheld device while
executing the g command, you land in the BigROM’s
debugger. This allows you to set A-trap breaks or single step
through the device boot sequence.

Verifying Your Connection

If Palm Debugger is running and connected when the handheld
device halts into its debugger nub, the debugging window displays
a message similar to the following:

EXCEPTION ID = $A0
'SysHandleEvent'
 +$0512 10C0EEFE *MOVEQ.L #$01,D0 | 7001

Alternatively, if Palm Debugger is not connected or running when
the device halts, you can use the att command to attach Palm
Debugger to the device.

WARNING! The debugger nub activates at 57,600 baud, and
your port configuration must match this is you are connecting over
a serial port. You can set the connection parameters correctly
with Palm Debugger Connection menu.

After you activate the debugger nub on the handheld device, the
nub prevents other applications, including HotSync® from using
the serial port. You have to soft-reset the handheld device before
the port can be used.

Using Shortcut Numbers to Activate the Windows

The Palm OS® responds to a number of “hidden” shortcuts for
debugging your programs, including shortcuts for activating the

Using Palm Debugger
Connecting Palm Debugger With a Target

Palm OS Programming Development Tools Guide 81
1/18/00

console and debugger nubs on the handheld device. You generate
each of these shortcuts by drawing characters on your Palm
Computing platform device, or by drawing them in the Palm OS
Emulator program, if you are using Palm OS Emulator to debug
your program.

NOTE: If you open the Find dialog on the handheld device
before entering a shortcut number, you get visual feedback as
you draw the strokes.

To enter a shortcut number, follow these steps:

1. On your Palm Computing platform device, or in the
emulator program, draw the shortcut symbol. This is a
lowercase, cursive “L” character, drawn as follows:

2. Next, tap the stylus twice, to generate a dot (a period).

3. Next, draw a number character in the number entry portion
of the device’s text entry area. Table 2.2 shows the different
shortcut numbers that you can use.

For example, to activate the console nub on the handheld
device, enter the follow sequence:

.2

Using Palm Debugger
Connecting Palm Debugger With a Target

82 Palm OS Programming Development Tools Guide
1/18/00

NOTE: These debugging shortcuts leave the device in a mode
that requires a soft reset. To perform a soft reset, press the reset
button on the back of the handheld with a blunt instrument, such
as a paper clip.

Using the Console and Debugging Windows
Together
When Palm Debugger is attached to a handheld device or emulator
program, you cannot talk to the console nub on the device.
However, a subset of the console commands — those that do not

Table 2.2 Shortcut numbers for debugging

Shortcut Description Notes

The device enters debugger
mode, and waits for a low-level
debugger to connect. A flashing
square appears in the top left
corner of the device.

This mode opens a serial port, which
drains power over time.

You must perform a soft reset or use the
debugger’s reset command to exit this
mode.

The device enters console
mode, and waits for
communication, typically from
a high-level debugger.

This mode opens a serial port, which
drains power over time.

You must perform a soft reset to exit
this mode.

The device’s automatic power-
off feature is disabled.

You can still use the device’s power
button to power it on and off. Note that
your batteries can drain quickly with
automatic power-off disabled.

You must perform a soft reset to exit
this mode.

.1

.2

.3

Using Palm Debugger
Entering Palm Debugger Commands

Palm OS Programming Development Tools Guide 83
1/18/00

change the contents of memory— are available from the debugging
window. These include the following commands:

• dir

• hl

• hd

• hchk

• mdebug

• reset

You can enter these commands in either the debugging window or
the console window when the debugger nub is active. When you
enter a console command while the debugging window is attached,
the command is sent to the debugger nub rather than the console
nub.

You can use the console commands while debugging for purposes
such as displaying a heap dump in the console window while
stepping through code in the debugging window.

Entering Palm Debugger Commands
Most of your work with Palm Debugger is done with the keyboard.
You enter console commands into the console window, and
debugging commands into the debugging window. Both of these
windows supports standard scrolling and clipboard operations.

Table 2.3 summarizes the keyboard commands that you can use to
enter commands in Palm Debugger’s console or debugging
windows.

Using Palm Debugger
Entering Palm Debugger Commands

84 Palm OS Programming Development Tools Guide
1/18/00

Palm Debugger Menus
Palm Debugger includes five menus, as summarized in Table 2.4.
The most commonly used menu commands are on the Connection
and Source menus; these commands are described in other sections
in this chapter.

Table 2.3 Entering Palm Debugger Commands From the
Keyboard

Command description Windows
key(s)

Macintosh key(s)

Execute selected text as
command(s). You can select
multiple lines to sequentially
execute multiple commands.

Execute the current line (no text
selected).

Enter Enter on numeric keypad,
or

Cmd-Return

Display help for a command Help <cmdName> Help <cmdName>

Enter a new line without
executing the text

Shift-Enter Return

Copy selected text from window
to clipboard

Ctrl-C Cmd-C

Paste clipboard contents to
window

Ctrl-V Cmd-V

Cut selected text from window to
clipboard

Ctrl-X Cmd-X

Delete previous command’s
output from the window

Ctrl-Z not available

Delete all text to the end Shift-Backspace Cmd-delete

Using Palm Debugger
Entering Palm Debugger Commands

Palm OS Programming Development Tools Guide 85
1/18/00

Table 2.4 Palm Debugger menu commands

Menu Commands Descriptions

File Open
Save
Save As

Page Setup...
Print

Exit

Commands for saving and
printing the contents of a
window.

Edit Undo
Redo

Cut
Copy
Paste
Select All

Find
Find Next

Font

Standard editing commands

Connection (select baud rate)

Handshake

(select connection port)

For setting up how to
communicate with the handheld
device or Palm OS Emulator.

Using Palm Debugger
Entering Palm Debugger Commands

86 Palm OS Programming Development Tools Guide
1/18/00

Palm Debugger Command Syntax
Palm Debugger’s help facility uses simple syntax to specify the
format of the commands that you can type in the console and
debugging windows. This same syntax is used in Chapter 3, “Palm
Debugger Command Reference.” This section summarizes that
syntax.

The basic format of a command is specified as follows:

commandName <parameter>* [options]

commandName The name of the command.

Source Break

Step Into
Step Over
Go
Go Till
Toggle Breakpoint
Disassemble at Cursor
Show Current Location

Install Database and Load Symbols
Load Symbols
Load Symbols for Current Program

Counter
Remove All Symbols

Source code debugging
commands, for use in
conjunction with the source
window.

NOTE: Source level
debugging is not currently
available in the Macintosh
version of Palm Debugger.

Window Cascade
Tile
Arrange Icons
Close All

Keyboard Simulator...

(select numbered window)

Standard window access
commands.

NOTE: Only available on
Windows systems.

Table 2.4 Palm Debugger menu commands (continued)

Menu Commands Descriptions

Using Palm Debugger
Entering Palm Debugger Commands

Palm OS Programming Development Tools Guide 87
1/18/00

parameter Parameter(s) for the command. Each parameter
name is enclosed in angle brackets (< and >).

Sometimes a parameter can be one value or
another. In this case the parameter names are
bracketed by parentheses and separated by the
| character.

options Optional flags that you can specify with the
command. Note that options are specified with
the dash (-) character in the console window
and with the backslash (\) character in the
debugging window.

NOTE: Any portion of a command that is shown enclosed in
square brackets ("[" and "]") is optional.

The following is an example of a command definition

dir (<cardNum>|<srchOptions>) [displayOptions]

The dir command takes either a card number of a search
specification, followed by display options.

Here are two examples of the dir command sent from the console
window:

dir 0 -a
dir -t rsrc

And here are the same two commands sent from the debugging
window:

dir 0 \a
dir \t rsrc

Specifying Command Options

All command options and some command parameters are specified
as flags that begin with a dash (in the console window) or backslash
(in the debugging window). For example:

-c
-enable

Using Palm Debugger
Using the Debugging Window

88 Palm OS Programming Development Tools Guide
1/18/00

\enable

Some flags are followed by a keyword or value. You must leave
white space between the flag and the value. For example:

-f D:\temp\myLogFile
\t Rsrc

Specifying Numeric and Address Values

Many of the debugging commands take address or numeric
arguments. You can specify these values in hexadecimal, decimal, or
binary. All values are assumed to be hexadecimal unless preceded
by a sign that specifies decimal (#) or binary (%). Table 2.5 shows
values specified as binary, decimal, and hexadecimal in a debugging
command:

WARNING! Some register names, like A0 and D4, look like
hexadecimal values. You must preface these values with the $
sign, or you will get the value of the register. For example, A4 + 3
computes to the value of the A4 register added with three, but
$A4 + 3 computes to $A7.

For more information, see Specifying Constants.

Using the Debugging Window
You use the debugging window to enter debugging commands,
which are used to perform assembly language debugging of
executables on the handheld device. Commands that you type into
the debugging window are sent to the debugger nub on the

Table 2.5 Specifying numeric values in Palm Debugger

Hex value Decimal value Binary value

64 or $64 #100 %01100100

F5 or $F5 #245 %11110101

100 or $100 #256 %100000000

Using Palm Debugger
Using the Debugging Window

Palm OS Programming Development Tools Guide 89
1/18/00

handheld device, and the results sent back from the device are
displayed in the debugging window.

The debugging window provides numerous capabilities, including
the following:

• A rich expression language for specifying command
arguments, as described in Using Debugger Expressions.

• Ability to debug applications, system code, extensions,
shared libraries, background threads, and interrupt handlers.

• Custom aliases for commands or groups of commands, as
described in Defining Aliases.

• Script files for saving and reusing complex sequences of
commands, as described in Using Script Files.

• Templates for defining data structure layouts in memory,
which allow you to view a structure with the memory
display commands. Templates are described in Defining
Structure Templates.

• Your aliases and templates can be saved in files that are
automatically loaded for you when Palm Debugger starts
execution, as described in Automatic Loading of Definitions.

This section also provides examples of using some of the more
common debugging commands:

• See Displaying Registers and Memory for examples of using
the debugging commands to display the current register
values.

• See Using the Flow Control Commands for examples of
using commands to set breakpoints.

• See Using the Heap and Database Commands for examples
of using commands to examine the heap and databases.

The remainder of this section describes how to use these
capabilities. Table 2.6 shows the most debugging window command
categories.:

Using Palm Debugger
Using the Debugging Window

90 Palm OS Programming Development Tools Guide
1/18/00

All of the debugging commands are described in detail in Chapter 3,
“Palm Debugger Command Reference.”

Before you can use the debugging commands, you must attach Palm
Debugger to the debugger nub on the handheld device, as described
in Activating Debugging Input.

Using Debugger Expressions
Palm Debugger provides a rich expression language that you can
use when specifying arguments to the debugging commands. This
section describes the expression language.

Table 2.6 Debugging window command categories

Category Description Commands

Console Commands shared with the console
window for viewing card, database,
and heap information.

cardinfo, dir, hchck,
hd, hl, ht, info,
opened, storeinfo

Flow Control Commands for working with
breakpoints, A-traps, and program
execution control.

atb, atc, atd, br,
brc, cl, brd, dx, g,
gt, s, t, reset

Memory Commands for viewing the registers,
and for displaying and setting
memory, the stack, and system
function information.

atr, db, dl, dm, dw,
fb, fill, fl, ft, fw,
il, reg, sb, sc, sc6,
sc7, sl, sw, wh

Miscellaneous Commands for displaying debugging
help and current debugging
environment information.

att, help, penv

Template Commands for defining and
reviewing structure templates.

>, sizeof, typedef,
typeend

Utility Commands for working with aliases,
symbol files, and variables.

alias, aliases,
bootstrap, keywords,
load, run, save, sym,
templates, var,
variables

Using Palm Debugger
Using the Debugging Window

Palm OS Programming Development Tools Guide 91
1/18/00

NOTE: Debugger expressions cannot contain white space.
White space delimits command parameters; thus, any white
space ends an expression.

Specifying Constants

The expression language allows you to specify numbers as character
constants.

Character Constants

A character is a string enclosed in single quotes. The string can
include escape sequences similar to those used in the C language.
For example:

'xyz1'
'a\'Y\''
'\123'

Character constants are interpreted as unsigned integer values. The
size of the resulting value depends on the number of characters in
the string, as follows:

Binary Numbers

To specify a binary number, use the % character followed by any
number of binary digits. For example:

%00111000
%1010

The size of the resulting value is determined as follows:

Number of characters Result type

1 character UInt8

2 characters UInt16

more than 2 characters UInt32

Using Palm Debugger
Using the Debugging Window

92 Palm OS Programming Development Tools Guide
1/18/00

Decimal Numbers

To specify a decimal number, use the # character followed by any
number of decimal digits. For example:

#256
#32756

Hexadecimal Numbers

Palm Debugger interprets hexadecimal digit strings that are not
preceded by a special character as hexadecimal numbers. You can
optionally use the $ character to indicate that a value is
hexadecimal. For example:

c123
C123
F0
$A0

The size of the resulting value is determined as follows:

Number of digits Result type

1 to 8 UInt8

8 to 16 UInt16

more than 16 UInt32

Number of digits Result type

1 to 2 UInt8

3 to 4 UInt16

more than 4 UInt32

Using Palm Debugger
Using the Debugging Window

Palm OS Programming Development Tools Guide 93
1/18/00

WARNING! If you want to specify a hexadecimal value that can
also be interpreted as a register name, you must preface the
value with the $ symbol. For example, using A0 in an expression
will generate the current value of the A0 register, while using $A0
will generate the hexadecimal equivalent of the decimal value
160 .

Using Operators

Palm Debugger expression language includes the typical set of
binary and unary operators, as summarized in Table 2.7.

Table 2.7 Palm Debugger expression language operators

Type Operator Description Example

Cast .a Casts the value to an address. 0ff0.a

.b Casts the value to a byte. 45.b

.l Casts the value to a double word. 45.l

.w Casts the value to a word. 45.w

.s Extends the sign of its operand without
changing the operand’s size.

45.s

Unary ~ Performs a bitwise NOT of the operand. ~1

- Changes the sign of the operand. 2*-1

Dereference @ Dereferences an address or integer value.
See Table 2.8 for more examples.

@A7

Arithmetic * Multiplies the two operands together. A1*2

/ Divides the first operand by the second
operand.

21/3

+ Adds the two operands together. A2+2

- Subtracts the second operand from the
first operand.

A2-2

Using Palm Debugger
Using the Debugging Window

94 Palm OS Programming Development Tools Guide
1/18/00

The Dereference Operator

The @ dereference operator is similar to the * dereference operator
used in the C programming language. This operators dereferences
an address value, as shown in Table 2.8.

Register Variables

The expression language provides named variables for each register.
The names of these variables are replaced by their respective
register values in any expression. Table 2.9 shows the register name
variables.

Assignment = Assigns the second operand value to the
register specified as the first operand.

d0=45

Bitwise & Performs a bitwise AND operation. A7&FFF

^ Performs a bitwise XOR operation. A2^F0F0

| Performs a bitwise OR operation. A2|%1011

Table 2.7 Palm Debugger expression language operators

Type Operator Description Example

Table 2.8 Dereference operator examples

Expression Description Example

@ Retrieves 4 bytes as an unsigned
integer value

@A7

@.a Retrieves 4 bytes as an address @.a(A1)

@.b Retrieves 1 byte as an unsigned
integer value

@.b(PC)

@.w Retrieves 2 bytes as an unsigned
integer value

@.w(PC)

@.l Retrieves 4 bytes as an unsigned
integer value

@.l(A2)

Using Palm Debugger
Using the Debugging Window

Palm OS Programming Development Tools Guide 95
1/18/00

Table 2.9 The built-in register variables

Variable name Description

a0 address register 0

a1 address register 1

a2 address register 2

a3 address register 3

a4 address register 4

a5 address register 5

a6 address register 6

a7 address register 7

d0 data register 0

d1 data register 1

d2 data register 2

d3 data register 3

d4 data register 4

d5 data register 5

d6 data register 6

d7 data register 7

pc the program counter

sr the status register

sp the stack pointer
(this is an alias for a7)

Using Palm Debugger
Using the Debugging Window

96 Palm OS Programming Development Tools Guide
1/18/00

NOTE: The expression parser interprets any string that can
represent a register name as a register name. If you want the
string interpreted as a hexadecimal value instead, precede it with
either a 0 or the $ character.

For example, the following expression:
a0+d0

Adds the values stored in the a0 and d0 registers together.

If you want to add the value 0xd0 to the value stored in register
a0, use one of the following expressions:

a0+0d0

a0+$d0

Special Shortcut Characters

Palm Debugger’s expression language includes the two special
value characters show in Table 2.10. These characters are converted
into values in any expression.

Performing Basic Debugging Tasks
This section describes how to use Palm Debugger to perform three
of the most common debugging tasks:

• displaying memory values

• setting breakpoints and using the flow control commands

• examining the heap

Table 2.10 Special value expression characters

Character Converts into Examples

. The most recently entered address. dm .
dm .+10

: The starting address of the current
routine.

il :
il :+24

Using Palm Debugger
Using the Debugging Window

Palm OS Programming Development Tools Guide 97
1/18/00

The final section of this chapter, Palm Debugger Tips and Examples,
provides examples of how to perform other debugging tasks.

Assigning Values to Registers

You can use the assignment operator (=) to assign a value to a
register. However, if you include white space around the operator,
the assignment does not work. For example, the following
statement correctly assigns a value to the program counter:

pc=010c8954

However, this statement does not assign the correct value to the
program counter:

pc = 010c8954c

Displaying Registers and Memory

One of the primary operations you perform with a debugger is to
examine and change values in memory. Palm Debugger provides a
number of commands for displaying registers, memory locations,
the program counter, and the stack. Table 2.11 summarizes the
commands you commonly use to examine memory and related
values.

Table 2.11 Frequently used memory commands

Command Description

db Displays the byte value at a specified address.

dl Displays the 32-bit long value at a specified address.

dm Displays memory for a specified number of bytes or
templates.

dw Displays the 16-bit word value at a specified
address.

il Disassembles code in a specified line range or for a
specified function name.

reg Displays all registers.

sb Sets the value of the byte at the specified address.

Using Palm Debugger
Using the Debugging Window

98 Palm OS Programming Development Tools Guide
1/18/00

Palm Debugger also allows you to define structure templates and
use those for displaying memory values. For example, you can
define a structure that matches the layout of a complex data
structure, and then display that structure with a single dm
command. For more information about structure templates, see
Defining Structure Templates.

Listing 2.1 shows an example of displaying memory with the dm
command and disassembling memory with the il command. It also
provides several examples of using expressions with these
commands. In this example, boldface is used to denote
commands that you type, and <= starts a comment.

Listing 2.1 Displaying and disassembling memory

dm 0 <=Display memory at address 0
00000000: FF FF FF FF 1A 34 3E 40 10 C0 92 D4 10
C0 92 F2 ".....4>@........"

dm 100 <=Display memory at address
0x100
00000100: 01 01 00 00 02 B0 00 01 78 30 00 00 00
01 47 EE "........x0....G."

dm #100 <=Display memory at address 100
decimal

sc Lists the A6 stack frame chain, starting at the
specified address.

sc7 Lists the A7 stack frame chain, starting at the
specified address.

sl Sets the value of the 32-bit long value at the
specified address.

sw Sets the value of the word at the specified address.

Table 2.11 Frequently used memory commands (continued)

Command Description

Using Palm Debugger
Using the Debugging Window

Palm OS Programming Development Tools Guide 99
1/18/00

00000064: 10 C6 BE 32 10 C6 BE 60 10 C6 BE 8E 10
C6 BE BC "...2...`........"

dm 100+20 <=Specify an address with an
expression
00000120: 6F BC 00 00 07 22 00 00 00 06 00 01 7D
72 00 FD "o...."......}r.."

dm .+10 <=Use the'.' character for the
most recent addr
00000130: 00 00 00 00 00 00 00 B6 3E C0 69 45 A4
0C 03 4A "........>.iE...J"

dm pc <=Use the current program
counter value
10C0EEFE: 70 01 60 00 01 7E 4E 4F A0 BE 70 01 60
00 01 74 "p.`..~NO..p.`..t"

dm pc+20 <=An expression using the
program counter
10C0EF1E: FF F4 4E 4F A0 AC 38 00 4A 44 50 4F 66
2A 48 6E "..NO..8.JDPOf*Hn"

il pc <=Disassemble code at current
program counter
'SysHandleEvent 10C0E9EC'
+$0512 10C0EEFE *MOVEQ.L #$01,D0 | 7001
+$0514 10C0EF00 BRA.W SysHandleEvent+$0694 ;
10C0F080 | 6000 017E
+$0518 10C0EF04 _SysLaunchConsole ; $10C0E30C |
4E4F A0BE
+$051C 10C0EF08 MOVEQ.L #$01,D0 | 7001
+$051E 10C0EF0A BRA.W SysHandleEvent+$0694 ;
10C0F080 | 6000 0174
+$0522 10C0EF0E MOVEQ.L #$00,D0 | 7000
+$0524 10C0EF10 BRA.W SysHandleEvent+$0694 ;
10C0F080 | 6000 016E
+$0528 10C0EF14 CLR.L -$0010(A6) | 42AE FFF0
+$052C 10C0EF18 PEA -$0006(A6) | 486E FFFA
+$0530 10C0EF1C PEA -$000C(A6) | 486E FFF4

Using Palm Debugger
Using the Debugging Window

100 Palm OS Programming Development Tools Guide
1/18/00

il pc-10 <=Display code at program
counter - 0x10
'SysHandleEvent 10C0E9EC'
+$0502 10C0EEEE ORI.B #$01,(A5)+ ; '.' | 001D 7001
+$0506 10C0EEF2 BRA.W SysHandleEvent+$0694 ;
10C0F080 | 6000 018C
+$050A 10C0EEF6 MOVE.B #$01,$00000101 ; '.' | 11FC
0001 0101
+$0510 10C0EEFC _DbgBreak | 4E48
+$0512 10C0EEFE *MOVEQ.L #$01,D0 | 7001
+$0514 10C0EF00 BRA.W SysHandleEvent+$0694 ;
10C0F080 | 6000 017E
+$0518 10C0EF04 _SysLaunchConsole ; $10C0E30C |
4E4F A0BE
+$051C 10C0EF08 MOVEQ.L #$01,D0 | 7001
+$051E 10C0EF0A BRA.W SysHandleEvent+$0694 ;
10C0F080 | 6000 0174
+$0522 10C0EF0E MOVEQ.L #$00,D0 | 7000

All of the commands mentioned in this section are described in
detail in Chapter 3, “Palm Debugger Command Reference.”

Using the Flow Control Commands

Palm Debugger provides a number of commands for setting
breakpoints and continuing the flow of execution. Table 2.12
summarizes the commands you commonly use for these purposes.

Table 2.12 Commonly used flow control commands

Command Description

atb Adds an A-trap break.

atc Clears an A-trap break.

atd Displays all A-trap breaks.

br Sets a breakpoint.

brc Clears a breakpoint. This is the same as the cl
command.

Using Palm Debugger
Using the Debugging Window

Palm OS Programming Development Tools Guide 101
1/18/00

Listing 2.2 shows an example of setting breakpoints, disassembling,
and using other flow control commands to debug an application. In
this example, boldface is used to denote commands that you type,
and <= starts a comment.

Listing 2.2 Using the debugging flow control commands

sc <= Display stack crawl, listed from
oldest to newest. In this

<= example, the current fcn was
called from EventLoop+0016
Calling chain using A6 Links:
 A6 Frame Caller
 00000000 10C68982 cjtkend+0000
 00015086 10C6CA26 __Startup__+0060
 00015066 10C6CCCE PilotMain+0250
 00014FC2 10C0F808 SysAppLaunch+0458
 00014F6E 10C10258 PrvCallWithNewStack+0016

brd Display all breakpoints.

cl Clears a breakpoint. This is the same as the brc
command.

g Continues execution until the next breakpoint is
encountered.

gt Sets a temporary breakpoint at the specified
address, and resumes execution from the current
program counter.

s Single steps one source line, stepping into functions.

ss Step-spy: step until the value of the specified
address changes.

t Single steps one source line, stepping over
functions.

Table 2.12 Commonly used flow control commands

Command Description

Using Palm Debugger
Using the Debugging Window

102 Palm OS Programming Development Tools Guide
1/18/00

 00013418 10CD88B2 __Startup__+0060
 000133F8 10CDB504 PilotMain+0036
 000133DE 10CDB47C EventLoop+0016

s <= Single-Step one instruction
'SysHandleEvent' Will Branch
+$0514 10C0EF00 *BRA.W SysHandleEvent+$0694 ;
10C0F080 | 6000 017E
 <= Single step again by pressing
theEnter key
+$0694 10C0F080 *MOVEM.L (A7)+,D3-D5/A2-A4 | 4CDF
1C38
 <= Press enter again
+$0698 10C0F084 *UNLK A6 | 4E5E
 <= ... and again
+$069A 10C0F086 *RTS | 4E75 8E53 7973 4861
 <= ... and again
+$0018 10CDB47E *TST.B D0 | 4A00

il <= Disassemble at current program
counter
'EventLoop 10CDB466'
+$0018 10CDB47E *TST.B D0 | 4A00
+$001A 10CDB480 LEA $000C(A7),A7 | 4FEF 000C
+$001E 10CDB484 BNE.S EventLoop+$0050 ; 10CDB4B6 |
6630
... <= Remainder of disassembly
removed here

gt 10cdb484 <= Go-Till address 0x10CDB484
+$001E 10CDB484 *BNE.S EventLoop+$0050 ; 10CDB4B6
| 6630

br :+50 <= Set a breakpoint at current
routine+0x50
Breakpoint set at 10CDB4B6 (EventLoop+0050)

g <= Go until a break occurs
+$0050 10CDB4B6 *CMPI.W #$0016,-$0018(A6) ; '..' |
0C6E 0016 FFE8

Using Palm Debugger
Using the Debugging Window

Palm OS Programming Development Tools Guide 103
1/18/00

brd <= Display all currently set
breakpoints
10CDB4B6 (EventLoop+0050)

cl <= Clear all breakpoints
All breakpoints cleared

atb "EvtGetEvent" <= Break whenever the
EvtGetEvent system trap is called
A-trap set on 011d (EvtGetEvent)

g <= Go until a break occurs
Remote stopped due to: A-TRAP BREAK EXCEPTION
'EvtGetEvent'
+$0000 10C3B1E2 *LINK A6,$0000 | 4E56 0000

atc <= Clear all A-Traps
All A-Traps cleared

ss a2 <= Step-Spy until the UInt32 at
address 0x15404 changes

<= (the current value of register
A2 is 0x15404)
Step Spying on address: 00015404
'EvtGetSysEvent'
 +$00E8 10C1E980 *CLR.B $0008(A4)
| 422C 0008

WARNING! Some commands, like the atb command, require
that the operand be quoted. Forgetting to quote the trap name in
the atb command is a common mistake with Palm Debugger.

All of the commands mentioned in this section are described in
detail in Chapter 3, “Palm Debugger Command Reference.”

Using Palm Debugger
Using the Debugging Window

104 Palm OS Programming Development Tools Guide
1/18/00

Using the Heap and Database Commands

You can use the heap and database commands to display
information about the databases and heaps on the handheld device.
These commands, which are summarized in Table 2.13, mirror
commands available from the console window.

The heap commands take heap ID values as parameters. The
following table shows the values you can use for heap IDs.

All of the commands mentioned in this section are described in
detail in Chapter 3, “Palm Debugger Command Reference.”

To learn more about the console window and all of the console
commands, see Using the Console Window.

Advanced Debugging Features
This section presents several advanced features of the debugging
window of Palm Debugger, including the following:

• defining structure template for displaying memory

• defining aliases for commands

• using script files to run sequences of commands

Table 2.13 Commonly used heap and database commands

Command Description

dir Lists the databases.

hchk Checks a heap.

hd Displays a dump of a memory heap.

hl Lists all of the memory heaps on the specified
memory card.

ht Performs a heap summary.

Heap ID Description

0 The dynamic heap.

1 The storage heap.

Using Palm Debugger
Using the Debugging Window

Palm OS Programming Development Tools Guide 105
1/18/00

• automated loading of structure and alias definitions at
program start-up time

Defining Structure Templates

You can define structure templates to use with Palm Debugger’s
memory display commands. Each template matches a data type or
structure type that you use in your application, which allows you to
display a structure in the debugging window with one command.

You define templates in a manner similar to the way you define
structure types in a high-level programming language: start a
template definition with the typedef command, follow with some
number of field definition (>) commands, and finish with a
typeend command. And once you have defined a structure
template, you can use fields of that type in other template
definitions.

Table 2.14 summarizes the commands you use to define and display
templates. For more information about these commands, see
Chapter 3, “Palm Debugger Command Reference.”

Note that the structure and field names must be quoted in your
structure template definition commands. Listing 2.3 shows the
debugging commands used to define a template named
PointType , and then defines a second template named
RectangleType that uses two PointType fields.

Listing 2.3 Defining and using two structure templates

typedef struct "PointType"
> Int16 "X"

Table 2.14 Structure template commands

> Defines a structure field.

sizeof Displays the size, in bytes, of a template.

templates Lists the names of the debugger templates.

typedef Begins a structure definition block.

typeend Ends a structure definition block.

Using Palm Debugger
Using the Debugging Window

106 Palm OS Programming Development Tools Guide
1/18/00

> Int16 "Y"
typeend

typedef struct "RectangleType"
> PointType "topLeft"
> PointType "extent"
typeend

sizeof PointType

Size = 4 byte(s)

sizeof RectangleType
Size = 8 byte(s)

dm 0 RectangleType
00000000 struct RectangleType
 {
00000000 PointType topLeft
 {
00000000 Int16 x = $-1
00000002 Int16 y = $-1
 }
00000004 PointType extent
 {
00000004 Int16 x = $1A34
00000006 Int16 y = $3E40
 }
 }

Defining Aliases

For convenience, you can create aliases. Each alias stands for a
specific command sequence. For example:

alias "checkheap" "hchk 0 -c"
alias "ls" "dir 0"

Using Palm Debugger
Using the Source Window

Palm OS Programming Development Tools Guide 107
1/18/00

After defining these aliases, you can type ls to display a directory
listing for card 0 (built-in RAM), and you can type checkheap to
check heap 0 with examination of each chunk.

Using Script Files

You use the run command to run a script file. A script file is any text
file that contains debugging commands. For example, the following
command reads and executes the debugging commands found in
the text file named MyCommands:

run "MyCommands"

Automatic Loading of Definitions

When Palm Debugger is launched, it automatically runs the script
file named UserStartupPalmDebugger . You can store your
aliases, script files, and data structure templates in this file to have
them available whenever you use Palm Debugger.

Using the Source Window
This section describes the source window, which you can use to
perform limited debugging with the source code for your
application.

IMPORTANT: Palm Debugger’s source level debugging is only
available on Windows systems, and is only available for code that
has been built using the GNU gcc compiler for Palm OS.

The source window works in conjunction with the debugging and
CPU registers windows. For example, if you single step in the
debugging window, the source window tracks along and displays
any breakpoints that are currently set.

The source window is split into two panes:

• The upper pane displays the values of local variables for the
current function.

• The lower pane displays the source code. This pane is
automatically updated whenever you move through your

Using Palm Debugger
Using the Source Window

108 Palm OS Programming Development Tools Guide
1/18/00

code with flow control commands. You can also scroll this
pane to view the code or to set a breakpoint.

The left margin of the lower pane displays indicators for
breakpoints and the current program counter:

– a solid red circle is displayed next to a line that contains a
breakpoint

– a green arrow is displayed next to the line containing the
current program location

The two panes in the source window are separated by a thick
horizontal line. This line is colored red when the connected
handheld device is halted in the debugger nub, and is green when
the handheld device is running code.

Debugging With the Source Window
To debug with the source code for an executable, you need to
associate a symbol file on your desktop computer with the
executable that is running on the handheld device. You can load any
number of symbol files into Palm Debugger at once; whenever the
device stops in the debugger nub, Palm Debugger automatically
determines which symbol file to display in the source window.

You can use the following steps to load an application and its
symbol file, and then use the source debugging commands:

1. Activate the console nub, as described in Activating Console
Input.

2. Select the Install Database and Load Symbols menu
command from the Source menu.

3. Select the .PRC file to load onto the device.

4. Palm Debugger imports the .PRC file into the handheld
device and looks in the same directory for the associated
symbol file.

Palm Debugger now associates the symbol file with the application
that has been imported into the handheld device. Whenever the
debugger nub breaks in the code for that application, the source
window displays the associated source file and line number.

Using Palm Debugger
Using the Source Window

Palm OS Programming Development Tools Guide 109
1/18/00

You can also break into the debugger manually and set a breakpoint
on specific source code lines with the Toggle Breakpoint command
in the Source menu or on the source window’s context menu.

Using Symbol Files
This section provides information about symbol files. You need to
have a symbol file for your executable to use Palm Debugger’s
source code debugging facility.

Each symbol file represents a single code resource and is created by
the linker. Most Palm OS applications contain a single code resource
of type 'code' and a resource ID of 1. Some applications have
more than one code resource, and thus more than one symbol file.

A symbol file contains the following items:

• the names of each of the source files that were linked together
to create the code resource

• the offset from the start of the code resource to the object
code for each source file

• the offset from the start of the code resource for each line in
the source file

• descriptions of the data structures used

• descriptions of the name, type, and location of each local
variable used in the source code’s functions

• descriptions of the name, type, and location of each global
variable

To make use of a symbol file, Palm Debugger needs the address of
the code resource on the handheld device that corresponds to the
symbol file. The Load Symbols command on the Source menu
associates a symbol file on the desktop computer with a code
resource on the handheld device.

Using the Source Menu
Palm Debugger’s Source menu contains commands that you can
use for source level debugging. Table 2.15 summarizes these
commands. Note that several of these commands are also available
from the Source context menu, as described in the next section.

Using Palm Debugger
Using the Source Window

110 Palm OS Programming Development Tools Guide
1/18/00

Table 2.15 Source menu commands

Command Description

Break Halts the handheld device in the
debugger nub by sending the same key
event as does the Graffiti Shortcut-1
shortcut.

The device must be running the console
nub to activate this command.

Step Into Single steps one source line, and stops
if it steps into a subroutine.

Step Over Single steps one source line. If it steps
into a subroutine, doesn’t stop until the
subroutine returns.

Go Continues execution until a breakpoint
is encountered.

Go Till Sets a temporary breakpoint at the
currently selected line in the source
window and then continues execution.

Toggle Breakpoint Toggles a breakpoint on or off at the
currently selected line in the source
window.

Disassemble at Cursor Disassembles code at the currently
selected line in the source window. The
disassembled output is displayed in the
debugging window.

Show Current Location Scrolls the source window to show the
current line in the source file.

Install Database and
Load Symbols

Imports a .PRC file into the handheld
device and looks in the same directory
for the associated symbol file.

Load Symbols Opens a symbol file for use by Palm
Debugger.

Using Palm Debugger
Using the Source Window

Palm OS Programming Development Tools Guide 111
1/18/00

Using the Source Window Context Menu

You can activate the source context menu by right clicking your
mouse in the source window. The context menu features many of
the commands are available in the Source menu, including:

• Break

• Go Till

• Toggle Breakpoint

• Disassemble at Cursor

• Show Current Location

The context menu also lists the source files for each symbol file that
is loaded. You can use this list to select which source file you want to
view.

Source Window Debugging Limitations
Source level debugging is limited in the current version of
PalmDebugger. Although you can perform some of your debugging
with the source window, you need to keep the following limitations
in mind to remember when you need to switch back to assembly
language debugging:

• You cannot display a stack crawl in the source window. You
need to switch to the debugging window and use the sc
command.

• Local variables that are structures or pointers to structures
display as hexadecimal addresses in the local variables pane
of the source window. To view the contents of these
structures, you need to use the dm command in the
debugging window.

Load Symbols for
Current Program
Counter

NEED HELP HERE

Remove All Symbols Unloads any loaded symbols.

Table 2.15 Source menu commands (continued)

Command Description

Using Palm Debugger
Palm Debugger Error Messages

112 Palm OS Programming Development Tools Guide
1/18/00

• You cannot view global variables in the source window.

• Local variables are only displayed in hexadecimal format.

• You cannot change the values of local variables from the
source window. To change these values, you must use the
sb , sw, or sl commands in the debugging window.

Palm Debugger Error Messages
Most of the error messages displayed by Palm Debugger are
hexadecimal codes that can be difficult to understand. To determine
the meaning of the message, you need to look up the code in the
Palm OS header files.

Each error code is a 16-bit value, in which the upper byte represents
the code manager that generated the error, and the lower byte
represents the specific error code. For example, suppose that you
receive the following error message from Palm Debugger:

Error $00000219

The code manager code is 0x02 , which is the Data Manager, and the
error code is 0x19 , which is dmErrAlreadyExists .

The manager codes are located in the SystemMgr.h header file.
The value 0x02 is defined as dmErrorClass .

The specific error codes for each manager are found in the header
file for that manager. For example, the value 0x19 is defined in
DataMgr.h as dmErrAlreadyExists .

Palm Debugger Tips and Examples
This section provides a collection of tips and examples for working
with Palm Debugger, including the following sections:

• Performing Calculations

• Saving time with Shortcut Characters and Repeating
Commands

• Finding a Specific Function

• Finding Memory Corruption Problems

• Displaying Local Variables and Function Parameters

Using Palm Debugger
Palm Debugger Tips and Examples

Palm OS Programming Development Tools Guide 113
1/18/00

• Changing the Baud Rate Used by Palm Debugger

• Debugging Applications That Use the Serial Port

• Importing System Extensions and Libraries

• Determining the Current Location Within an Application

NOTE: Several of the examples in this section show user input
mixed with the output displayed by Palm Debugger. In these
cases, the user input—the commands you type—is shown in
boldface .

Performing Calculations
You can type numeric expressions into the debugging window to
use it as a simple hexadecimal calculator. Here are several examples
of typing a numeric expression and the results displayed in the
debugging window.

Shortcut Characters
Use the two shortcut characters to simplify your typing efforts: type
the period (.) character to specify the address value used for the
most recent command, or use the semicolon (:) character to specify
the starting address of the current routine.

Repeating Commands
You can repeat several of the debugging commands by pressing the
Enter key repeatedly. For example, you can type the dm command to
display sixteen bytes of memory, and then press the Enter key to
display the next sixteen bytes of memory. The s and t commands
also provide this capability.

Typed expression Displayed result

#20*4+3 $00000053 #83 #83 '...S'

20*4+3 $83 #131 #-125 '.'

123+ff $0222 #546 #546 '."'

Using Palm Debugger
Palm Debugger Tips and Examples

114 Palm OS Programming Development Tools Guide
1/18/00

Finding a Specific Function
A typical debugging problem is that you want to single step
through some problem code, but need to first find the code. This
section presents four different methods that you can use to find
code:

• Rebuild the application with a call to DbgBreak in the
problem routine.

• Use debugging commands to set an A-trap break on a system
call that the problem routine makes.

• Use the ft command to find the name of your routine.

• Use the source level debugging support to locate your
routine.

Rebuilding the Application

If you can rebuild the application that you are debugging, it is often
easiest to compile a DbgBreak call into the problem routine. Palm
Debugger will break on the line containing that call.

Setting an A-trap Break

If you know that the problem routine makes a certain system call,
you can use debugging commands to set an a-trap break on that
call. The potential problem with this method is that other routines
might make the same system call, which means that you will get
false triggers.

For example, if you want to find your application’s main event loop,
you can use the following steps.

1. Set an a-trap break for the EvtGetEvent system call, and
then tell Palm Debugger to go until it hits a break, as shown
here:

atb "evtgetevent"
A-trap set on 011d (evtgetevent)
g
Remote stopped due to: A-TRAP BREAK EXCEPTION
'EvtGetEvent'

Using Palm Debugger
Palm Debugger Tips and Examples

Palm OS Programming Development Tools Guide 115
1/18/00

+$0000 10C3B1E2 *LINK A6,$0000 | 4E56 0000

When Palm Debugger breaks due to an a-trap break, the
current location is at the beginning of the system call. This
means that the return address on the stack is the function that
made the system call. In the above example, this will be your
application’s main event loop.

2. Set a temporary breakpoint at the function return address
that is currently on the stack. You can use the @ operator to
fetch the long word at the stack pointer, as shown here:

gt @sp
EXCEPTION ID = $80
'EventLoop'
+$0016 1001B2E6 *MOVE.L A2,-(A7) | 2F0A

The program counter is now at the instruction in your main
event loop that immediately follows the EvtGetEvent call.

3. Disassemble your main event loop. You can use the colon
(:) symbol to easily grab the starting address of the current
routine.

il :
'EventLoop 1001B2D0'
+$0000 1001B2D0 LINK A6,-$001C | 4E56 FFE4
+$0004 1001B2D4 MOVEM.L D3-D4/A2,-(A7) | 48E7
1820
+$0008 1001B2D8 LEA -$0018(A6),A2 | 45EE FFE8
+$000C 1001B2DC PEA $00000032 ; 00000032 |
4878 0032
+$0010 1001B2E0 MOVE.L A2,-(A7) | 2F0A
+$0012 1001B2E2 _EvtGetEvent ; $10C3B1E2 |
4E4F A11D
+$0016 1001B2E6 *MOVE.L A2,-(A7) | 2F0A
+$0018 1001B2E8 _SysHandleEvent ; $10C0E9EC |
4E4F A0A9
+$001C 1001B2EC ADD.W #$000C,A7 | DEFC 000C
+$0020 1001B2F0 TST.B D0 | 4A00

The atb , g, gt , and il commands are described in detail in Chapter
3, “Palm Debugger Command Reference.”

Using Palm Debugger
Palm Debugger Tips and Examples

116 Palm OS Programming Development Tools Guide
1/18/00

Using the Find Text Command

Another method for finding a certain code routine is to search
through memory for the name of the routine. You can use Palm
Debugger’s ft command to search for text. This command takes
three arguments: the text to find, the starting address of the search,
and the number of bytes to search.

For example, to search through the first megabyte of RAM on a
Palm III, you can use the following command:

ft "EventLoop" 10000000 100000
dm 100005C4 ;100005C4: 45 76 65 6E 74 4C 6F 6F
70 63 61 74 69 6F 6E 00 "EventLoop......"

NOTE: RAM starts at address 0x10000000 in all current Palm
handheld devices except for the Palm V. RAM starts at address 0
on the Palm V.

To search ROM instead, use address 0x10C00000 .

You can repeat the find, starting from the current location, by
pressing the Enter key.

dm 1001B355 ;1001B355: 45 76 65 6E 74 4C 6F 6F
70 00 00 4E 56 00 00 2F "EventLoop..NV../"

Again, you can ensure that the routine you’ve found is the one you
want, you can disassemble the current routine by entering the
following command:

il :

IMPORTANT: In the above example, the ft command first
found the text at address 0x100005C4 . This is actually a a copy
of the search string the debugger nub is using. You must search a
second time to find the first “actual” instance of the text string.

The ft and il commands are described in detail in Chapter 3,
“Palm Debugger Command Reference.”

Using Palm Debugger
Palm Debugger Tips and Examples

Palm OS Programming Development Tools Guide 117
1/18/00

Using the Source Level Debugging Support

If you have built your application with the gcc compiler and
generated a symbol file, you can find your code by following these
steps:

1. Launch the console nub on the handheld device, as described
in Activating Console Input.

2. Open your symbols file. You can use the Open Symbol File
command from Palm Debugger’s Source menu.

3. After the symbol file has loaded, choose the Break command
from the Source menu to break into the debugger nub on the
device.

4. In the source window, select the source line of the routine
you want to debug.

5. Choose the Toggle Breakpoint command from the Source
menu to set the breakpoint.

Finding Memory Corruption Problems
As anyone who has tried knows, finding the routine that is trashing
memory can be a very frustrating task. A memory bug can trash the
low memory globals used by the system, the dynamic memory
heap, or an application variable, any of which can cause
unpredictable behavior. This section provides tips for tracking
down two kinds of memory bugs:

• heap corruptions

• application variable corruption

Tracking Down Heap Corruption

If you suspect a corrupted heap, check the heap. You can perform a
fast check of the heap with the hchk command, which verifies the
validity of the heap. For example:

hchk 0
Heap OK

You can also use the hd 0 command to display a dump of the
dynamic heap. If the heap is in a valid state, the heap dump will
complete and you will see the heap summary displayed at the
bottom of the window. For example:

Using Palm Debugger
Palm Debugger Tips and Examples

118 Palm OS Programming Development Tools Guide
1/18/00

hd 0

Displaying Heap ID: 0000, mapped to 00001480
 req act
resType/ #resID/
 start handle localID size size lck own
flags type index attr ctg uniqueID name
--
--
-00001534 00001494 F0001495 000456 00045E #0 #0
fM Graffiti Private
-00001992 00001498 F0001499 000012 00001A #0 #0
fM DataMgr Protect List (DmProtectEntryPtr*)
-000019AC 00001490 F0001491 00001E 000026 #0 #0
fM Alarm Table
-000019D2 0000148C F000148D 000038 000040 #0 #0
fM
*00001A12 0000149C F000149D 000396 00039E #2 #1
fM Form "3:03 pm"
*00001DB0 000014A0 F00014A1 00049A 0004A2 #2 #0
fM
 00002252 -------- F0002252 00002E 00003E #0 #0
FM
 00002290 -------- F0002290 00EC40 00EC50 #0 #0
FM
-00010EE0 -------- F0010EE0 000600 000608 #0 #15
fM Stack: Console Task

...

000114E8 -------- F00114E8 000FF8 001008 #0 #0
FM
-000124F0 -------- F00124F0 001000 001008 #0 #15
fM
-00017D30 -------- F0017D30 00003C 000044 #0 #15
fM SysAppInfoPtr: AMX
-00017D74 -------- F0017D74 000008 000010 #0 #15
fM Feature Manager Globals (FtrGlobalsType)

Using Palm Debugger
Palm Debugger Tips and Examples

Palm OS Programming Development Tools Guide 119
1/18/00

-00017D84 -------- F0017D84 000024 00002C #0 #15
fM DmOpenInfoPtr: 'Update 3.0.2'
-00017DB0 -------- F0017DB0 00000E 000016 #0 #15
fM DmOpenRef: 'Update 3.0.2'
-00017DC6 -------- F0017DC6 0001F4 0001FC #0 #15
fM Handle Table: 'Ô©Update 3.0.2'
-00017FC2 -------- F0017FC2 000024 00002C #0 #15
fM DmOpenInfoPtr: 'Ô©Update 3.0.2'
-00017FEE -------- F0017FEE 00000E 000016 #0 #15
fM DmOpenRef: 'Ô©Update 3.0.2'
--
--
Heap Summary:
 flags: 8000
 size: 016B80
 numHandles: #40
 Free Chunks: #14 (010C50 bytes)
 Movable Chunks: #51 (005E80 bytes)
 Non-Movable Chunks: #0 (000000 bytes)

If you break into the debugger nub at various points during the
execution of your application and check the heap, you can narrow
down where the corruption is occurring in your code.

Another method for tracking down heap corruption is to use the
mdebug command, which puts the handheld device into one of
several heap checking modes. Once a heap-checking mode has been
activated on the device, the Palm OS performs an automatic heap
check and verification after each call to the Memory Manager. If the
heap is corrupted, the system automatically breaks into the
debugger. The following is an example of the mdebug command:

mdebug -partial
Current mode = 001A
Only Affected heap checked/scrambled per call
Heap(s) checked on EVERY Mem call
Heap(s) scrambled on EVERY Mem call
Free chunk contents filled & checked

Minimum dynamic heap free space recording OFF

Using Palm Debugger
Palm Debugger Tips and Examples

120 Palm OS Programming Development Tools Guide
1/18/00

Note that the memory checking modes can seriously degenerate the
performance of an application. You can enable or disable various
mdebug options to strike a balance between performance and
debugging information. For more information, see MDebug.

The hd , hchk , and mdebug commands are described in detail in
Chapter 3, “Palm Debugger Command Reference.”

Tracking Down Global Variable Corruption

When you have a bug that is trashing a system or application global,
you must first determine which address in memory is being
corrupted. Once you know that address, you can use the Step-Spy
(ss) command to watch the address. The ss command puts the
processor into single-step mode and automatically checks the
contents of a specified address after each instruction. If the
instruction causes the contents of the address the change, the
debugger breaks. For example:

ss 100
Step Spying on address: 00000100

Note that the ss command is single-stepping through instructions,
and thus the handheld device runs slowly. Ideally, you can narrow
down the range of code involved with the corruption and use this
command to watch the execution of this code section.

Displaying Local Variables and Function
Parameters
If you are debugging with the source window, the current function’s
local variables and parameters are displayed in the upper pane of
the window. However, if you do not have access to symbol
information, you need to use debugging commands to manually
look up the variable values. This section describes the steps you
need to take to look up values for a typical function, which is shown
in Listing 2.4

Listing 2.4 An example function for viewing local variables
and parameters

static Boolean
MainFrmEventHandler (EventPtr eventP)

Using Palm Debugger
Palm Debugger Tips and Examples

Palm OS Programming Development Tools Guide 121
1/18/00

{
 FormPtr formP;
 Boolean handled = false;
 Err err;
 char buffer[64];
 UInt32 numBytes=0;
 Int16 i;
 static char prevChar = 0;

 // See if StdIO can handle it
 if (StdHandleEvent (eventP)) return true;

 // body of function omitted for clarity
 ...

 return false;
}

If you break into the debugger and disassemble the code at the
beginning of this function, just before it calls the StdHandleEvent
function, this is what you see:

il :
'MainFrmEventHandler 1001E296'
+$0000 1001E296 LINK A6,-$0048 | 4E56 FFB8
+$0004 1001E29A MOVEM.L D3-D5/A2,-(A7) | 48E7
1C20
+$0008 1001E29E MOVE.L $0008(A6),A2 | 246E
0008
+$000C 1001E2A2 CLR.B D5 | 4205
+$000E 1001E2A4 CLR.L -$0044(A6) | 42AE FFBC
+$0012 1001E2A8 *MOVE.L A2,-(A7) | 2F0A
+$0014 1001E2AA BSR.W StdHandleEvent ;
1001F214 | 6100 0F68
+$0018 1001E2AE ADDQ.W #$04,A7 | 584F
+$001A 1001E2B0 TST.B D0 | 4A00
+$001C 1001E2B2 BEQ.S
MainFrmEventHandler+$0024 ; 1001E2BA | 6706

The first UInt32 on the stack upon function entry is the return
address for the function. Immediately following that are the

Using Palm Debugger
Palm Debugger Tips and Examples

122 Palm OS Programming Development Tools Guide
1/18/00

parameter values, from left to right. In the listing above, if you
display the memory pointed to by the stack pointer at the beginning
of the function, you see the following:

dm sp
00014A2A: 10 C4 77 00 00 01 4A 4E 00 01 4A 4E
00 01 51 0E "..w...JN..JN..Q."

The first UInt32 (0x10C47700) is the return address of the
function.

The second UInt32 (0x00014A4E) is the value of the function’s
eventP parameter.

After the LINK instruction executes however, the stack pointer
register is changed: the stack pointer is decremented to make room
for a saved value of the A6 register and for local variables; in this
example, there are 0x48 bytes of local variables.

After the LINK instruction executes, the A6 register is changed to
point to the beginning of the functions’ stack frame. This register is
used by the function to access parameters and local variables. The
following shows what the stack looks like after the LINK instruction
executes:

Address : Contents
 --

 A7 => 149CE <= new "top" of
stack
 : ... <= 0x48 bytes of
local variables
 A6 => 14A26 : 00 01 4A 3A <= saved value of
A6
 14A2A : 10 C4 77 00 <= return address

14A2E : 00 01 4A 4E<= eventP parameter

If you display the memory referenced by register A6 at this time,
you see the following:

dm a6
00014A26: 00 01 4A 3A 10 C4 77 00 00 01 4A 4E
00 01 4A 4E "..J:..w...JN..JN"

Using Palm Debugger
Palm Debugger Tips and Examples

Palm OS Programming Development Tools Guide 123
1/18/00

The first UInt32 pointed to by A6 is the old value of A6, the next
UInt32 is the return address of the routine, and following that are
the function parameter values. This means that the first parameter
to the function can always be found at 8(A6) .

Any local variables belonging to the function are stored in memory
locations preceding A6. In the above example, the numBytes local
variable is located at -$0044(A6) . Once you know the offset of the
variable, you can access by using an offset from the A6 register; thus,
you can use the following command to view the numBytes
parameter:

dm -44+a6
000149E2: 00 00 00 00 00 00 1A 0C 20 00 20 04
00 01 4A 08 "........J."

Changing the Baud Rate Used by Palm
Debugger
Both the debugger and console nubs on the handheld device always
start communicating at 57,600 baud. You can change this baud rate
by selecting a new speed from Palm Debugger’s Communications
menu.

If you are using a serial cable that does not include hardware
handshaking lines, you might need to switch to a lower baud rate.
And if you are downloading a large file to the handheld device, you
might want to switch higher baud rate. Palm Debugger allows you
to set the baud rate to values ranging from 2400 baud to 230,400
baud.

When you choose a new baud rate, Palm Debugger sends a request
packet to the nub on the handheld device to change its baud rate,
and then Palm Debugger changes its own baud rate. If Palm
Debugger is attached to the debugger nub on the device, the request
goes to the debugger nub; otherwise, the request goes to the console
nub.

In either case, changing the baud rate of either nub on the handheld
device changes the baud rate of both nubs.

Using Palm Debugger
Palm Debugger Tips and Examples

124 Palm OS Programming Development Tools Guide
1/18/00

NOTE: The new baud rate is only in effect until you soft reset
the handheld device.

Debugging Applications That Use the Serial
Port
Although it is very difficult to debug an application that uses the
serial port, you can still use a limited set of debugging functions.
You cannot use the console nub while an application on the
handheld device is using the serial port.

When you do enter the debugger nub on the handheld device while
debugging a serial application, the debugger sends data over the
serial port and probably disrupts the application’s communications.
At that point, you can switch the serial cable back over to Palm
Debugger, double-check your baud rate setting, attach to the device
with the att command, and perform “post-mortem” analysis of the
problem.

Making Sure the Baud Rates Match

If the debugger nub on the handheld device has already been
entered at least once, and you later launch a handheld application
that opens the serial port, that application might change the port
speed. The debugger nub will then use the new baud rate, but you
will need to manually change the baud rate that Palm Debugger is
using for communications to work. Use Palm Debugger’s
Communications menu to change the speed.

Importing System Extensions and Libraries
You can use the console window import command to copy a new
database or replace an existing database on the handheld device.
However, the import command cannot replace a database that is
currently opened.

If you are developing a system extension or shared library and need
to use the import command, you need to do some extra work. This
is due to the fact that system extension databases and shared
libraries are generally either opened or marked as protected. To

Using Palm Debugger
Palm Debugger Tips and Examples

Palm OS Programming Development Tools Guide 125
1/18/00

import a newer version of a system extension database or shared
library, you have to make sure that the old database has been closed
and is not protected; otherwise, the import command generates the
following message:

###Error $00000219 occurred

To get around this problem, you need to perform a soft reset on the
handheld device and tell the Palm OS to not automatically load
system extensions or shared libraries. To do so, follow these steps:

1. Press the Up button on the handheld device while pressing
the reset button on the back of the device with a paper clip or
similar blunt object. This tells the Palm OS on the device to
not load the system extension databases and shared libraries.

2. Start the console nub on the handheld device.

3. Import your system extension or shared library with the
import command.

4. Perform another soft reset on the device, and the system will
use the new version of the extension or library.

Determining the Current Location Within an
Application
You can use one of the following three methods to determine where
you are in your code:

1. Disassemble code starting at the beginning of the current
routine, using the following command:

il :
'EventLoop 1001B2D0'
+$0000 1001B2D0 LINK A6,-$001C | 4E56 FFE4
+$0004 1001B2D4 MOVEM.L D3-D4/A2,-(A7) | 48E7
1820
+$0008 1001B2D8 LEA -$0018(A6),A2 | 45EE FFE8
+$000C 1001B2DC PEA $00000032 ; 00000032 |
4878 0032
+$0010 1001B2E0 MOVE.L A2,-(A7) | 2F0A
+$0012 1001B2E2 _EvtGetEvent ; $10C3B1E2 |
4E4F A11D
+$0016 1001B2E6 *MOVE.L A2,-(A7) | 2F0A

Using Palm Debugger
Palm Debugger Tips and Examples

126 Palm OS Programming Development Tools Guide
1/18/00

+$0018 1001B2E8 _SysHandleEvent ; $10C0E9EC |
4E4F A0A9
+$001C 1001B2EC ADD.W #$000C,A7 | DEFC 000C
+$0020 1001B2F0 TST.B D0 | 4A00

2. Perform a stack crawl with the sc command, which displays
the oldest routine at the top and the newest at the bottom.
For example:

sc
Calling chain using A6 Links:
A6 Frame Caller
00000000 10C68982 cjtkend+0000
00015086 10C6CA26 __Startup__+0060
00015066 10C6CCCE PilotMain+0250
00014FC2 10C0F808 SysAppLaunch+0458
00014F6E 10C10258 PrvCallWithNewStack+0016
0001491E 1001CC7E start+006E
000148E6 1001CF44 PilotMain+001C

3. Get a list of the currently opened databases. Your application
should be one of the listed databases. Note that the System
and GraffitiShortCuts databases are always opened by
the system, and will appear at the bottom of the list. Use the
opened command as follows:

opened

name resDB cardNum accessP ID
openCnt mode
--

LauncherDB no 0 000151460001814F 1

0003
*Launcher yes 0 00016DD200D1FA98 1

0001
*Graffiti ShortCutsyes 0 00017D5C001FFE7F 1

0007
*System yes 0 00017FEE00D20A44 1

0005

Using Palm Debugger
Palm Debugger Tips and Examples

Palm OS Programming Development Tools Guide 127
1/18/00

--

Total: 4 databases opened

Palm OS Programming Development Tools Guide 129
1/18/00

3
Palm Debugger
Command
Reference
This chapter describes Palm Debugger commands. For an
introduction to using Palm Debugger, see Chapter 2, “Using Palm
Debugger.”

This chapter begins with a description of the syntax used to describe
commands, and then expands into the following sections:

• Debugging Window Commands provides a reference
description for each command that you can use in the
debugging window to communicate with the debugger nub
running on the handheld device. The command reference
listings are ordered alphabetically.

• Debugging Command Summary provides tables that
summarize the debugging commands by category.

Command Syntax
This chapter uses the following syntax to specify the format of
debugger commands:

commandName <parameter> [options]

commandName The name of the command.

parameter Parameter(s) for the command. Each parameter
name is enclosed in angle brackets (< and >).

Sometimes a parameter can be one value or
another. In this case the parameter names are
bracketed by parentheses and separated by the
| character.

Palm Debugger Command Reference
Command Syntax

130 Palm OS Programming Development Tools Guide
1/18/00

options Optional flags that you can specify with the
command. Note that options are specified with
the dash (-) character in the console window
and with the backslash (\) character in the
debugging window.

NOTE: Any portion of a command that is shown enclosed in
square brackets ("[" and "]") is optional.

The following is an example of a command definition

dir (<cardNum>|<srchOptions>) [displayOptions]

The dir command takes either a card number of a search
specification, followed by display options.

Here are two examples of the dir command sent from the console
window:

dir 0 -a
dir -t rsrc

And here are the same two commands sent from the debugging
window:

dir 0 \a
dir \t rsrc

Specifying Command Options

All command options and some command parameters are specified
as flags that begin with a dash (in the console window) or backslash
(in the debugging window). For example:

-c
-enable
\enable

Some flags are followed by a keyword or value. You must leave
white space between the flag and the value. For example:

-f D:\temp\myLogFile
\t Rsrc

Palm Debugger Command Reference
Debugging Window Commands

Palm OS Programming Development Tools Guide 131
1/18/00

Specifying Numeric and Address Values
Many of the debugging commands take address or numeric
arguments. You can specify these values in hexadecimal, decimal, or
binary. All values are assumed to be hexadecimal unless preceded
by a sign that specifies decimal (#) or binary (%). Table 3.1 shows
values specified as binary, decimal, and hexadecimal in a debugging
command:

For more information, see Specifying Constants.

Using the Expression Language
When you send commands from the debugger window to the
debugger nub on the handheld device, you can use Palm
Debugger’s expression language to specify the command
arguments. This language is described in Using Debugger
Expressions.

Debugging Window Commands
You use Palm Debugger’s debugging window to send commands to
the debugger nub that is running on the handheld device.

NOTE: You can use Palm Debugger’s expression language to
specify arguments to debugging window commands. The
expression language is described in Using Debugger
Expressions.

Table 3.1 Specifying numeric values in Palm Debugger

Hex value Decimal value Binary value

64 or $64 #100 %01100100

F5 or $F5 #245 %11110101

100 or $100 #256 %100000000

Palm Debugger Command Reference
Debugging Window Commands

132 Palm OS Programming Development Tools Guide
1/18/00

This section provides a description of all of the commands in
alphabetical order. For convenience, the commands are categorized
here:

>

Purpose Defines a structure field.

 Usage > <typeName> <"fieldName">

Parameters typeName The type of the field.

fieldName The quoted name of the field in the template.

Comments Use the > command in conjunction with the typedef and typeend
commands to defined structure templates that you can use to
display complex structures with a single memory display (dm)
command.

Example typedef struct "PointType"
> SWord "X"
> SWord "Y"
typeend

Table 3.2 Debugging window command categories

Category Commands

Console cardInfo, dir, hChk, hd, hl, ht, Info, opened, storeInfo

Flow Control att, atb, atc, atd, br , brc, brd, cl, dx, g, gt, s, ss t, reset

Memory atr, db, dl, dm, dw, fb, fill, fl, ft, fw, il, sb, sc, sc6, sc7, sl, sw, wh

Miscellaneous help (?), penv

Register reg

Template >, sizeof, templates, typedef, typeend

Utility alias, aliases, bootstrap, keywords, load, run, save, , var, variables

Palm Debugger Command Reference
Debugging Window Commands

Palm OS Programming Development Tools Guide 133
1/18/00

alias

Purpose Defines or displays an alias.

 Usage alias <"name">
alias <"name"> <"definition">

Parameters name The quoted name of the alias.

definition The quoted definitional text for the alias.

Comments Use the alias command to define an alias for a command or group
of commands.

If you provide only the name of an alias, this command displays the
definition for that name.

Example alias "ls" "dir"

aliases

Purpose Displays the names of all defined aliases.

 Usage aliases

Parameters None.

Comments

Example aliases
ls

Palm Debugger Command Reference
Debugging Window Commands

134 Palm OS Programming Development Tools Guide
1/18/00

atb

Purpose Adds an A-Trap break.

 Usage atb (<"funcName"> | <trapNum>)
([libRefNum> | <"libName">])

Parameters funcName The quoted name of the function.

trapNum The A-Trap number.

libRefNum Optional. the reference number for the library
in which the function resides.

libName Optional. The quoted name of the library in
which the function resides.

atc

Purpose Clears an A-Trap break.

 Usage atc (<"funcName"> | <trapNum>)
([libRefNum> | <"libName">])

Parameters funcName The quoted name of the function.

trapNum The A-Trap number.

libRefNum Optional. the reference number for the library
in which the function resides.

libName Optional. The quoted name of the library in
which the function resides.

atd

Purpose Displays a list of all the A-Trap breaks currently set.

 Usage atd

Parameters None.

Palm Debugger Command Reference
Debugging Window Commands

Palm OS Programming Development Tools Guide 135
1/18/00

atr

Purpose Registers a function name with an A-Trap number.

 Usage atr <"funcName"> <trapNum> [<"libName">]

Parameters funcName The quoted name of the function.

trapNum The A-Trap number.

libName Optional. The quoted name of the library in
which the function resides.

att

Purpose Attach to the handheld device.

 Usage att [options]

Parameters options You can optionally specify the following
options:

\async
Attach asynchronously.

Example att
EXCEPTION ID = $A
 +$0512 10C0EEFE *MOVEQ.L #$01,D0 | 7001

Palm Debugger Command Reference
Debugging Window Commands

136 Palm OS Programming Development Tools Guide
1/18/00

bootstrap

Purpose Loads a ROM image into memory on the handheld device, using the
bootstrap mode of the Dragonball EZ processor.

 Usage bootstrap <"hwInitFileName"> <"romFileName">
[options]

Parameters hwInitFileName The quoted name of the hardware initialization
file on your desktop computer.

romFileName The quoted name of the ROM image file on
your desktop computer.

options You can optionally specify the following
options:

\slow
???.

br

Purpose Sets a breakpoint at the specified address.

 Usage br [options] <addr>

Parameters options Optional. You can specify the following option:

\toggle
Toggles the breakpoint on or off.

addr The memory address at which to set the
breakpoint.

Palm Debugger Command Reference
Debugging Window Commands

Palm OS Programming Development Tools Guide 137
1/18/00

brc

Purpose Clears a breakpoint or all breakpoints.

 Usage brc
brc <addr>

Parameters addr A memory address.

Comments Use the br command to clear a specific breakpoint or to clear all
breakpoints. if you specify a valid address value, that breakpoint is
cleared. If you do not specify any address value, all breakpoints are
cleared.

NOTE: The cl and brc commands are identical.

brd

Purpose Displays a list of all of the breakpoints that are currently set.

 Usage brd

Parameters None.

cardInfo

Purpose Retrieves information about a memory card.

 Usage cardinfo <cardNum>

Parameters cardNum The number of the card for which you want
information displayed. You almost always use
0 to specify the built-in RAM.

Comments NOTE: You can use the cardinfo command in either the
Console window or the Debugger window.

Palm Debugger Command Reference
Debugging Window Commands

138 Palm OS Programming Development Tools Guide
1/18/00

Example cardinfo 0

Name: PalmCard
Manuf: Palm Computing
Version: 0001
CreationDate: B1243780
ROM Size: 00118FFC
RAM Size: 00200000
Free Bytes : 0015ACB2
Number of heaps: #3

cl

Purpose Clears a breakpoint or all breakpoints.

 Usage cl
cl <addr>

Parameters addr A memory address.

Comments Use the cl command to clear a specific breakpoint or to clear all
breakpoints. if you specify a valid address value, that breakpoint is
cleared. If you do not specify any address value, all breakpoints are
cleared.

NOTE: The cl and brc commands are identical.

db

Purpose Displays the byte value at a specified address.

 Usage db <addr>

Parameters addr A memory address.

Comments

Palm Debugger Command Reference
Debugging Window Commands

Palm OS Programming Development Tools Guide 139
1/18/00

Example db 0100
Byte at 00000100 = $01 #1 #1 '.'

dir

Purpose Displays a list of the databases on the handheld device.

 Usage dir (<cardNum>|<searchOptions>) [<displayOptions>]

Parameters cardNum The card number whose databases you want
listed. You almost always use 0 to specify the
built-in RAM.

searchOptions Optional. Options for listing a specific
database. Specify any combination of the
following flags.

\c <creatorID>
Search for a database by creator ID.

\latest
List only the latest version of each
database.

\t <typeID>
Search for a database by its type.

displayOptions Optional. Options for which information is
displayed in the listing. Specify any
combination of the following flags.

\a Show all information.

\at Show the database attributes.

\d Show the database creation,
modification, and backup dates.

\i Show the database appInfo and sortInfo
field values.

\id Show the database chunk ID

\s Show the database size

\m Show the database modification number.

Palm Debugger Command Reference
Debugging Window Commands

140 Palm OS Programming Development Tools Guide
1/18/00

\n Show the database name.

\r Show the number of records in the
database.

\tc Show the database type ID and creator
ID.

\v Show the database version number.

Comments Use the dir command to display a list of the databases on a specific
card or in the handheld device built-in RAM. You typically use the
following command to list all of the databases stored in RAM on the
handheld device:

dir 0

Or use the -a switch to display all of the information for each
database:

dir 0 -a

NOTE: You can use the dir command in either the Console
window or the Debugger window. However, the command options
must be prefaced with the "\" character in the debugger window,
rather than with the "-" character that you use in the console
window version.

Example dir 0

name ID total data
--
*System 00D20A44 392.691 Kb 390.361
Kb
*AMX 00D209C4 20.275 Kb 20.123
Kb
*UIAppShell 00D20944 1.327 Kb 1.175
Kb
*PADHTAL Library 00D208E2 7.772 Kb 7.674
Kb
*IrDA Library 00D20876 39.518 Kb 39.402
Kb
 ...

Palm Debugger Command Reference
Debugging Window Commands

Palm OS Programming Development Tools Guide 141
1/18/00

 MailDB 0001817F 1.033 Kb 0.929
Kb
 NetworkDB 0001818B 0.986 Kb 0.722
Kb
 System MIDI Sounds 000181B3 1.066 Kb 0.842
Kb
 DatebookDB 000181FB 0.084 Kb 0.000
Kb
--
-
Total: 41

dl

Purpose Displays the 32-bit long value at a specified address.

 Usage dl <addr>

Parameters addr A memory address.

Example dl 0100
Long at 00000100 = $01010000 #16842752 #16842752
'....'

dm

Purpose Displays memory for a specified number of bytes or templates.

 Usage dm <addr> [<count>] [<template>]

Parameters addr A memory address.

count Optional. The number of bytes to display.

template . The name of the structure template to use. This
defines how much memory to display and how
to display it.

Palm Debugger Command Reference
Debugging Window Commands

142 Palm OS Programming Development Tools Guide
1/18/00

Comments Use the dm command to display a range of memory values. You can
specify a byte count or a structure template; if you do not specify
either, dm displays sixteen bytes of memory.

Example dm 0100 8
00000100: 01 01 00 00 02 B0 00 01

dump

Purpose Dumps memory to a file.

 Usage dump <“filename”> <addr> <numBytes>

Parameters filename The quoted name of the file to which the data is
to be written.

addr A memory address.

numBytes The number of bytes of memory to write to the
file.

Comments Use the dump command to write a dump of a range of memory
addresses to file.

dw

Purpose Displays the 16-bit word value at a specified address.

 Usage dw <addr>

Parameters addr A memory address.

Example dw 0100
Word at 00000100 = $0101 #257 #257 '..'

Palm Debugger Command Reference
Debugging Window Commands

Palm OS Programming Development Tools Guide 143
1/18/00

dx

Purpose Enables or disables DbgBreak() breaks.

 Usage dx

Parameters None.

fb

Purpose Searches through a range of memory for a specified byte value.

 Usage fb <value> <addr> <numBytes> [flags]

Parameters value The byte value to find.

addr The address at which to start the seearch.

numBytes The number of bytes to search.

flags Optional. You can specify the following flags:

\a Find all occurrences within the specified
range.

\i Use caseless comparison.

Comments By default, fb uses a case sensitive comparison.

Example fb ff 0100 200

dm 00000110 ;00000110: FF 00 00 00 03 18 00 00
03 BC 00 01 7D 72 00 01 "............}r.."

Palm Debugger Command Reference
Debugging Window Commands

144 Palm OS Programming Development Tools Guide
1/18/00

fill

Purpose Fills memory with a specified byte value.

 Usage fill <addr> <numBytes> <value>

Parameters addr A memory address.

numBytes The number of bytes to fill with the value.

value The value assigned to each byte.

Example fill 0100 8 FF

fl

Purpose Searches through a range of memory for a specified 32-bit long
value.

 Usage fb <value> <addr> <numBytes> [flags]

Parameters value The byte value to find.

addr The address at which to start the search.

numBytes The number of bytes to search.

flags Optional. You can specify the following flags:

\a Find all occurrences within the specified
range.

\i Use caseless comparison.

Comments By default, fl uses a case sensitive comparison.

Example fl ffff 0 1000

dm 00000034 ;00000034: FF FF 00 00 FF FF 00 00
FF FF 00 00 FF FF 00 00 "................"

Palm Debugger Command Reference
Debugging Window Commands

Palm OS Programming Development Tools Guide 145
1/18/00

ft

Purpose Searches through a range of memory for the specified text.

 Usage ft <text> <addr> <numBytes> [flags]

Parameters text The quoted text to find.

addr The address at which to start the seearch.

numBytes The number of bytes to search.

flags Optional. You can specify the following flags:

\a Find all occurrences within the specified
range.

\i Use caseless comparison.

Comments By default, ft uses a case sensitive comparison.

Example ft "abc" 0 1000

dm 000005C4 ;000005C4: 61 62 63 27 00 00 00 00
00 01 4B 06 00 00 0

fw

Purpose Searches through a range of memory for the specified 16-bit word
value.

 Usage fw <value> <addr> <numBytes> [flags]

Parameters value The value to find.

addr The address at which to start the seearch.

numBytes The number of bytes to search.

flags Optional. You can specify the following flags:

\a Find all occurrences within the specified
range.

Palm Debugger Command Reference
Debugging Window Commands

146 Palm OS Programming Development Tools Guide
1/18/00

\i Use caseless comparison.

Comments By default, fw uses a case sensitive comparison.

Example fw 32000 0 1000

dm 00000258 ;00000258: 00 20 00 00 00 07 A7 0E
00 00 00 01 00 00 00 00 "."

g

Purpose Continues execution.

 Usage g
g <addr>

Parameters addr Optional. The address from which to continue
execution.

Comments You can optionally specify a starting address for the g command. If
you do not specify an address, execution continues from the current
program counter location.

Example g

gt

Purpose Sets a temporary breakpoint at the specified address, and resumes
execution from the current program counter.

 Usage gt <addr>

Parameters addr The address at which to set the breakpoint. If
you do not specify an address, the current
program counter location is used.

Comments

Palm Debugger Command Reference
Debugging Window Commands

Palm OS Programming Development Tools Guide 147
1/18/00

hChk

Purpose Checks the integrity of a heap.

 Usage hchk <heapId> [options]

Parameters heapId The hexadecimal number of the heap whose
contents are to be checked. Heap number
0x0000 is always the dynamic heap.

options Optional. You can specify the following option:

\c Check the contents of each chunk.

Comments

NOTE: You can use the hchk command in either the Console
window or the Debugger window. However, the command options
must be prefaced with the "\" character in the debugger window,
rather than with the "-" character that you use in the console
window version.

Example hchk 0000
Heap OK

hd

Purpose Displays a hexadecimal dump of the specified heap.

 Usage hd <heapId>

Parameters heapId The hexadecimal number of the heap whose
contents are to be displayed. Heap number
0x0000 is always the dynamic heap.

Palm Debugger Command Reference
Debugging Window Commands

148 Palm OS Programming Development Tools Guide
1/18/00

Comments Use the hd command to display a dump of the contents of a specific
heap from the handheld device. You can use the HL command to
display the heap IDs.

Example hd 0

Displaying Heap ID: 0000, mapped to 00001480
 req act
resType/ #resID/
 start handle localID size size lck own
flags type index attr ctg uniqueID name
--
--
-00001534 00001494 F0001495 000456 00045E #0 #0
fM Graffiti Private
-00001992 00001498 F0001499 000012 00001A #0 #0
fM DataMgr Protect List (DmProtectEntryPtr*)
-000019AC 00001490 F0001491 00001E 000026 #0 #0
fM Alarm Table
-000019D2 0000148C F000148D 000038 000040 #0 #0
fM
*00001A12 0000149C F000149D 000396 00039E #2 #1
fM Form "3:03 pm"
*00001DB0 000014A0 F00014A1 00049A 0004A2 #2 #0
fM
 00002252 -------- F0002252 00002E 00003E #0 #0
FM
 00002290 -------- F0002290 00EC40 00EC50 #0 #0
FM
-00010EE0 -------- F0010EE0 000600 000608 #0 #15
fM Stack: Console Task

...

000114E8 -------- F00114E8 000FF8 001008 #0 #0
FM
-000124F0 -------- F00124F0 001000 001008 #0 #15
fM

Palm Debugger Command Reference
Debugging Window Commands

Palm OS Programming Development Tools Guide 149
1/18/00

-00017D30 -------- F0017D30 00003C 000044 #0 #15
fM SysAppInfoPtr: AMX
-00017D74 -------- F0017D74 000008 000010 #0 #15
fM Feature Manager Globals (FtrGlobalsType)
-00017D84 -------- F0017D84 000024 00002C #0 #15
fM DmOpenInfoPtr: 'Update 3.0.2'
-00017DB0 -------- F0017DB0 00000E 000016 #0 #15
fM DmOpenRef: 'Update 3.0.2'
-00017DC6 -------- F0017DC6 0001F4 0001FC #0 #15
fM Handle Table: 'Ô©Update 3.0.2'
-00017FC2 -------- F0017FC2 000024 00002C #0 #15
fM DmOpenInfoPtr: 'Ô©Update 3.0.2'
-00017FEE -------- F0017FEE 00000E 000016 #0 #15
fM DmOpenRef: 'Ô©Update 3.0.2'
--
--
Heap Summary:
 flags: 8000
 size: 016B80
 numHandles: #40
 Free Chunks: #14 (010C50 bytes)
 Movable Chunks: #51 (005E80 bytes)
 Non-Movable Chunks: #0 (000000 bytes)

help (?)

Purpose Displays a list of commands or help for a specific command.

 Usage help
help <command>

Parameters command The name of the command for which you want
help displayed.

Comments

NOTE: You can use the help command in either the Console
window or the Debugger window.

Palm Debugger Command Reference
Debugging Window Commands

150 Palm OS Programming Development Tools Guide
1/18/00

Example help hchk

Do a Heap Check.
Syntax: hchk <hex heapID> [options...]
 -c : Check contents of each chunk

hl

Purpose Displays a list of memory heaps.

 Usage hl <cardNum>

Parameters cardNum The card number on which the heaps are
located. You almost always use 0 to specify the
built-in RAM.

Comments Use the hl command to list the memory heaps in built-in RAM or
on a card.

NOTE: You can use the hl command in either the Console
window or the Debugger window.

Example hl 0

 index heapID heapPtr size free
maxFree flags
--

 0 0000 00001480 00016B80 00010C50
0000EC48 8000
 1 0001 1001810E 001E7EF2 0014AD6A
00147D3A 8000

Palm Debugger Command Reference
Debugging Window Commands

Palm OS Programming Development Tools Guide 151
1/18/00

 2 0002 10C08212 00118DEE 0000A01C
0000A014 8001

ht

Purpose Displays summary information for the specified heap.

 Usage ht 0

Parameters None.

Comments The ht commands displays the summary information that is also
shown at the end of a heap dump generated by the hd command.

NOTE: You can use the ht command in either the Console
window or the Debugger window.

Example ht 0000
Displaying Heap ID: 0000, mapped to 00001480
--
Heap Summary:
 flags: 8000
 size: 016B80
 numHandles: #40
 Free Chunks: #14 (010CAA bytes)
 Movable Chunks: #48 (005E26 bytes)
 Non-Movable Chunks: #0 (000000 bytes)

il

Purpose Disassembles code in a specified line range.

 Usage il [<addr> | <“funcName”> [lineCount]]

Parameters addr Optional. The starting address at which to
disassemble.

Palm Debugger Command Reference
Debugging Window Commands

152 Palm OS Programming Development Tools Guide
1/18/00

funcName Optional. The name of the function whose code
you want disassembled.

lineCount Optional. If you provide a value for addr, you
can also specify the number of lines of code to
disassemble starting at addr .

Comments Use the il command to disassemble code. If you do not provide a
function name or starting address value, disassembly begins at the
current program counter value.

Example il 0100

 00000100 BTST D0,D1 |
0101
 00000102 ORI.B #$B0,D0 ; '.'

| 0000 02B0
 00000106 ORI.B #$30,D1 ; '0'

| 0001 7830
 0000010A ORI.B #$01,D0 ; '.'

| 0000 0001
 0000010E |
474A
 00000110 CoProc |
FF00 0000 0318
 00000116 ORI.B #$BC,D0 ; '.'

| 0000 03BC
 0000011A ORI.B #$72,D1 ; 'r'

| 0001 7D72
 0000011E ORI.B #$BC,D1 ; '.'

| 0001 6FBC
 00000122 ORI.B #$22,D0 ; '"'

| 0000 0722

Palm Debugger Command Reference
Debugging Window Commands

Palm OS Programming Development Tools Guide 153
1/18/00

Info

Purpose Displays information about a memory chunk.

 Usage info (<hexChunkPtr> | localID>) [options]

Parameters hexChunkPtr or localID
A pointer to a chunk in memory, or the ID of a
chunk on the specified card number.

options Optional. You can specify the following
options:

-card <cardNum >
The card number if a local ID is specified
instead of a chunk pointer.

Comments

NOTE: You can use the info command in either the Console
window or the Debugger window. However, the command options
must be prefaced with the "\" character in the debugger window,
rather than with the "-" character that you use in the console
window version.

Example

keywords

Purpose Lists all debugger keywords.

 Usage keywords

Parameters None.

Example keywords

Palm Debugger Command Reference
Debugging Window Commands

154 Palm OS Programming Development Tools Guide
1/18/00

t
g
SR
PC
SP
A7
A6
A5
A4
A3
A2
A1
A0
D7
...

load

Purpose Loads the data fork of a file at the specified address.

 Usage load <"fileName"> <addr>

Parameters fileName The quoted name of the file whose data fork
you want loaded.

addr The memory address at which you want the
data fork loaded.

opened

Purpose Lists all of the currently opened databases.

 Usage opened

Parameters None.

Palm Debugger Command Reference
Debugging Window Commands

Palm OS Programming Development Tools Guide 155
1/18/00

NOTE: You can use the opened command in either the
Console window or the Debugger window.

Example opened

name resDB cardNum accessP
ID openCnt mode
--

*Graffiti ShortCutsyes 0 00017D5C
001FFE7F 1 0007
*System yes 0 00017FEE 00D20A44
1 0005
--

Total: 2 databases opened

penv

Purpose Displays current environment information for the debugger.

 Usage penv

Parameters None.

Comments The penv command displays the current values of the predefined
debugger environment variables, which are summarized in
Debugger Environment Variables.

Example penv
============================
DebOut = false
SymbolsOn = true
StepRegs = false
ReadMemHack = false

Palm Debugger Command Reference
Debugging Window Commands

156 Palm OS Programming Development Tools Guide
1/18/00

Attached = true
............................
dot address = 00000000
last address = 00001022
last count = 0000000a
============================

reg

Purpose Displays all registers.

 Usage reg

Parameters None.

Example reg

D0 = 00000102 A0 = 10C0EEF6 USP = BF6E446F
D1 = 00000013 A1 = 10C0EF0E SSP = 000132E4
D2 = 00000027 A2 = 000133C2
D3 = 00000000 A3 = 00015404
D4 = 00014B06 A4 = 10CCFB7C
D5 = 00000000 A5 = 000149AA
D6 = 00D1EFE8 A6 = 000133AC PC = 10C0EEFE
D7 = 0001515E A7 = 000132E4 SR = tSxnzvc
Int = 0

reset

Purpose Performs a soft reset on the handheld device.

 Usage reset

Parameters None.

Palm Debugger Command Reference
Debugging Window Commands

Palm OS Programming Development Tools Guide 157
1/18/00

Comments This command performs the same reset that is performed when you
press the recessed reset button on a Palm Computing handheld
device. It resets the memory system and reformats both cards.

NOTE: You can use the reset command in either the Console
window or the Debugger window.

Example reset
Resetting system

run

Purpose Runs a debugger script from file.

 Usage run <"fileName">

Parameters filename The quoted name of the file that contains the
debugger script.

s

Purpose Single steps the processor, stepping into subroutines.

 Usage s

Parameters None.

Example s

'SysHandleEvent'
 +$0694 10C0F080 *MOVEM.L (A7)+,D3-D5/A2-A4 |
4CDF 1C38

Palm Debugger Command Reference
Debugging Window Commands

158 Palm OS Programming Development Tools Guide
1/18/00

save

Purpose Saves a range of data from memory to file.

 Usage save <"fileName"> <addr> <numBytes>

Parameters fileName The quoted name of the file to which you want
the data saved.

addr The starting address in memory to save.

numBytes The number of bytes to save.

Example save "savedMem1" 0100 100

sb

Purpose Sets the value of the byte at the specified address.

 Usage sb <addr> <value>

Parameters addr The address of the byte.

value The byte value.

Example sb 0111 0a

Memory set starting at 00000111

sc

Purpose Displays a list of functions on the stack using information stored in
the A6 frame pointer register.

 Usage sc [<addr> [<frames>]]

Parameters addr Optional. The address from which to start
listing.

Palm Debugger Command Reference
Debugging Window Commands

Palm OS Programming Development Tools Guide 159
1/18/00

frames Optional. The number of frames to list. You can
specify this only if you specify a value for addr .

Example sc
Calling chain using A6 Links:
 A6 Frame Caller
 00000000 10C68982 cjtkend+0000
 00015086 10C6CA26 __Startup__+0060
 00015066 10C6CCCE PilotMain+0250
 00014FC2 10C0F808 SysAppLaunch+0458
 00014F6E 10C10258 PrvCallWithNewStack+0016
 00013414 10CCFBE0 __Startup__+0060
 000133F4 10CD08CE PilotMain+0036
 000133DA 10CD6D18 EventLoop+0016

sc6

Purpose Lists the A6 stack frame chain, starting at the specified address.

 Usage sc6 [<addr> [<frames>]]

Parameters addr Optional. The address from which to start
listing.

frames Optional. The number of frames to list. You can
specify this only if you specify a value for addr .

Comments This command is the same as the sc command.

Example sc
Calling chain using A6 Links:
 A6 Frame Caller
 00000000 10C68982 cjtkend+0000
 00015086 10C6CA26 __Startup__+0060
 00015066 10C6CCCE PilotMain+0250
 00014FC2 10C0F808 SysAppLaunch+0458
 00014F6E 10C10258 PrvCallWithNewStack+0016
 00013414 10CCFBE0 __Startup__+0060

Palm Debugger Command Reference
Debugging Window Commands

160 Palm OS Programming Development Tools Guide
1/18/00

 000133F4 10CD08CE PilotMain+0036
 000133DA 10CD6D18 EventLoop+0016

sc7

Purpose Displays a list of functions on the stack using the stack pointer (A7).
This displays information about functions on the stack that do not
set up frame pointers

 Usage sc7 [<addr> [<frames>]]

Parameters addr Optional. The address from which to start
listing.

frames Optional. The number of frames to list. You can
specify this only if you specify a value for addr .

Comments Use the sc7 command instead of the standard stack crawl
command, sc , when you want to display information about
routines on the stack that have not set up frame pointers. Note that
this command will sometimes display bogus routines.

Example sc7

Return Addresses on the stack:
 Stack Addr Caller
 00013AFC 00000000
 000133B0 10CD6D18 EventLoop+0016
 00013344 10C1F964
PrvHandleExchangeEvents+0028

Palm Debugger Command Reference
Debugging Window Commands

Palm OS Programming Development Tools Guide 161
1/18/00

sizeof

Purpose Displays the size, in bytes, of a template.

 Usage sizeof <template>

Parameters template The name of the template.

Comments You can use the templates command to list the available templates.

Example sizeof sdword
Size = 4 byte(s)

sl

Purpose Sets the value of the 32-bit long integer at the specified address.

 Usage sl <addr> <value>

Parameters addr The address of the 32-bit value.

value The long value.

Example sl 0110 ffffffff
Memory set starting at 00000110

ss

Purpose Breaks into the debugger when the value of the long word at the
specified address changes.

 Usage ss [<addr>]

Parameters addr Optional. The address of the 32-bit value. If you
do not specify an address value, the current
program counter location is used. *

Palm Debugger Command Reference
Debugging Window Commands

162 Palm OS Programming Development Tools Guide
1/18/00

Example ss 1000F024

storeInfo

Purpose Displays information about a memory store.

 Usage storeinfo <cardNum>

Parameters cardNum The card number for which you want
information displayed. You almost always use
0 to specify the built-in RAM.

Comments

NOTE: You can use the storeinfo command in either the
Console window or the Debugger window.

Example storeinfo 0

ROM Store:
 version: 0001
 flags: 0000
 name: ROM Store
 creation date: 00000000
 backup date: 00000000
 heap list offset: 00C08208
 init code offset1: 00C0D652
 init code offset2: 00C1471E
 database dirID: 00D20F7E

RAM Store:
 version: 0001
 flags: 0001
 name: RAM Store 0
 creation date: 00000000

Palm Debugger Command Reference
Debugging Window Commands

Palm OS Programming Development Tools Guide 163
1/18/00

 backup date: 00000000
 heap list offset: 00018100
 init code offset1: 00000000
 init code offset2: 00000000
 database dirID: 0001811F

sw

Purpose Sets the value of the word at the specified address.

 Usage sw <addr> <value>

Parameters addr The address of the 16-bit value.

value The word value.

Example sw 0110 ffff
Memory set starting at 00000110

t

Purpose Single steps the processor, stepping over subroutines.

 Usage t

Parameters None.

Example t

'SysHandleEvent'
Will Branch
 +$0514 10C0EF00 *BRA.W
SysHandleEvent+$0694 ; 10C0F080 |6000 017E

Palm Debugger Command Reference
Debugging Window Commands

164 Palm OS Programming Development Tools Guide
1/18/00

templates

Purpose Lists the names of the debugger templates.

 Usage templates

Parameters None.

Example templates

Char
Byte
SByte
Word
SWord
DWord
SDWord

typedef

Purpose Begins a structure definition block.

 Usage typedef struct <"name">

Parameters name The quoted name of the template whose
definition you are beginning.

Comments Use the typedef command in conjunction with the > and typeend
commands to defined structure templates that you can use to
display complex structures with a single memory display (dm)
command.

Example typedef struct "PointType"
> SWord "X"
> SWord "Y"
typeend

Palm Debugger Command Reference
Debugging Window Commands

Palm OS Programming Development Tools Guide 165
1/18/00

typeend

Purpose Ends a structure definition block.

 Usage typeend

Parameters None.

Comments Use the typeend command in conjunction with the > and typedef
commands to defined structure templates that you can use to
display complex structures with a single memory display (dm)
command.

Example typedef struct "PointType"
> SWord "X"
> SWord "Y"
typeend

var

Purpose Defines a debugger variable.

 Usage var <"name"> [<initialValue>]

Parameters name The quoted name of the variable that you are
defining.

initialValue Optional. The initial value for the variable. If
you are assigning a string value to the variable,
you must quote the initial value.

Example var "testvar" 100

var "testvar" "Hello"
WARNING: redefining variable: testvar

Palm Debugger Command Reference
Debugging Window Commands

166 Palm OS Programming Development Tools Guide
1/18/00

variables

Purpose Lists the names of the debugger variables.

 Usage variables

Parameters None.

Example variables

DebOut
SymbolsOn
ReadMemHack
StepRegs
Attached
testvar
testvar2

wh

Purpose Displays system function information for a specified function name
or A-Trap number. Also identifies the memory chunk that contains a
specific address or lists all system functions.

 Usage wh [\a <addr>] [<"funcName"> | <ATrapNumber>]

Parameters addr Specifies an address. The wh command displays
the memory chunk that contains this address.

funcName The quoted name of the system function for
which you want information displayed.

ATrapNumber The number of the A-trap number for which
you want information displayed.

Palm Debugger Command Reference
Debugging Command Summary

Palm OS Programming Development Tools Guide 167
1/18/00

Debugging Command Summary

Flow Control Commands

Memory Commands

atb Adds an A-Trap break.

atc Clears an A-Trap break.

atd Displays a list of all A-Trap breaks.

att Attach to the handheld device.

br Sets a breakpoint at the specified address.

brc Clears a breakpoint or all breakpoints.

brd Displays a list of all breakpoints.

cl Clears a breakpoint or all breakpoints.

dx Enables or disables DbgBreak() breaks.

g Continues execution.

gt Sets a temporary breakpoint at the specified
address, and resumes execution from the current
program counter.

reset Resets the memory system and formats both cards.

s Single steps the processor, stepping into
subroutines.

ss Breaks into the debugger when the long word
value at the specified address changes.

t Single steps the processor, stepping over
subroutines.

atr Registers a function name with an A-Trap number.

db Displays the byte value at a specified address.

Palm Debugger Command Reference
Debugging Command Summary

168 Palm OS Programming Development Tools Guide
1/18/00

dl Displays the 32-bit long value at a specified
address.

dm Displays memory for a specified number of bytes
or templates.

dw Displays the 16-bit word value at a specified
address.

fb Searches through a range of memory for a specified
byte value.

fill Fills memory with a specified byte value.

fl Searches through a range of memory for a specified
32-bit long value.

ft Searches through a range of memory for the
specified text.

fw Searches through a range of memory for the
specified 16-bit word value.

il Disassembles code in a specified line range.

sb Sets the value of the byte at the specified address.

sc Lists the A6 stack frame chain, starting at the
specified address.

sc6 Lists the A6 stack frame chain, starting at the
specified address.

sc7 Lists the A7 stack frame chain, starting at the
specified address.

sl Sets the value of the long at the specified address.

sw Sets the value of the word at the specified address.

wh Displays system function information for a
specified function name or A-Trap number. Also
identifies the memory chunk that contains a
specific address or lists all system functions.

Palm Debugger Command Reference
Debugging Command Summary

Palm OS Programming Development Tools Guide 169
1/18/00

Template Commands

Register Commands

Utility Commands

> Defines a structure field.

sizeof Displays the size, in bytes, of a template.

templates Lists the names of the debugger templates.

typedef Begins a structure definition block.

typeend Ends a structure definition block.

reg Displays all registers.

alias Defines or displays an alias.

aliases Displays all debugger alias names.

bootstrap Loads a ROM image into memory on the handheld
device, using the bootstrap mode of the Dragonball
EZ processor.

flash Loads the file’s data fork into Flash Memory at the
specified address.

keywords Lists all debugger keywords.

load Loads the file’s data fork at the specified remote
address.

run Runs a debugger script.

save Saves a range of data from memory to file.

var Defines a debugger variable.

variables Lists the names of the debugger variables.

Palm Debugger Command Reference
Debugging Command Summary

170 Palm OS Programming Development Tools Guide
1/18/00

Console Commands

Miscellaneous Debugger Commands

Debugger Environment Variables

CardInfo Retrieves information about a memory card.

Dir Lists the databases.

Dump Dumps a range of memory to a file.

HChk Checks a heap.

HD Displays a dump of a memory heap.

HL Lists all of the memory heaps on the specified
memory card.

HT Performs a heap total.

Info Displays information on a heap chunk.

Opened Lists all currently opened databases.

StoreInfo Retrieves information about a memory store.

help
(or ?)

Displays a list of available commands.

help <cmd>
or

? <cmd>

Displays help for a specific command.

penv Displays debugger environment information.

DebOut A Boolean value that specifies if debug style
output is enabled.

ReadMemHack A Boolean value that specifies if the read memory
hack is enabled.

Palm Debugger Command Reference
Debugging Command Summary

Palm OS Programming Development Tools Guide 171
1/18/00

Predefined Constants

SymbolsOn A Boolean value that specifies if printing of
disassembly symbols is enabled.

StepRegs A Boolean value that specifies if register values
should be shown after every step.

true Integer value 1.

false Integer value 0.

srCmask The status register Carry bit.

srImask The status register Interrupt field mask.

srNmask The status register Negative bit.

srSmask The status register Supervisor bit.

srTmask The status register Trace bit.

srVmask The status register Overflow bit.

srXmask The status register extend bit.

srZmask The status register Zero bit.

Palm Debugger Command Reference
Debugging Command Summary

172 Palm OS Programming Development Tools Guide
1/18/00

Palm OS Programming Development Tools Guide 173
1/18/00

4
Using the Console
Window
This chapter describes console window, which you can use with
Palm® Debugger, the Palm Simulator, and the Metrowerks
CodeWarrior environment to perform maintenance and high-level
debugging of a Palm handheld device.

About the Console Window
The console window interfaces with a handheld device by sending
information packets to and receiving information packets from the
console nub on the device. The console interface provides a number
of commands, which are used primarily for administration of
databases and heap testing on handheld devices.

The console is available in three environments:

• as a separate window for sending and receiving commands
in the Palm Debugger program, which is described in
Chapter 2, “Using Palm Debugger.”

• as a separate window that you can open from within the
Palm Simulator program, which is described in Chapter 5,
“Using the Palm Simulator.”

• as a separate window that you can open within the
Metrowerks CodeWarrior environment.

The console window provides the same commands and same
interface in all three environments.

Before you use the console commands, you must connect your
desktop computer with the console nub on the device, as described
in Connecting the Console Window.

To learn more about using console commands, see the section Using
the Console Window. For a complete reference description of each

Using the Console Window
Connecting the Console Window

174 Palm OS Programming Development Tools Guide
1/18/00

console command, see Console Window Commands. The
commands are summarized in Console Command Summary.

Connecting the Console Window

Activating Console Input
To send console commands to the handheld device, you must
connect your desktop computer to the handheld device, activate the
console nub on the device, and then type commands into the
console window.

The console nub runs as a background thread on the device,
listening for commands on the serial or USB port. To activate the
console nub, use the Graffiti Shortcut-2 command, as described in
Using Shortcut Numbers to Activate the Windows.

When the console nub activates, it sends out a “Ready” message. If
your desktop computer is connected to the device when the nub is
activated, this message will display in the console window.

WARNING! The console nub activates at 57,600 baud, and your
port configuration must match this is you are connecting over a
serial port. You must set the connection parameters correctly for
communications to work.

After you activate the console nub on the handheld device, the
nub prevents other applications, including HotSync® from using
the serial port. You have to soft-reset the handheld device before
the port can be used.

Verifying Your Connection

To verify your device connection, you can type one of the simple
console commands, such as dir or hl 0 . If your connection is
working and the console nub is active on the handheld device, you
will see a list of memory heaps displayed in the window.

Using the Console Window
Connecting the Console Window

Palm OS Programming Development Tools Guide 175
1/18/00

If the console nub is not running on the handheld device, or if the
communications connection is not correctly configured, you will see
an error message:

Error $00000404 occurred

If you are certain that the console nub is running on the handheld,
you need to set the connection parameters correctly. If you are using
the console with Palm Debugger, you can use the Communications
menu to set the parameters.

Using Shortcut Numbers to Activate the
Windows
The Palm OS® responds to a number of “hidden” shortcuts for
debugging your programs, including shortcuts for activating the
console nub on the handheld device. You generate each of these
shortcuts by drawing characters on your Palm Computing platform
device, or by drawing them in the Palm OS Emulator emulator
program, if you are using Palm OS Emulator to debug your
program.

NOTE: If you open the Find dialog on the handheld device
before entering a shortcut number, you get visual feedback as
you draw the strokes.

To enter a shortcut number, follow these steps:

1. On your Palm Computing platform device, or in the
emulator program, draw the shortcut symbol. This is a
lowercase, cursive “L” character, drawn as follows:

2. Next, tap the stylus twice, to generate a dot (a period).

Using the Console Window
Connecting the Console Window

176 Palm OS Programming Development Tools Guide
1/18/00

3. Next, draw a number character in the number entry portion
of the device’s text entry area. Table 4.1 shows the different
shortcut numbers that you can use.

For example, to activate the console nub on the handheld
device, enter the follow sequence:

NOTE: These debugging shortcuts leave the device in a mode
that requires a soft reset. To perform a soft reset, press the reset
button on the back of the handheld with a blunt instrument, such
as a paper clip.

Table 4.1 Shortcut numbers for debugging

Number Description Notes

The device enters debugger
mode, and waits for a low-level
debugger to connect. A flashing
square appears in the top left
corner of the device.

This mode opens a serial port, which
drains power over time.

You must perform a soft reset or use the
debugger’s reset command to exit this
mode.

The device enters console
mode, and waits for
communication, typically from
a high-level debugger.

This mode opens a serial port, which
drains power over time.

You must perform a soft reset to exit this
mode.

The device’s automatic power-
off feature is disabled.

You can still use the device’s power
button to power it on and off. Note that
your batteries can drain quickly with
automatic power-off disabled.

You must perform a soft reset to exit this
mode.

.2

.1

.2

.3

Using the Console Window
Using the Console Window

Palm OS Programming Development Tools Guide 177
1/18/00

Using the Console Window
You use the console window to enter console commands, which are
typically used for administrative tasks such as managing databases
on the handheld device. Commands that you type into the console
window are sent to the console nub on the handheld device, and the
results sent back from the device are displayed in the console
window.

NOTE: Console command input is not case sensitive.

Table 4.2 shows the most commonly used console window
commands.

Listing 4.1 shows an example of using console commands. In this
example, boldface is used to denote commands that you type.

Listing 4.1 Importing a database into the handheld device

import 0 "C:Documents\MyDbs\Tex2HexApp.prc"

Creating Database on card 0
name: Text to Hex
type appl, creator TxHx

Importing resource 'code'=0....

Table 4.2 Commonly used console commands

Command Description

del Deletes a database from the handheld device.

dir Displays a list of the databases on the handheld
device.

export Copies a Palm OS database from the handheld
device to the desktop computer.

import Copies a Palm OS database from the desktop
computer to the handheld device.

Using the Console Window
Using the Console Window

178 Palm OS Programming Development Tools Guide
1/18/00

Importing resource 'data'=0....
Importing resource 'pref'=0....
Importing resource 'rloc'=0....
Importing resource 'code'=1....
Importing resource 'tFRM'=1000....
Importing resource 'tver'=1....
Importing resource 'tAIB'=1000....
Importing resource 'Tbmp'=1000....
Importing resource 'Tbmp'=1001....
Importing resource 'MBAR'=1000....
Importing resource 'Talt'=1000....
Importing resource 'Talt'=1001....
Success!!

dir 0
name ID total data
--
*System 00D20A44 392.691 Kb 390.361
Kb
*AMX 00D209C4 20.275 Kb 20.123
Kb
*UIAppShell 00D20944 1.327 Kb 1.175
Kb
*PADHTAL Library 00D208E2 7.772 Kb 7.674
Kb
*IrDA Library 00D20876 39.518 Kb 39.402
Kb
*Net Library 00D207E2 86.968 Kb 86.780
Kb
*PPP NetIF 00D2073A 30.462 Kb 30.238
Kb
*SLIP NetIF 00D20692 15.812 Kb 15.588
Kb
*Loopback NetIF 00D20630 1.810 Kb 1.712
Kb
*MS-CHAP Support 00D205C4 4.342 Kb 4.226
Kb
*Network 00D203D2 40.442 Kb 39.624
Kb

Using the Console Window
Using the Console Window

Palm OS Programming Development Tools Guide 179
1/18/00

*Address Book 00D20226 59.825 Kb 59.133
Kb
*Calculator 00D2002A 14.597 Kb 13.761
Kb
*Date Book 00D1FCF8 106.200 Kb 104.806
Kb
*Launcher 00D1FA98 36.633 Kb 35.617
Kb
*Memo Pad 00D1F91E 24.267 Kb 23.665
Kb
*Preferences 00D1F876 1.403 Kb 1.179
Kb
*Security 00D1F706 8.414 Kb 7.830
Kb
*HotSync 00D1F334 39.078 Kb 37.396
Kb
*To Do List 00D1F1E2 33.232 Kb 32.702
Kb
*Digitizer 00D1F126 2.002 Kb 1.742
Kb
*General 00D1EFE8 8.749 Kb 8.255
Kb
*Formats 00D1EF4A 4.732 Kb 4.526
Kb
*ShortCuts 00D1EE34 6.499 Kb 6.077
Kb
*Owner 00D1ED5A 4.095 Kb 3.781
Kb
*Buttons 00D1EC4E 7.419 Kb 7.015
Kb
*Modem 00D1EB74 8.222 Kb 7.908
Kb
*Mail 00D1E838 59.765 Kb 58.353
Kb
*Expense 00D1E614 42.304 Kb 41.396
Kb
*Unsaved Preferences 0001811B 0.898 Kb
0.550 Kb
*Net Prefs 00018133 0.084 Kb 0.000
Kb

Using the Console Window
Using the Console Window

180 Palm OS Programming Development Tools Guide
1/18/00

 AddressDB 00018137 66.149 Kb 51.945
Kb
 MemoDB 0001815F 2.186 Kb 1.902
Kb
 ToDoDB 00018173 1.000 Kb 0.876
Kb
 MailDB 0001817F 1.033 Kb 0.929
Kb
 DatebookDB 000181EB 53.162 Kb 29.678
Kb
 System MIDI Sounds 000181B3 1.066 Kb 0.842
Kb
*Saved Preferences 00018123 3.753 Kb 3.031
Kb
 NetworkDB 0001818B 0.986 Kb 0.722
Kb
*Giraffe High Score 00018273 0.126 Kb 0.020
Kb
 Datebk3DB 0001827B 0.084 Kb 0.000
Kb
 ReDoDB 0001827F 0.084 Kb 0.000
Kb
 LauncherDB 0001814F 0.294 Kb 0.190
Kb
*MineHunt 00018287 9.810 Kb 9.264
Kb
*SubHunt 000182DF 17.700 Kb 16.758
Kb
*Puzzle 0001837F 5.256 Kb 4.886
Kb
*HardBall 000183B7 18.877 Kb 18.177
Kb
 Pictures 0001842B 0.084 Kb 0.000
Kb
*Jot 0001842F 120.409 Kb 119.841
Kb
*Graffiti ShortCuts 001FFE7F 2.872 Kb
2.766 Kb
*UnDupe 001FFE87 9.462 Kb 9.070
Kb

Using the Console Window
Command Syntax

Palm OS Programming Development Tools Guide 181
1/18/00

*WordView 001FFEC3 17.320 Kb 16.752
Kb
*SheetView 001FFF1F 56.753 Kb 55.877
Kb
 AOU Birds of NA 001FFE15 130.265 Kb 90.021
Kb
 ExpenseDB 001FBCB5 0.150 Kb 0.046
Kb
 DocsToGoDB 001FBCC1 0.326 Kb 0.202
Kb
 birds.PDB 001FBCD1 0.709 Kb 0.585
Kb
 foo 0001812F 0.084 Kb 0.000
Kb
*Text To Hex 001FFF85 34.725 Kb 33.827
Kb
--

Total: 59

These and all of the other console commands are described in detail
in Console Window Commands.

Command Syntax
This chapter uses the following syntax to specify the format of
debugger commands:

commandName <parameter> [options]

commandName The name of the command.

parameter Parameter(s) for the command. Each parameter
name is enclosed in angle brackets (< and >).

Sometimes a parameter can be one value or
another. In this case the parameter names are
bracketed by parentheses and separated by the
| character.

Using the Console Window
Command Syntax

182 Palm OS Programming Development Tools Guide
1/18/00

options Optional flags that you can specify with the
command. Note that options are specified with
the dash (-) character in the console window.

NOTE: Any portion of a command that is shown enclosed in
square brackets ("[" and "]") is optional.

The following is an example of a command definition

dir (<cardNum>|<srchOptions>) [displayOptions]

The dir command takes either a card number of a search
specification, followed by display options.

Here are two examples of the dir command sent from the console
window:

dir 0 -a
dir -t rsrc

Specifying Command Options

All command options and some command parameters are specified
as flags that begin with a dash. For example:

-c
-enable

Some flags are followed by a keyword or value. You must leave
white space between the flag and the value. For example:

-f D:\temp\myLogFile
-t Rsrc

NOTE: You use the dash (-) character to specify options for
console commands. If you are using Palm Debugger, you must
use the backslash (\) character to specify options for commands
that you type in the debugging window; this is because the
expression parser used for debugging commands interprets the
dash as a minus sign.

Using the Console Window
Console Window Commands

Palm OS Programming Development Tools Guide 183
1/18/00

Specifying Numeric and Address Values
Many of the console commands take address or numeric arguments.
You can specify these values in hexadecimal, decimal, or binary. All
values are assumed to be hexadecimal unless preceded by a sign
that specifies decimal (#) or binary (%). Table 4.3 shows values
specified as binary, decimal, and hexadecimal in a debugging
command:

Console Window Commands
You use the console window to send commands to the console nub
that is running on the handheld device.

This section provides a description of all of the commands in
alphabetical order. For convenience, the commands are categorized
here:

Table 4.3 Specifying numeric values in Palm Debugger

Hex value Decimal value Binary value

64 or $64 #100 %01100100

F5 or $F5 #245 %11110101

100 or $100 #256 %100000000

Table 4.4 Console window command categories

Command category Commands

Card Information CardFormat, CardInfo, and StoreInfo.

Chunk Utility Free, Info, Lock, New, Resize, SetOwner, and Unlock.

Database Utility Close, Create, Del, Dir, Export, Import, Open, Opened, and
SetInfo.

Debugging Utility DM, GDB, MDebug, and SB.

Gremlin Gremlin and GremlinOff.

Heap Utility HC, HChk, HD, HF, HI, HL, HS, HT, and HTorture.

Host Control Help, Log, and SaveImages.

Using the Console Window
Console Window Commands

184 Palm OS Programming Development Tools Guide
1/18/00

AddRecord

Purpose Adds a record to a database.

 Usage addrecord <accessPtr> <index> <recordText>

Parameters accessPtr A pointer to the database.

index The index of the record in the database.

recordText The record data.

AddResource

Purpose Adds a resource to a database.

 Usage addresource <accessPtr> -t <type> -id <id>
<resourceText>

Parameters accessPtr A pointer to the database.

type The type of the resource that you are adding.

id The ID for the resource that you are adding.

resourceText The resource data.

Miscellaneous Utility SimSync and SysAlarmDump.

Record Utility AddRecord, , , DelRecord, DetachRecord, FindRecord,
ListRecords, MoveRecord, and SetRecordInfo.

Resource Utility AddResource, AttachResource, ChangeResource,
DelResource, DetachResource, , ListResources,and
SetResourceInfo.

System Battery, ColdBoot, Doze, Exit, Feature, KInfo, Launch,
Performance, PowerOn, Reset, Sleep, and Switch.

Table 4.4 Console window command categories

Command category Commands

Using the Console Window
Console Window Commands

Palm OS Programming Development Tools Guide 185
1/18/00

AttachRecord

Purpose Attaches a record to a database.

 Usage attachrecord <accessPtr> <recordHandle> <index>
[options]

Parameters accessPtr A pointer to the database.

recordHandle A handle to the record that you are attaching to
the database.

index The index of the record.

options Optional. You can specify the following option:

-r Replaces the existing record with the
same index, if one exists.

AttachResource

Purpose Attaches a resource to a database.

 Usage attachrecord <accessPtr> <recordHandle> <index>
[options]

Parameters accessPtr A pointer to the database.

recordHandle A handle to the resource that you are attaching
to the database.

index The index of the resource.

options Optional. You can specify the following option:

-r Replaces the existing resource with the
same index, if one exists.

Using the Console Window
Console Window Commands

186 Palm OS Programming Development Tools Guide
1/18/00

Battery

Purpose A battery utility command for performing battery operations.

 Usage battery [options]

Parameters options Optional. Specifies the battery operation to
perform. Use one of the following values:

-rStart <deltaSeconds>
Start radio charging in the number of
seconds specified by deltaSeconds .

-rStop
Stop radio charging.

-rLoaded (yes | no)
Set loaded state to yes or no .

Example battery -rStop

CardFormat

Purpose Formats a memory card.

 Usage cardformat <cardNum> <cardName> <manufName>
<ramStoreName>

Parameters cardNum The card number.

cardName The name to associate with the card.

manufName The manufacturer name to associate with the
card.

ramStoreName The RAM store name to associate with the card.

Using the Console Window
Console Window Commands

Palm OS Programming Development Tools Guide 187
1/18/00

CardInfo

Purpose Displays information about a memory card.

 Usage cardinfo <cardNum>

Parameters cardNum The card number about which you want
information. You can use 0 to specify the built-
in RAM.

Example cardinfo 0

Name: PalmCard
Manuf: Palm Computing
Version: 0001
CreationDate: B1243780
ROM Size: 00118FFC
RAM Size: 00200000
Free Bytes : 0015ACB2
Number of heaps: #3

ChangeRecord

Purpose Replaces a record in a database.

 Usage changerecord <accessPtr> <index> <recordText>

Parameters accessPtr A pointer to the database.

index The index of the record in the database.

recordText The new record data.

Using the Console Window
Console Window Commands

188 Palm OS Programming Development Tools Guide
1/18/00

ChangeResource

Purpose Replaces a resource in a database.

 Usage changeresource <accessPtr> <index> <recordText>

Parameters accessPtr A pointer to the database.

index The index of the resource in the database.

resourceText The new resource data.

Close

Purpose Closes a database.

 Usage close <accessPtr>

Parameters accessPtr A pointer to the database.

ColdBoot

Purpose Initiates a hard reset on the handheld device.

 Usage coldboot

Parameters None

Comments Use the coldboot command to perform a hard reset of the handheld
device. A hard reset erases all data on the device, restoring it to its
new condition.

The handheld device requires confirmation of this operation. You
are prompted to press the "UP" button on the device to confirm that
you want to perform a hard reset, or press any other button to
cancel the operation.

Example coldboot

Using the Console Window
Console Window Commands

Palm OS Programming Development Tools Guide 189
1/18/00

Create

Purpose Creates a new database on the handheld device.

 Usage create <cardNum> <name> [options]

Parameters cardNum The card number whose databases you want
listed. You almost always use 0 to specify the
built-in RAM.

name The name for the new database on the
handheld device.

options Optional. Specifies information about the new
database:

-t <type>
The 4-character database type identifier.

-c <creator>
The 4-character database creator ID.

-v <version>
The database version number.

-r Specify to indicate that the database is a
resource database.

Comments Use the create command to create a new record or resource database
on the handheld device.

Example

Del

Purpose Deletes a database from the handheld device.

 Usage del <cardNum> <fileName>

Parameters cardNum The card number on which the database is
located. You almost always use 0 to specify the
built-in RAM.

Using the Console Window
Console Window Commands

190 Palm OS Programming Development Tools Guide
1/18/00

fileName The name of the database on the handheld
device. Note that you must quote the database
name if it contains spaces.

Comments Use the del command to delete a database from the specified card
on the handheld device.

You can get a list of the databases on the device with the Dir
command.

You cannot delete an open database.

Result If the database you want to delete is not found or is currently
opened, you receive an error message.

Example del 0 birds.pdb

Success!!

DelRecord

Purpose Deletes a record from a database.

 Usage delrecord <accessPtr> <index>

Parameters accessPtr A pointer to the database.

index The index of the record in the database.

Comments Use the delrecord command to delete the record at the specified
index value from the database specified by accessPtr .

DelResource

Purpose Deletes a resource from a database.

 Usage delresource <accessPtr> <index>

Parameters accessPtr A pointer to the database.

Using the Console Window
Console Window Commands

Palm OS Programming Development Tools Guide 191
1/18/00

index The index of the resource in the database.

Comments Use the delresource command to delete the resource at the
specified index value from the database specified by accessPtr .

DetachRecord

Purpose Detaches a record from a database.

 Usage detachrecord <accessPtr> <index>

Parameters accessPtr A pointer to the database.

index The index of the record in the database.

Comments Use the detachrecord command to detach the record at the
specified index value from the database specified by accessPtr .

DetachResource

Purpose Detaches a resource from a database.

 Usage detachresource <accessPtr> <index>

Parameters accessPtr A pointer to the database.

index The index of the resource in the database.

Comments Use the detachresource command to detach the resource at the
specified index value from the database specified by accessPtr .

Using the Console Window
Console Window Commands

192 Palm OS Programming Development Tools Guide
1/18/00

Dir

Purpose Displays a list of the databases on the handheld device.

 Usage dir (<cardNum>|<searchOptions>) [<displayOptions>]

Parameters cardNum The card number whose databases you want
listed. You almost always use 0 to specify the
built-in RAM.

searchOptions Optional. Options for listing a specific
database. Specify any combination of the
following flags.

-c <creatorID>
Search for a database by creator ID.

-latest
List only the latest version of each
database.

-t <typeID>
Search for a database by its type.

displayOptions Optional. Options for which information is
displayed in the listing. Specify any
combination of the following flags.

-a Show all information.

-at Show the database attributes.

-d Show the database creation,
modification, and backup dates.

-i Show the database appInfo and sortInfo
field values.

-id Show the database chunk ID

-s Show the database size

-m Show the database modification number.

-n Show the database name.

-r Show the number of records in the
database.

Using the Console Window
Console Window Commands

Palm OS Programming Development Tools Guide 193
1/18/00

-tc Show the database type ID and creator
ID.

-v Show the database version number.

Comments Use the dir command to display a list of the databases on a specific
card or in the handheld device built-in RAM. You typically use the
following command to list all of the databases stored in RAM on the
handheld device:

dir 0

Or use the -a switch to display all of the information for each
database:

dir 0 -a

Example dir 0

name ID total data
--
*System 00D20A44 392.691 Kb 390.361
Kb
*AMX 00D209C4 20.275 Kb 20.123
Kb
*UIAppShell 00D20944 1.327 Kb 1.175
Kb
*PADHTAL Library 00D208E2 7.772 Kb 7.674
Kb
*IrDA Library 00D20876 39.518 Kb 39.402
Kb
 ...
 MailDB 0001817F 1.033 Kb 0.929
Kb
 NetworkDB 0001818B 0.986 Kb 0.722
Kb
 System MIDI Sounds 000181B3 1.066 Kb 0.842
Kb
 DatebookDB 000181FB 0.084 Kb 0.000
Kb
--
-
Total: 41

Using the Console Window
Console Window Commands

194 Palm OS Programming Development Tools Guide
1/18/00

DM

Purpose Displays a range of memory values.

 Usage dm <addr> [<count>]

Parameters addr The starting memory address to be displayed.

count The number of bytes to be displayed. If this is
omitted, eight bytes of data are displayed.

Example dm 0000f000

0000F000: 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00

Doze

Purpose Instructs the handheld device’s CPU to sleep while maintaining the
peripherals and the clock.

 Usage doze [options]

Parameters options You can optionally specify the following flags:

-light
The handheld device will awaken in
response to any interrupt.

Example doze -light

Exit

Purpose Exits the debugger.

 Usage exit

Parameters None.

Using the Console Window
Console Window Commands

Palm OS Programming Development Tools Guide 195
1/18/00

Export

Purpose Copies a Palm OS database from the handheld device to the desktop
computer.

 Usage export <cardNum> <fileName>

Parameters cardNum The card number on which the database is
located. You almost always use 0 to specify the
built-in RAM.

fileName The name of the database on the handheld
device. Note that you must quote the database
name if it contains spaces.

Comments Use the export command to copy a database from the handheld
device to your desktop computer. You can get a list of the databases
on the device with the Dir command.

If the database contains resources, it is copied in standard PRC
format; if the database contains records, it is copied in standard PDB
format. Note that these two formats are actually identical.

The exported file is stored in the Device subdirectory of the
directory in which Palm Debugger executable is stored.

The exported file is named fileName , with no added extensions.

Example export 0 "Text to Hex"

Exporting resource 'code'=0....
Exporting resource 'data'=0....
Exporting resource 'pref'=0....
Exporting resource 'rloc'=0....
Exporting resource 'code'=1....
Exporting resource 'tFRM'=1000....
Exporting resource 'tver'=1....
Exporting resource 'tAIB'=1000....
Exporting resource 'Tbmp'=1000....
Exporting resource 'Tbmp'=1001....
Exporting resource 'MBAR'=1000....
Exporting resource 'Talt'=1000....

Using the Console Window
Console Window Commands

196 Palm OS Programming Development Tools Guide
1/18/00

Exporting resource 'Talt'=1001....
Success!!

Feature

Purpose Accesses features.

 Usage feature [options]

Parameters options Optional. You can use the following options:

-all Displays a list of all known features

-unreg <creator> <num>
Unregisters the specified feature

-get <creator> <num>
Displays the value of a feature

-set <creator> <num> <value>
Sets the value of a feature.

Example
feature -all

ROM: creator number value
 'psys' #1 03003000
 'psys' #2 00010000
RAM: creator number value
 'psys' #3 00000001
 'psys' #4 00000001
 'psys' #7 00000001
 'netl' #0 02003000
 'irda' #0 03003000

feature -get psys 3

Value = 00000001

Using the Console Window
Console Window Commands

Palm OS Programming Development Tools Guide 197
1/18/00

FindRecord

Purpose Finds a record by ID.

 Usage findrecord <accessPtr> <id>

Parameters accessPtr A pointer to the database.

id The unique record ID.

Free

Purpose Disposes of a chunk.

 Usage free (<hexChunkPtr> | localID>) [options]

Parameters hexChunkPtr or localID
A pointer to a chunk in memory, or the ID of a
chunk on the specified card number.

options Optional. You can specify the following
options:

-card <cardNum >
The card number if a local ID is specified
instead of a chunk pointer.

GDB

Purpose Enables or disables Gdb debugging

 Usage gdb [options]

Parameters options Optional. You can specify the following
options:

-enable
Enables gdb debugging.

Using the Console Window
Console Window Commands

198 Palm OS Programming Development Tools Guide
1/18/00

-disable
Disables gdb debugging.

GetResource

Purpose Retrieves the specified resource.

 Usage getresource -t <type> -id <id>

Parameters type The type of resource that you want to retrieve.

id The ID of the resource that you want to retrieve.

Gremlin

Purpose Activates a gremlin until the specified event occurs.

 Usage gremlin <num> <until>

Parameters num The number of the gremlin to activate.

until The event that deactivates the gremlin.

GremlinOff

Purpose Deactivates the current gremlin.

 Usage gremlinoff

Parameters None

Example gremlinoff

Using the Console Window
Console Window Commands

Palm OS Programming Development Tools Guide 199
1/18/00

HC

Purpose Compacts a memory heap.

 Usage hc <heapId>

Parameters heapId The hexadecimal number of the heap to be
compacted. Heap number 0x0000 is always
the dynamic heap.

Example hc 0002
Heap Compacted

HChk

Purpose Checks the integrity of a heap.

 Usage hchk <heapId> [options]

Parameters heapId The hexadecimal number of the heap whose
contents are to be checked. Heap number
0x0000 is always the dynamic heap.

options Optional. You can specify the following option:

-c Check the contents of each chunk.

Example hchk 0000
Heap OK

Using the Console Window
Console Window Commands

200 Palm OS Programming Development Tools Guide
1/18/00

HD

Purpose Displays a hexadecimal dump of the specified heap.

 Usage hd <heapId>

Parameters heapId The hexadecimal number of the heap whose
contents are to be displayed. Heap number
0x0000 is always the dynamic heap.

Comments Use the hd command to display a dump of the contents of a specific
heap from the handheld device. You can use the HL command to
display the heap IDs.

Example hd 0

Displaying Heap ID: 0000, mapped to 00001480
 req act
resType/ #resID/
 start handle localID size size lck own
flags type index attr ctg uniqueID name
--
--
-00001534 00001494 F0001495 000456 00045E #0 #0
fM Graffiti Private
-00001992 00001498 F0001499 000012 00001A #0 #0
fM DataMgr Protect List (DmProtectEntryPtr*)
-000019AC 00001490 F0001491 00001E 000026 #0 #0
fM Alarm Table
-000019D2 0000148C F000148D 000038 000040 #0 #0
fM
*00001A12 0000149C F000149D 000396 00039E #2 #1
fM Form "3:03 pm"
*00001DB0 000014A0 F00014A1 00049A 0004A2 #2 #0
fM
 00002252 -------- F0002252 00002E 00003E #0 #0
FM
 00002290 -------- F0002290 00EC40 00EC50 #0 #0
FM

Using the Console Window
Console Window Commands

Palm OS Programming Development Tools Guide 201
1/18/00

-00010EE0 -------- F0010EE0 000600 000608 #0 #15
fM Stack: Console Task

...

000114E8 -------- F00114E8 000FF8 001008 #0 #0
FM
-000124F0 -------- F00124F0 001000 001008 #0 #15
fM
-00017D30 -------- F0017D30 00003C 000044 #0 #15
fM SysAppInfoPtr: AMX
-00017D74 -------- F0017D74 000008 000010 #0 #15
fM Feature Manager Globals (FtrGlobalsType)
-00017D84 -------- F0017D84 000024 00002C #0 #15
fM DmOpenInfoPtr: 'Update 3.0.2'
-00017DB0 -------- F0017DB0 00000E 000016 #0 #15
fM DmOpenRef: 'Update 3.0.2'
-00017DC6 -------- F0017DC6 0001F4 0001FC #0 #15
fM Handle Table: 'Ô©Update 3.0.2'
-00017FC2 -------- F0017FC2 000024 00002C #0 #15
fM DmOpenInfoPtr: 'Ô©Update 3.0.2'
-00017FEE -------- F0017FEE 00000E 000016 #0 #15
fM DmOpenRef: 'Ô©Update 3.0.2'
--
--
Heap Summary:
 flags: 8000
 size: 016B80
 numHandles: #40
 Free Chunks: #14 (010C50 bytes)
 Movable Chunks: #51 (005E80 bytes)
 Non-Movable Chunks: #0 (000000 bytes)

Using the Console Window
Console Window Commands

202 Palm OS Programming Development Tools Guide
1/18/00

Help

Purpose Displays a list of commands or help for a specific command.

 Usage help
help <command>

Parameters command The name of the command for which you want
help displayed.

Example help hchk

Do a Heap Check.
Syntax: hchk <hex heapID> [options...]
 -c : Check contents of each chunk

HF

Purpose Allocates almost all of the free bytes in a heap, reserving the
specified amount of free space.

 Usage hf <heapId> <freeBytes>

Parameters heapId The hexadecimal number of the heap. Heap
number 0x0000 is always the dynamic heap.

freeBytes The number of bytes to leave unallocated.

Example hf 0000 20

Using the Console Window
Console Window Commands

Palm OS Programming Development Tools Guide 203
1/18/00

HI

Purpose Initializes the specified memory heap.

 Usage hi <heapId>

Parameters heapId The hexadecimal number of the heap to be
initialized. Heap number 0x0000 is always the
dynamic heap.

Example hi 0006

HL

Purpose Displays a list of memory heaps.

 Usage hl <cardNum>

Parameters cardNum The card number on which the heaps are
located. You almost always use 0 to specify the
built-in RAM.

Comments Use the hl command to list the memory heaps in built-in RAM or
on a card.

Example hl 0

 index heapID heapPtr size free
maxFree flags
--

 0 0000 00001480 00016B80 00010C50
0000EC48 8000
 1 0001 1001810E 001E7EF2 0014AD6A
00147D3A 8000
 2 0002 10C08212 00118DEE 0000A01C
0000A014 8001

Using the Console Window
Console Window Commands

204 Palm OS Programming Development Tools Guide
1/18/00

HS

Purpose Scrambles the specified heap.

 Usage hs <heapId>

Parameters heapId The hexadecimal number of the heap to be
scrambled. Heap number 0x0000 is always the
dynamic heap.

Comments Scrambling a heap moves its contents around. You can use this to
verify that the program is using handles in the prescribed manner.

Example hs 0002
heap scrambled

HT

Purpose Displays summary information for the specified heap.

 Usage ht <heapId>

Parameters heapId The hexadecimal number of the heap to be
scrambled. Heap number 0x0000 is always the
dynamic heap.

Comments The ht command displays the summary information that is also
shown at the end of a heap dump generated by the HD command.

Example ht 0000
Displaying Heap ID: 0000, mapped to 00001480
--
Heap Summary:
 flags: 8000
 size: 016B80
 numHandles: #40
 Free Chunks: #14 (010CAA bytes)

Using the Console Window
Console Window Commands

Palm OS Programming Development Tools Guide 205
1/18/00

 Movable Chunks: #48 (005E26 bytes)
 Non-Movable Chunks: #0 (000000 bytes)

HTorture

Purpose Tortures a heap to test its integrity.

 Usage htorture <heapId> [options]

Parameters heapId The hexadecimal number of the heap to be
tortured. Heap number 0x0000 is always the
dynamic heap.

options Optional. You can specify a combination of the
following options:

-c Checks the contents of every chunk.

-f <number>
Reports if the heap is filled beyond the
specified percentage. The default is 90
percent.

-l <filename>
Specifies the name of the log file

-m <hexSize>
The maximum chunk size. The default
value is 0x400 .

-p <level>

The progress level to display. Specify a
number between 0 (minimum detail)
and 2 (maximum detail). The default
value is 0.

Comments Use the htorture command to torture-test a memory heap. You
can specify a logging file to which the output of the test is sent. You
can also use the -p command to control how progress is displayed.

Using the Console Window
Console Window Commands

206 Palm OS Programming Development Tools Guide
1/18/00

Import

Purpose Copies a Palm OS database from the desktop computer to the
handheld device.

 Usage import <cardNum> <fileName>

Parameters cardNum The card number on which the database is to be
installed. You almost always use 0 to specify
the built-in RAM.

fileName The name of the file on the desktop computer.
You can specify an absolute file name path, or a
relative file name path.

The default search path is the Device
subdirectory of the directory in which Palm
Debugger executable is stored.

Comments Use the import command to load a new version of your
application or database onto the handheld device.

This command provides a more convenient install operation and
has the same functionality as the installer tool provided with the
HotSync Manager application.

The name of the database on the handheld device is the name stored
in the file, and is not the same as the file name. If a database with a
matching name is already open on the handheld device, an error is
generated. If a database with a matching name is already stored on
the handheld device, that database is deleted and replaced by the
file.

Result If a database with a matching name is currently open on the
handheld device, the dmErrAlreadyExists error code (0x0219)
is generated.

Example import 0 Tex2HexApp.prc

Creating Database on card 0
name: Text to Hex

Using the Console Window
Console Window Commands

Palm OS Programming Development Tools Guide 207
1/18/00

type appl, creator TxHx

Importing resource 'code'=0....
Importing resource 'data'=0....
Importing resource 'pref'=0....
Importing resource 'rloc'=0....
Importing resource 'code'=1....
Importing resource 'tFRM'=1000....
Importing resource 'tver'=1....
Importing resource 'tAIB'=1000....
Importing resource 'Tbmp'=1000....
Importing resource 'Tbmp'=1001....
Importing resource 'MBAR'=1000....
Importing resource 'Talt'=1000....
Importing resource 'Talt'=1001....
Success!!

Info

Purpose Displays information about a memory chunk.

 Usage info (<hexChunkPtr> | localID>) [options]

Parameters hexChunkPtr or localID
A pointer to a chunk in memory, or the ID of a
chunk on the specified card number.

options Optional. You can specify the following
options:

-card <cardNum >
The card number if a local ID is specified
instead of a chunk pointer.

Using the Console Window
Console Window Commands

208 Palm OS Programming Development Tools Guide
1/18/00

KInfo

Purpose Displays a list of all system kernel information.

 Usage kinfo [options]

Parameters options Optional. Specify the kernel information that
you want to see displayed. Use a combination
of the following flags:

-all
Display all kernel information.

-task (<id> | all)
Display task information.

-sem (<id> | all)
Display semaphore information.

-tmr (<id> | all)
Display timer information.

Comments Use the kinfo command to display a list of system kernel
information, including tasks, semaphores, event groups, and timers.

Example kinfo -all

Task Information:
 taskID tag priority stackPtr status
 --

 000176EA AMX # 0 00017556 Idle:
Waiting for Trigger
 000178BE psys # 30 00013364 Waiting on
event timer
 0001795A CONS # 10 0001103E Running

Semaphore Information:
 semID tag type initValue curValue
nesting ownerID
 --

Using the Console Window
Console Window Commands

Palm OS Programming Development Tools Guide 209
1/18/00

 000177EE MemM resource #-1 #1
(free) #0 00000000
 00017822 SlkM counting #1 #1
(avail.) #0 00000000
 0001788A SndM counting #1 #1
(avail.) #0 00000000
 00017A5E SerM counting #0 #0
(unavail.) #0 00000000

Timer Information:
 tmrID tag ticksLeft period procPtr

 000177BA psys # 83 # 0 10C6C618

Launch

Purpose Launches an application on the handheld device.

 Usage launch [-t] [-ns] [-ng] <cardNum> <name> [<cmd>
<cmdStr>

Parameters -t Launches the application as a separate task.

-ns Use the caller’s stack.

-ng Use the caller’s globals environment.

cardNum The card number on which application is
located. You almost always use 0 to specify the
built-in RAM.

name The name of the application to be launched.

cmd Optional. Use to specify a command for the
application.

cmdStr Optional. Use to specify an arguments string
for cmd.

Using the Console Window
Console Window Commands

210 Palm OS Programming Development Tools Guide
1/18/00

ListRecords

Purpose Lists the records in a database.

 Usage listrecords <accessPtr>

Parameters accessPtr A pointer to the database.

ListResources

Purpose Lists the resources in a database.

 Usage listresources <accessPtr>

Parameters accessPtr A pointer to the database.

Lock

Purpose Locks a memory chunk.

 Usage lock (<hexChunkPtr> | localID>) [options]

Parameters hexChunkPtr or localID
A pointer to a chunk in memory, or the ID of a
chunk on the specified card number.

options Optional. You can specify the following
options:

-card <cardNum >
The card number if a local ID is specified
instead of a chunk pointer.

Using the Console Window
Console Window Commands

Palm OS Programming Development Tools Guide 211
1/18/00

Log

Purpose Toggles logging of debugger output to a file.

 Usage log <fileName>

Parameters fileName The name of the file to which debugger output
is sent.

Comments Use the log command to start or stop logging of debugger output
to a file.

MDebug

Purpose Sets the Memory Manager debug mode, which you can use to track
down memory corruption problems.

 Usage mdebug [options]

Parameters options Optional. Specify the kernel information that
you want to see displayed. Use a combination
of the following flags:

-full
Shortcut for full debugging.

-partial
Shortcut for partial debugging.

-off
Shortcut to disable debugging.

-a
Check/scramble all heaps each time.

-a-
Check only the heap currently in use.

-c
Check heap(s) on some memory calls.

-ca
Check heap(s) on all memory calls.

Using the Console Window
Console Window Commands

212 Palm OS Programming Development Tools Guide
1/18/00

-c-
Do not check heaps.

-f
Check free chunk contents.

-f-
Do not check free chunk contents.

-min
Store minimum available free space in
dynamic heap in the global variable
GMemMinDynHeapFree.

-min-
Do not record minimum free space.

-s
Scramble heap(s) on some memory calls.

-sa
Scramble heap(s) on all memory calls.

-s-
Do not scramble heaps.

Comments Use the mdebug command to enable debugging for tracking down
memory corruption problems.

WARNING! The different debug modes enabled by mdebug can
significantly slow down operations on the handheld device. Full
checking is slowest, partial checking is slow, and only enabling
specific options is the fastest.

Example mdebug -full
Current mode = 003A
 Every heap checked/scrambled per call
 Heap(s) checked on EVERY Mem call
 Heap(s) scrambled on EVERY Mem call
 Free chunk contents filled & checked

Minimum dynamic heap free space recording OFF

Using the Console Window
Console Window Commands

Palm OS Programming Development Tools Guide 213
1/18/00

MoveRecord

Purpose Moves a record in the database by changing its index.

 Usage moverecord <accessPtr> <fromIndex> <toIndex>

Parameters accessPtr A pointer to the database.

fromIndex The original index of the record in the database.

toIndex The new index for the record in the database.

New

Purpose Allocates a new chunk in a heap.

 Usage new <heapId> <hexChunkSize> [options]

Parameters heapId The hexadecimal number of the heap in which
to allocate a new chunk. Heap number 0x0000
is always the dynamic heap. Note that heapId
is ignored if you specify the -near option.

hexChunkSize The number of bytes in the new chunk,
specified as a hexadecimal number.

options Optional. You can specify a combination of the
following options:

-c Fill the chunk contents.

-lock
Pre-lock the chunk.

-n Make the chunk unmoveable.

-near <ptr>
Allocate the new chunk in the same heap
as the specified pointer. If this option is
specified, the heapId is ignored.

-o <ownerId>
Set the owner of the chunk to the
specified ID value.

Using the Console Window
Console Window Commands

214 Palm OS Programming Development Tools Guide
1/18/00

Open

Purpose Opens a database.

 Usage open <cardNum> <name> [options]

Parameters cardNum The card number on which the database is
located. You almost always use 0 to specify the
built-in RAM.

name The name of the database.

options Optional. You can specify the following
options:

-r Open the database for read-only access.

-p Leave the database open.

Opened

Purpose Lists all of the currently opened databases.

 Usage opened

Parameters None.

Example opened

name resDB cardNum accessP
ID openCnt mode
--

*Graffiti ShortCutsyes 0 00017D5C
001FFE7F 1 0007
*System yes 0 00017FEE 00D20A44
1 0005
--

Total: 2 databases opened

Using the Console Window
Console Window Commands

Palm OS Programming Development Tools Guide 215
1/18/00

Performance

Purpose Sets the performance level of the handheld device.

 Usage performance [options]

Parameters options You can specify the following options:

-b <baud>
Uses the specified <baud> rate to
calculate the nearest clock frequency
value.

-d <duty>
Set the CPU duty cycle. The <duty>
value specifies the number of CPU cycles
out of every 31 system clock ticks.

-f <freq>
Set the system clock frequency to the
specified Hz value; select the nearest
baud multiple as the frequency.

-ff <freq>
Set the system clock frequency to the
specified Hz value; do not pick the
nearest baud multiple.

PowerOn

Purpose Powers on the handheld device.

 Usage poweron

Parameters None.

Example poweron

Using the Console Window
Console Window Commands

216 Palm OS Programming Development Tools Guide
1/18/00

Reset

Purpose Performs a soft reset on the handheld device.

 Usage reset

Parameters None.

Comments This command performs the same reset that is performed when you
press the recessed reset button on a Palm Computing handheld
device.

Example reset
Resetting system

Resize

Purpose Resizes an existing memory chunk.

 Usage resize (<hexChunkPtr> | localID>) <hexNewSize>
[options]

Parameters hexChunkPtr or localID
A pointer to a chunk in memory, or the ID of a
chunk on the specified card number.

hexNewSize The new size of the chunk, in bytes.

options Optional. You can specify the following
options:

-c Checks and fills the contents of the
resized chunk.

-card <cardNum >
The card number if a local ID is specified
instead of a chunk pointer.

Using the Console Window
Console Window Commands

Palm OS Programming Development Tools Guide 217
1/18/00

SaveImages

Purpose Saves a memory card image.

 Usage saveimages

Parameters None.

SB

Purpose Sets the value of a byte in memory.

 Usage sb <addr> <value>

Parameters addr The address of the byte.

value The new value of the byte.

SetInfo

Purpose Sets new information values for a database.

 Usage setinfo <cardNum> <dbName> [options]

Parameters cardNum The card number on which the database is
located. You almost always use 0 to specify the
built-in RAM.

dbName The name of the database.

options Options. You can specify a combination of the
following values:

-m <modification>
Sets the modification number for the
database.

-n <name>
Sets the name of the database.

Using the Console Window
Console Window Commands

218 Palm OS Programming Development Tools Guide
1/18/00

-v <version>
Sets the version number of the database.

SetOwner

Purpose Sets the owner ID of a memory chunk.

 Usage setowner (<hexChunkPtr> | <localID>) <owner>
[options]

Parameters hexChunkPtr or localID
A pointer to a chunk in memory, or the ID of a
chunk on the specified card number.

hexNewSize The new size of the chunk, in bytes.

owner The new owner ID for the chunk.

options Optional. You can specify the following
options:

-card <cardNum >
The card number if a local ID is specified
instead of a chunk pointer. Use 0 to
specify the built-in RAM.

SetRecordInfo

Purpose Changes information for a record in a database.

 Usage setrecordinfo <accessPtr> <index> [options]

Parameters accessPtr A pointer to the database.

index The index of the record in the database.

options Optional. You can specify a combination of the
following options:

-a <hexAttr>
Sets attribute bit settings for the record.

Using the Console Window
Console Window Commands

Palm OS Programming Development Tools Guide 219
1/18/00

-u <uniqueId>
Sets unique record ID for the record.

SetResourceInfo

Purpose Changes information for a resource in a database.

 Usage setresourceinfo <accessPtr> <index> [options]

Parameters accessPtr A pointer to the database.

index The index of the resource in the database.

options Optional. You can specify a combination of the
following options:

-t <resType>
Sets resource type for the resource.

-id <resId>
Sets resource ID for the resource.

SimSync

Purpose Simulates a synchronization operation on a specific database.

 Usage simsync <accessPtr>

Parameters accessPtr A pointer to the database.

Sleep

Purpose Shuts down all peripherals, the CPU, and the system clock.

 Usage sleep

Parameters None.

Using the Console Window
Console Window Commands

220 Palm OS Programming Development Tools Guide
1/18/00

StoreInfo

Purpose Displays information about a memory store.

 Usage storeinfo <cardNum>

Parameters cardNum The card number for which you want
information displayed. You almost always use
0 to specify the built-in RAM.

Example storeinfo 0

ROM Store:
 version: 0001
 flags: 0000
 name: ROM Store
 creation date: 00000000
 backup date: 00000000
 heap list offset: 00C08208
 init code offset1: 00C0D652
 init code offset2: 00C1471E
 database dirID: 00D20F7E

RAM Store:
 version: 0001
 flags: 0001
 name: RAM Store 0
 creation date: 00000000
 backup date: 00000000
 heap list offset: 00018100
 init code offset1: 00000000
 init code offset2: 00000000
 database dirID: 0001811F

Using the Console Window
Console Window Commands

Palm OS Programming Development Tools Guide 221
1/18/00

Switch

Purpose Switches the application that is used to provide the user interface on
the handheld device.

 Usage switch <cardNum> <name> [<cmd> <cmdStr>]

Parameters cardNum The number of the card on which the user
interface application is stored. You almost
always use 0 to specify the built-in RAM.

name The name of the application.

cmd Optional. Use to specify a command for the
application.

cmdStr Optional. Use to specify an arguments string
for cmd.

SysAlarmDump

Purpose Displays the system alarm table.

 Usage sysalarmdump

Parameters None.

Example sysalarmdump

 alarm
card
 date time ref seconds dbID #
quiet triged noted
--

 7/29/1999 00:00 00000000 B3C54A00 00D1FCF8
4004 false false false
 1/ 1/1904 00:00 00000000 00000000 00000000
0000 false false true

Using the Console Window
Console Command Summary

222 Palm OS Programming Development Tools Guide
1/18/00

Unlock

Purpose Unlocks a memory chunk.

 Usage unlock (<hexChunkPtr> | localID>) [options]

Parameters hexChunkPtr or localID
A pointer to a chunk in memory, or the ID of a
chunk on the specified card number.

options Optional. You can specify the following
options:

-card <cardNum >
The card number if a local ID is specified
instead of a chunk pointer.

Console Command Summary

Card Information Commands

Chunk Utility Commands

CardFormat Formats a memory card.

CardInfo Retrieves information about a memory card.

StoreInfo Retrieves information about a memory store.

Free Disposes of a heap chunk.

Info Displays information on a heap chunk.

Lock Locks a heap chunk.

New Allocates a new chunk in a heap.

Resize Resizes an existing heap chunk.

SetOwner Sets the owner of a heap chunk.

Unlock Unlocks a heap chunk.

Using the Console Window
Console Command Summary

Palm OS Programming Development Tools Guide 223
1/18/00

Database Utility Commands

Debugging Utility Commands

Gremlin Commands

Heap Utility Commands

Close Closes a database.

Create Creates a new database.

Del Deletes a database.

Dir Lists the databases.

Export Exports a database to the desktop computer.

Import Imports a database from the desktop computer.

Open Opens a database.

Opened Lists all currently opened databases.

SetInfo Sets database information, such as its name,
version number, and modification number.

DM Displays memory.

GDB Enables or disables Gdb debugging.

MDebug Sets the Memory Manager debug mode.

SB Sets the value of a byte.

Gremlin Activates the specified gremlin until a specified
event occurs.

GremlinOff Deactivates the current gremlin.

HC Compacts a memory heap.

HChk Checks a heap.

HD Displays a dump of a memory heap.

Using the Console Window
Console Command Summary

224 Palm OS Programming Development Tools Guide
1/18/00

Host Control Commands

Miscellaneous Utility Commands

Record Utility Commands

HF Allocates all free space in a memory heap,
minus a specified number of bytes.

HI Initializes a memory heap.

HL Lists all of the memory heaps on the specified
memory card.

HS Scrambles a heap.

HT Performs a heap total.

HTorture Torture-tests a heap.

Help Provides help on the console commands.

Log Starts or stops logging to a file.

SaveImages Saves an image of a memory card to file.

SimSync Simulates a synchronization operation on a
database.

SysAlarmDump Displays the alarm table.

AddRecord Adds a record to a database.

AttachRecord Attaches a record to a database.

ChangeRecord Replaces a record in a database.

DelRecord Deletes a record from a database.

DetachRecord Detaches a record from a database.

FindRecord Finds a record by its unique ID.

ListRecords Lists all of the records in a database.

Using the Console Window
Console Command Summary

Palm OS Programming Development Tools Guide 225
1/18/00

Resource Utility Commands

System Commands

MoveRecord Changes the index of a record.

SetRecordInfo Sets record information, such as its ID and
attributes.

AddResource Adds a resource to a database.

AttachResource Attaches a resource to a database.

ChangeResource Replaces a resource in a database.

DelResource Deletes a resource from a database.

DetachResource Detaches a resource from a database.

GetResource Retrieves a resource from a database.

ListResources Lists all resources in a database.

SetResourceInfo Sets resource information, such as its ID and
resource type.

Battery Battery utility command for starting or
stopping radio charging, and for setting the
loaded status.

ColdBoot Boots the handheld device.

Doze Puts the CPU to sleep while keeping the
peripherals and clock running on the handheld
device.

Exit Exits the console.

Feature Displays, retrieves, registers, or unregisters
features.

KInfo Displays kernel information.

Launch Launches an application.

Using the Console Window
Console Command Summary

226 Palm OS Programming Development Tools Guide
1/18/00

Performance Sets performance levels, such as the system
clock frequency and CPU duty cycle.

PowerOn Powers on the handheld device.

Reset Resets the memory system and formats both
cards.

Sleep Shuts down all peripherals, the CPU, and the
system clock.

Switch Switches the current user interface application.

Palm OS Programming Development Tools Guide 227
1/18/00

5
Using the Palm
Simulator
This chapter describes the Palm Simulator application, which you
can use to test and debug Palm OS® applications.

WARNING! The Simulator can only be run on Macintosh
computers; there is no Simulator available for developers using
Windows-based computers. If you are using Windows, you can
use the Palm OS Emulator, which can run on Windows, Unix, and
Macintosh computers. The Emulator is described in Chapter 1,
“Using the Palm OS® Emulator.”

About the Simulator
The Simulator simulates a Palm handheld device on a Macintosh
computer, and allows you to test and debug your Palm OS
application within the simulated environment. The Simulator
provides a graphical representation of a Palm handheld device on
the Macintosh screen, and supports user interactions that mimic
actual stylus actions on a handheld device.

To use the Simulator, you need to build your Palm OS application
with the Simulator as your target, instead of the hardware device, as
described in Building a Project for Use With the Simulator.

Figure 5.1 shows the Simulator screen.

Using the Palm Simulator
About the Simulator

228 Palm OS Programming Development Tools Guide
1/18/00

Figure 5.1 The Simulator screen

Using the Simulator is very much like using an actual device, with
some differences, which are described in Differences Between the
Simulator and Actual Hardware. Use the Simulator to test your
application as follows:

• Click the mouse on the representation of the device’s
physical controls (including the silk-screened icons) to
activate those controls as you would tap on controls on the
actual handheld device.

• Click any of the menus, buttons, or other user interface items
your application provides, just as you would tap on those
items on the actual handheld device.

• Use the mouse to write Graffiti® in the Graffiti area of the
simulated screen. Or you can enter characters by typing on
your Macintosh keyboard.

• Use the function keys F9 - F12 to simulate the four buttons if
you havve made special button assignments in your
application. Otherwise, these buttons are not functional.

As you interact with the simulated interface, you can trace events,
run Gremlins, and use the Console window to debug your
application. For more information, see Using the Simulator.

Using the Palm Simulator
About the Simulator

Palm OS Programming Development Tools Guide 229
1/18/00

The Simulator Compared to The Emulator
The Simulator presents a similar interface to the Palm OS Emulator,
which is described in Chapter 1, “Using the Palm OS® Emulator.”
The Simulator runs your program faster than the Emulator, but the
Simulator has a few limitations of which you need to be aware:

• The Simulator runs only on Macintosh computers.

• The Simulator allows your application to make calls and
perform actions that do not work on Palm handheld devices,
while the Emulator does not allow these calls or actions. For
more information, see the next section, Differences Between
the Simulator and Actual Hardware.

The Simulator does provide certain debugging advantages relative
to the Palm OS Emulator, as follows:

• The time to compile and then test your application is reduced
when using the Simulator: you simply build your application
for the Simulator, and double-click on the application to test
it.

• Gremlins run somewhat faster on the Simulator than they do
with the Palm OS Emulator.

• Debugging is more robust with the Simulator than with the
Palm OS Emulator.

• Running code conditionally is easier in the Simulator than in
the Palm OS Emulator.

In summary, if you are building your application on a Macintosh
computer, the Simulator tends to provide a faster environment for
the initial debugging and testing of your application. Palm
Computing recommends, however, that you run your application
with the Palm OS Emulator before downloading it to an actual
handheld device. This will help you to discover any calls your
application is making that do not work with the Palm OS.

Differences Between the Simulator and Actual
Hardware
The few differences between an application running under the Palm
Simulator and one running on a Palm OS device can cause

Using the Palm Simulator
About the Simulator

230 Palm OS Programming Development Tools Guide
1/18/00

difficulties during debugging. In particular, the Simulator allows an
application to do a few things that won’t work on the device.

If your application runs under the Simulator but doesn’t run on the
handheld device, check for the potential problems shown in Table
5.1.

Table 5.1 Application problems due to Simulator and Palm
OS differences

Cause of problem Explanation

Application calls standard C
run-time library functions

These calls work under the Simulator, but may not
work on handheld devices. Memory management
functions such as malloc and free , string
operations such as strcpy and strcmp ,
mathematical functions such as rand and cos , and
other library functions do not work with the Palm OS.

Note that even if a standard C run-time library
function does work with the Palm OS, it can
unnecessarily enlarge your application.

Application writes to storage
RAM without using the
DMWrite function

The Palm OS enforces write protection, while the
Simulator does not. Your application will work
properly with the Simulator, but will generate a bus
error when you run it on the handheld device.

Application accesses 16-bit or
32-bit memory values at odd
addresses

The Simulator allows these memory accesses, which
generate bus errors on the handheld device.

You often encounter this error when working with
packed data.

Application attempts a code
jump of more than 32K bytes

The Palm OS does not allow jumps that exceed 32K
bytes. You need to rearrange your code to avoid such
jumps.

Application writes records
that are larger than 64K bytes

The Simulator allows records that are larger than 64K
bytes long, but the Palm OS does not allow these
records, which prevent HotSync from working
properly.

Using the Palm Simulator
About the Simulator

Palm OS Programming Development Tools Guide 231
1/18/00

In addition, the user interface to the Simulator differs from the user
interface on Palm handheld devices, as shown in Table 5.2.

Application overflows the
stack

Palm OS handheld devices provide a stack that is
only 2K bytes long, while the Simulator runs in an
environment that allows for a much larger stack.

This problem commonly arises when your
application uses a large amount of local data. You can
work around this limitation by storing your data in
global variables or allocated database chunks instead
of using local storage.

Application pointer errors Pointer errors tend to have a more dramatic effect on
Palm handheld devices than on the Simulator
because of the greater density of data in memory on
the device. Bad pointer values, array overwrites, and
related problems are more likely to destroy important
data on the Palm handheld device than on the
Macintosh computer.

Launch code problems When the handheld device is reset, it sends certain
launch codes to applications. The main body of your
PilotMain function should be enveloped in the
following conditional code:

if (cmd == launchcode)

Table 5.1 Application problems due to Simulator and Palm
OS differences (continued)

Cause of problem Explanation

Using the Palm Simulator
Simulator Menu Commands Summary

232 Palm OS Programming Development Tools Guide
1/18/00

Simulator Menu Commands Summary
This section describes the Simulator menus in the same order as
they appear on the Macintosh menu bar:

• File Menu

• Edit Menu

• Window Menu

• Replay Menu

• Gremlin Menu

• Serial Port Menu

• Panel Menu

File Menu
Table 5.3 describes the commands available on the File menu.

Table 5.2 User interface differences

Difference Description

Multiple applications
unavailable with Simulator

The user can switch which application is running on
a Palm handheld device by selecting a new
application from the Applications menu, or by
pressing one of the hardware buttons at the bottom
of the device. The Simulator runs only the
application that you have built for the Simulator
target. .

Application buttons The simulated buttons at the bottom of the
Simulator display are only available if your
application has made special assignments to them.

These four buttons are simulated by the F9, F10,
F11, and F12 keys on the Macintosh keyboard.

Scrolling buttons The scroll up and scroll down buttons are simulated
by the page up and page down keys on the
Macintosh keyboard.

Using the Palm Simulator
Simulator Menu Commands Summary

Palm OS Programming Development Tools Guide 233
1/18/00

Edit Menu
The Edit menu offers the standard Mac OS editing commands for
the Console window and the Event Trace window.

Window Menu
The Window menu provides access to two special windows: the
Console window and the Event Trace window. You can close either
of these windows by clicking the button in the top-left corner or by
deselecting the window in the menu. Table 5.4 describes the
Window menu commands.

Table 5.3 File menu commands

Command Description

Save Card 0... Writes the contents of memory card 0 to a file. This command uses
the standard Save dialog box to prompt you for the file name and
location. The default name is PilotCard 0 , and the default
location is the current application folder.

Card 0 is the Palm built-in RAM, on which all applications and
add-on applications are stored.

Save Card 1... Writes the contents of memory card 1 to a file.

Save Before
Quitting

Saves a snapshot of the contents of both memory cards after
StopApplication has been called.

When an application exits, it saves information such as its
preferences to the memory card. If you use this command,
Simulator saves the files Pilot Card 0 and Pilot Card 1 .

Quit Quits the application.

Using the Palm Simulator
Simulator Menu Commands Summary

234 Palm OS Programming Development Tools Guide
1/18/00

Replay Menu
The Replay menu allows you to record pen and key events to a
script file. You can then use the script file to replay the same events.
This is useful for testing and repeating problem cases. For more
information about using the Replay menu commands, see Scripting
Pen and Key Events.

Table 5.5 describes the commands available on the Replay menu.

Table 5.4 Window menu commands

Command Description

Console Activates the Console window, which is described in Chapter 4,
“Using the Console Window.”

Event Trace Displays the Event Trace window. The Event Trace window dis-
plays the last 100 events generated by the system software and
application. For more information, see Tracing Events.

Table 5.5 Replay menu commands

Command Description

Record Begins recording pen and key events to a file. To stop recording,
deselect this command.

Break Inserts a stop into the script so it stops during replay. Does not
stop the recording process.

Save As Saves the recorded script to file. By default, the Simulator saves a
script to a file with the extension .LOG whenever you stop
recording. Use the Save As command to create an additional copy
of that script file. The default file name is “Pilot Script.”

Playback Plays back a previously recorded script that you select with the
standard Open dialog box.

Pause Pauses playback of a script. This command is available during
playback, but not during the recording process.

Using the Palm Simulator
Simulator Menu Commands Summary

Palm OS Programming Development Tools Guide 235
1/18/00

Gremlin Menu
Gremlins are a facility to generate pseudo-random pen and key
events. You can use Gremlins to reveal program problems. Each
Gremlin is a unique sequence of random taps, strokes, and so on.
Red lines indicate how the pen was moved over the screen by the
Gremlin.

Although you can define a large number of gremlins, the Gremlin
menu of the Simulator only allows you to run gremlin number 0. To
run other gremlins, you need to activate the Console window and
use its Gremlin command, as described in Gremlin in Chapter 4,
“Using the Console Window.”

Table 5.6 describes the commands available on the Gremlins menu.

Serial Port Menu
The Serial Port menu allows you to select a Mac OS port to use
when your application connects to another application with the

Step Plays back the next pen or key event, then pauses. This command
is available during playback, but not during the recording process.

Realtime Tries to execute the script at the rate at which it was recorded.
With this option off, scripts execute as fast as possible. Realtime is
useful when you need to test user interface elements that are
timing dependent, such as repeating buttons.

Table 5.5 Replay menu commands (continued)

Command Description

Table 5.6 Gremlins menu commands

Command Description

New Runs Gremlin number 0. Iterates through all events in that
Gremlin, running continuously.

Step Performs the next Gremlin event, then stops.

Resume Resumes running continuously after a step or stop.

Stop Stops generating Gremlin events.

Using the Palm Simulator
Using the Simulator

236 Palm OS Programming Development Tools Guide
1/18/00

serial port. Table 5.7 shows the choices available on the Serial Port
menu.

Panel Menu
The Panel menu allows you to set modem and network preferences
so that you can test applications that use TCP/IP. Table 5.8 shows
the commands available on the Panel menu.

This menu is disabled unless your application’s directory contains
the files Modem.prc and Network.prc , which you can copy from
the PalmOS Libraries folder. The Panel menu is also disabled if
one of the panels is already running.

Using the Simulator
This section describes how to perform various tasks with the
Simulator, including:

• building a project for use with the Simulator

Table 5.7 Serial port menu commands

Command Description

Modem Port Selects the Mac OS Modem port.

Printer Port Selects the Mac OS Printer port.

Table 5.8 Panel menu commands

Command Description

Modem Panel Displays the Modem panel from the Preferences application. Use
this panel to enter the settings for the modem connected to your
Macintosh computer.

The Modem selection list only displays modems compatible with
the Palm device, so it may not have a selection for your computer’s
modem. If this is the case, choose the Standard selection. You may
need to change the initialization string.

Network Panel Displays the Network panel from the Preferences application. Use
this panel to enter network settings and to connect to the network.

Using the Palm Simulator
Using the Simulator

Palm OS Programming Development Tools Guide 237
1/18/00

• tracing events

• scripting events for replay

• using gremlins

• testing communications

• saving memory images to file

Building a Project for Use With the Simulator
To use the Simulator, you need to build your Palm OS application in
CodeWarrior with the Simulator libraries as your target, rather than
targetting the Palm OS. When you activate the resulting executable,
the Simulator starts up with your application loaded.

Figure 5.2 shows selecting the simulator target for the Starter
project.

Figure 5.2 Choosing the simulator as a target

Most of the example projects provided with the Palm OS SDK have
two targets: one that builds a Palm OS executable with a .prc
suffix, and one that builds an executable with a .mac suffix that
runs with the Simulator. When you select your target in

Using the Palm Simulator
Using the Simulator

238 Palm OS Programming Development Tools Guide
1/18/00

CodeWarrior, the Simulator target version ends with Sim . Table 5.9
shows several examples.

Using the Simulator With the CodeWarrior Debugger

If you want to set breakpoints or single-step through your
applications’ code, you can run the Palm Simulator from within the
CodeWarrior Debugger. To do so, follow these steps:

1. Select the Enable Debugging command in the Project menu
of the CodeWarrior IDE.

2. Build your project with the Simulator target. The resulting
executable has the .mac.SYM extension.

3. Double-click the executable to start the CodeWarrior
Debugger.

Tracing Events
To trace the events that your application generates, select the Event
Trace command from the Window menu. This displays the event
tracing window until you once again select the Event Trace
command to close the window.

The event trace shown in Figure 5.3 is the result of the following
sequence of activities while running the Simulator version of the To
Do list application:

1. Click the New button to create a new To Do item.

2. Type Hello, Mr. Soul on the keyboard

Table 5.9 Example project target names

Project File Target name Executable name

Datebook.mcp Datebook Datebook.prc

DatebookSim Datebook.mac

Address.mcp Address Address.prc

AddressSim Address.mac

Starter.mcp Starter Starter.prc

StarterSim Starter.mac

Using the Palm Simulator
Using the Simulator

Palm OS Programming Development Tools Guide 239
1/18/00

3. Click the Details... button to view the item details.

Figure 5.3 The event trace window

You can use the event tracing facility of the Simulator to verify that
your application is properly receiving and processing key and pen
events.

Scripting Pen and Key Events
The Simulator allows you to record user input events and save them
in a script file for subsequent replay. You can replay the events in
rapid order, or in realtime speed, which allows you to watch the
processing of each event.

While recording the script, you can insert breaks, each of which
causes the script to stop during replay.

To record a script, follow these steps:

1. Select the Replay > Record command. This begins the event
recording

Using the Palm Simulator
Using the Simulator

240 Palm OS Programming Development Tools Guide
1/18/00

2. Record pen and key events.

3. Deselect the Replay > Record command.

4. Select the Replay>Save As command to save the recorded
script to a file.

To playback a recorded script, follow these steps:

1. Select the Replay > Playback command. This displays the
Open File dialog, which allows you to select a script to
replay. The most recently saved script is always displayed as
the default selection.

2. Select the Replay>Realtime command to play the script at
the same speed at which it was recorded, or deselect the
Replay>Realtime command to play the script rapidly.

3. Choose Replay >Pause and Replay >Step during replay to
look in detail at the events that are executed.

Using Gremlins
The Simulator allows you to run a single gremlin, which is the
gremlin numbered 0. To define and run other gremlins, you need to
activate the Console window, and then run gremlins from that
window. Gremlins are described in more detail in both Chapter 4,
“Using the Console Window.” and Chapter 2, “Using Palm
Debugger.”

To run gremlin 0 in the Simulator, follow these steps:

1. Select the Gremlin>New command to run gremlin 0. This
command interates through all of the events in the gremlin
and runs continously until stopped.

2. Select the Gremlin>Step command to perform the next
gremlin event and then pause.

3. Select the Gremlin>Resume command to resume continuous
execution of the gremlin events.

4. Select the Gremlin>Stop command to stop generating
gremlin events.

Using the Palm Simulator
Using the Simulator

Palm OS Programming Development Tools Guide 241
1/18/00

Saving Memory Information to File
You can save the contents of the simulated built-in RAM by
selecting the File>Save Card 0... command, which displays the
standard Save dialog box and then saves the contents of RAM to a
file. If the simulated device also has an extra memory card, you can
use the File>Save Card 1... command to save the contents of that
card to file.

If you select the File>Save Before Quitting command, the
Simulator will automatically save the contents of the built-in RAM
and of memory card 1 (if simulated) to file. The files are named
Pilot Card 0 and Pilot Card 1 , respectively.

Using the Palm Simulator
Using the Simulator

242 Palm OS Programming Development Tools Guide
1/18/00

Palm OS Programming Development Tools Guide 243
1/18/00

A
Debugger Protocol
Reference
This appendix describes the debugger protocol, which provides an
interface between a debugging target and a debugging host. For
example, the Palm Debugger and the Palm OS® Emulator use this
protocol to exchange commands and information.

IMPORTANT: This chapter describes the version of the Palm
Debugger protocol that shipped on the Metrowerks CodeWarrior
for the Palm Operating System, Version 6 CD-ROM. If you are
using a different version, the features in your version might be
different than the features described here.

About the Palm Debugger Protocol
The Palm debugger protocol allows a debugging target, which is
usually a handheld device ROM or an emulator program such as the
Palm OS Emulator, to exchange information with a debugging host,
such as the Palm Debugger or the Metrowerks debugger.

The debugger protocol involves sending packets between the host
and the target. When the user of the host debugging program enters
a command, the host converts that command into one or more
command packets and sends each packet to the debugging target. In
most cases, the target subsequently responds by sending a packet
back to the host.

Packets
There are three packet types used in the debugger protocol:

• The debugging host sends command request packets to the
debugging target.

Debugger Protocol Reference
About the Palm Debugger Protocol

244 Palm OS Programming Development Tools Guide
1/18/00

• The debugging target sends command response packets back to
the host.

• Either the host or the target can send a message packet to the
other.

Although the typical flow of packets involves the host sending a
request and the target sending back a response, although there are a
some exceptions, as follows:

• The host can send some requests to the target that do not
result in a response packet being returned. For example,
when the host sends the Continue command packet to tell
the target to continue execution, the target does not send
back a response packet.

• The target can send response packets to the host without
receiving a request packet. For example, whenever the
debugging target encounters an exception, it sends a State
response packet to the host.

Packet Structure
Each packet consists of a packet header, a variable-length packet
body, and a packet footer, as shown in Figure A.1.

Debugger Protocol Reference
About the Palm Debugger Protocol

Palm OS Programming Development Tools Guide 245
1/18/00

Figure A.1 Packet Structure

The Packet Header

The packet header starts with the 24-bit key value $BEEFFD and
includes header information and a checksum of the header itself.

The Packet Body

The packet body contains the command byte, a filler byte, and
between 0 and 270 bytes of data. See _SysPktBodyCommon for a
description of the structure used to represent the two byte body
header (the command and filler bytes), and see Table A.1 for a list of
the command constants.

The Packet Footer

The packet footer contains a 16-bit CRC of the header and body.
Note that the CRC computation does not include the footer.

$BE

$EF

$ED

destination ID

source ID

type

transaction ID

header checksum

body size

command ID

filler

command data
.
.
.
.

CRC

Header
(10 bytes)

Body
(2 to 272 bytes)

Footer
(2 bytes)

Debugger
Packet

Debugger Protocol Reference
Constants

246 Palm OS Programming Development Tools Guide
1/18/00

Packet Communications
The communications protocol between the host and target is very
simple: the host sends a request packet to the target and waits for a
time-out or for a response from the target.

If a response is not detected within the time-out period, the host
does not retry the request. When a response does not come back
before timing out, it usually indicates that one of two things is
happening:

• the debugging target is busy executing code and has not
encountered an exception

• the state of the debugging target has degenerated so badly
that it cannot respond

The host has the option of displaying a message to the user to
inform him or her that the debugging target is not responding.

Constants
This section describes the constants and structure types that are
used with the packets for various commands.

Packet Constants
#define sysPktMaxMemChunk256
#define sysPktMaxBodySize(sysPktMaxMemChunk+16)
#define sysPktMaxNameLen 32

sysPktMaxMemChunk
The maximum number of bytes that can be read
by the Read Memory command or written by
the Write Memory command.

sysPktMaxBodySize
The maximum number of bytes in a request or
response packet.

sysPktMaxNameLen
The maximum length of a function name.

Debugger Protocol Reference
Constants

Palm OS Programming Development Tools Guide 247
1/18/00

State Constants
#define sysPktStateRspInstWords 15

sysPktStateRespInstWords
The number of remote code words sent in the
response packet for the State command.

Breakpoint Constants
#define dbgNormalBreakpoints5
#define dbgTempBPIndex dbNormalBreakpoints
#define dbgTotalBreakpoints (dbgTempBPIndex+1)

dbgNormalBreakpoints
The number of normal breakpoints available in
the debugging target.

dbgTempBPIndex
The index in the breakpoints array of the
temporary breakpoint.

dbgTotalBreakpoints
The total number of breakpoints in the
breakpoints array, including the normal
breakpoints and the temporary breakpoint.

Command Constants
Each command is represented by a single byte constant. The upper
bit of each request command is clear, and the upper bit of each
response command is set. Table A.1 shows the command constants.

Table A.1 Debugger protocol command constants

Command Request constant Response constant

Continue sysPktContinueCmd N/A

Find sysPktFindCmd sysPktFindRsp

Get Breakpoints sysPktGetBreakpointsCmd sysPktGetBreakpointsRsp

Get Routine
Name

sysPktGetRtnNameCmd sysPktGetRtnNameRsp

Debugger Protocol Reference
Data Structures

248 Palm OS Programming Development Tools Guide
1/18/00

Data Structures
This section describes the data structures used with the request and
response packets for the debugger protocol commands.

_SysPktBodyCommon
The _SysPktBodyCommon macro defines the fields common to
every request and response packet.

#define _sysPktBodyCommon \
Byte command; \
Byte _filler;

Get Trap Breaks sysPktGetTrapBreaksCmd sysPktGetTrapBreaksRsp

Get Trap
Conditionals

sysPktGetTrapConditionalsCm
d

sysPktGetTrapConditionalsRsp

Message sysPktRemoteMsgCmd N/A

Read Memory sysPktReadMemCmd sysPktReadMemRsp

Read Registers sysPktReadRegsCmd sysPktReadRegsRsp

RPC sysPktRPCCmd sysPktRPCRsp

Set Breakpoints sysPktSetBreakpointsCmd sysPktSetBreakpointsRsp

Set Trap Breaks sysPktSetTrapBreaksCmd sysPktSetTrapBreaksRsp

Set Trap
Conditionals

sysPktSetTrapConditionalsCm
d

sysPktSetTrapConditionalsRsp

State sysPktStateCmd sysPktStateRsp

Toggle
Debugger Breaks

sysPktDbgBreakToggleCmd sysPktDbgBreakToggleRsp

Write Memory sysPktWriteMemCmd sysPktWriteMemRsp

Write Registers sysPktWriteRegsCmd sysPktWriteRegsRsp

Table A.1 Debugger protocol command constants (continued)

Command Request constant Response constant

Debugger Protocol Reference
Data Structures

Palm OS Programming Development Tools Guide 249
1/18/00

Fields

command The 1-byte command value for the packet.

_filler Included for alignment only. Not used.

SysPktBodyType
The SysPktBodyType represents a command packet that is sent to
or received from the debugging target.

typedef struct SysPktBodyType
{

_SysPktBodyCommon;
Byte data[sysPktMaxBodySize-2];

} SysPktBodyType;

Fields

_SysPktBodyCommon
The command header for the packet.

data The packet data.

SysPktRPCParamType
The SysPktRPCParamType is used to send a parameter in a remote
procedure call. See the RPC command for more information.

typedef struct SysPktRPCParamInfo
{

Byte byRef;
Byte size;
Word data[?];

} SysPktRPCParamType;

Fields

byRef Set to 1 if the parameter is passed by reference.

size The number of bytes in the data array. This
must be an even number.

data The parameter data.

Debugger Protocol Reference
The Debugger Protocol Commands

250 Palm OS Programming Development Tools Guide
1/18/00

BreakpointType
The BreakpointType structure is used to represent the status of a
single breakpoint on the debugging target.

typedef struct BreakpointType
{

Ptr addr;
Boolean enabled;
Boolean installed;

} BreakpointType;

Fields

addr The address of the breakpoint. If this is set to 0,
the breakpoint is not in use.

enabled A Boolean value. This is TRUE if the breakpoint
is currently enabled, and FALSE if not.

installed Included for correct alignment only. Not used.

The Debugger Protocol Commands
This section describes each command that you can send to the
debugging target, including a description of the response packet
that the target sends back.

Continue

Purpose Tells the debugging target to continue execution.

Comments This command usually gets sent when the user specifies the Go
command. Once the debugging target continues execution, the
debugger is not reentered until a breakpoint or other exception is
encountered.

NOTE: The debugging target does not send a response to this
command.

Debugger Protocol Reference
The Debugger Protocol Commands

Palm OS Programming Development Tools Guide 251
1/18/00

Commands The Continue request command is defined as follows:

#define sysPktContinueCmd0x07

Request Packet typedef struct SysPktContinueCmdType
{

_sysPktBodyCommon;
M68KresgType regs;
Boolean stepSpy;
DWord ssAddr;
DWord ssCount;
DWord ssCheckSum;

}SysPktContinueCmdType;

Fields

<-- _sysPktBodyCommon
The common packet header, as described in
_SysPktBodyCommon.

--> regs The new values for the debugging target
processor registers. The new register values are
stored in sequential order: D0 to D7, followed
by A0 to A6.

--> stepSpy A Boolean value. If this is TRUE, the debugging
target continues execution until the value that
starts at the specified step-spy address changes.
If this is FALSE, the debugging target continue
execution until a breakpoint or other exception
is encountered.

--> ssAddr The step-spy starting address. An exception is
generated when the value starting at this
address, for ssCount bytes, changes on the
debugging target.

--> ssCount The number of bytes in the “spy” value.

--> ssCheckSum A checksum for the “spy” value.

Debugger Protocol Reference
The Debugger Protocol Commands

252 Palm OS Programming Development Tools Guide
1/18/00

Find

Purpose Searches for data in memory on the debugging target.

Comments .

Commands The Find request and response commands are defined as follows:

#define sysPktFindCmd0x13
#define sysPktFindRsp0x93

Request Packet typedef struct SysPktFindCmdType
{

_sysPktBodyCommon;
DWord firstAddr;
DWord lastAddr;
Word numBytes
Boolean caseInsensitive;
Byte searchData[?];

}SysPktFindCmdType;

Fields

--> _sysPktBodyCommon
The common packet header, as described in
_SysPktBodyCommon.

--> firstAddr The starting address of the memory range on
the debugging target to search for the data.

--> lastAddr The ending address of the memory range on
the debugging target to search for the data.

--> numBytes The number of bytes of data in the search
string.

--> searchData The search string. The length of this array is
defined by the value of the numBytes field.

Response
Packet

typedef struct SysPktFindRspType
{

_sysPktBodyCommon;

Debugger Protocol Reference
The Debugger Protocol Commands

Palm OS Programming Development Tools Guide 253
1/18/00

DWord addr;
Boolean found;

}SysPktFindRspType

Fields

<-- _sysPktBodyCommon
The common packet header, as described in
_SysPktBodyCommon.

<-- addr The address of the data string in memory on
the debugging target.

<-- found A Boolean value. If this is TRUE, the search
string was found on the debugging target, and
the value of addr is valid. If this is FALSE, the
search string was not found, and the value of
addr is not valid.

Get Breakpoints

Purpose Retrieves the current breakpoint settings from the debugging target.

Comments The body of the response packet contains an array with
dbgTotalBreakpoints values in it, one for each possible
breakpoint.

If a breakpoint is currently disabled on the debugging target, the
enabled field for that breakpoint is set to 0.

If a breakpoint address is set to 0, the breakpoint is not currently in
use.

The dbgTotalBreakpoints constant is described in Breakpoint
Constants.

Commands The Get Breakpoints command request and response
commands are defined as follows:

#define sysPktGetBreakpointsCmd0x0B
#define sysPktGetBreakpointsRsp0x8B

Debugger Protocol Reference
The Debugger Protocol Commands

254 Palm OS Programming Development Tools Guide
1/18/00

Request Packet typedef struct SysPktGetBreakpointsCmdType
{

_sysPktBodyCommon;
}SysPktGetBreakpointsCmdType

Fields

--> _sysPktBodyCommon
The common packet header, as described in
_SysPktBodyCommon.

Response
Packet

typedef struct SysPktGetBreakpointsRspType
{

_sysPktBodyCommon;
BreakpointType db[dbgTotalBreakpoints];

}SysPktGetBreakpointsRspType

Fields

<-- _sysPktBodyCommon
The common packet header, as described in
_SysPktBodyCommon.

<-- bp An array with an entry for each of the possible
breakpoints. Each entry is of the type
BreakpointType.

Get Routine Name

Purpose Determines the name, starting address, and ending address of the
function that contains the specified address.

Comments The name of each function is imbedded into the code when it gets
compiled. The debugging target can scan forward and backward in
the code to determine the start and end addresses for each function.

Commands The Get Routine Name command request and response
commands are defined as follows:

Debugger Protocol Reference
The Debugger Protocol Commands

Palm OS Programming Development Tools Guide 255
1/18/00

#define sysPktGetRtnNameCmd0x04
#define sysPktGetRtnNameRsp0x84

Request Packet typedef struct SysPktRtnNameCmdType
{

_sysPktBodyCommon;
void* address

}SysPktRtnNameCmdType;

Fields

--> _sysPktBodyCommon
The common packet header, as described in
_SysPktBodyCommon.

--> address The code address whose function name you
want to discover.

Response
Packet

typedef struct SysPktRtnNameRspType
{

_sysPktBodyCommon;
void* address;
void* startAddr;
void* endAddr;
char name[sysPktMaxNameLen];

}SysPktRtnNameRspType;

Fields

<-- _sysPktBodyCommon
The common packet header, as described in
_SysPktBodyCommon.

<-- address The code address whose function name was
determined. This is the same address that was
specified in the request packet.

<-- startAddr The starting address in target memory of the
function that includes the address.

Debugger Protocol Reference
The Debugger Protocol Commands

256 Palm OS Programming Development Tools Guide
1/18/00

<-- endAddr The ending address in target memory of the
function that includes the address. If a function
name could not be found, this is the last
address that was scanned.

<-- name The name of the function that includes the
address . This is a null-terminated string. If a
function name could not be found, this is the
null string.

Get Trap Breaks

Purpose Retrieves the settings for the trap breaks on the debugging target.

Comments Trap breaks are used to force the debugging target to enter the
debugger when a particular system trap is called.

The body of the response packet contains an array with
dbgTotalBreakpoints values in it, one for each possible trap
break.

Each trap break is a single word value that contains the system trap
number.

Commands The Get Trap Breaks request and response commands are
defined as follows:

#define sysPktGetTrapBreaksCmd0x10
#define sysPktGetTrapBreaksRsp0x90

Request Packet typedef struct SysPktGetTrapBreaksCmdType
{

_sysPktBodyCommon;
}SysPktGetTrapBreaksCmdType;

Fields

--> _sysPktBodyCommon
The common packet header, as described in
_SysPktBodyCommon.

Debugger Protocol Reference
The Debugger Protocol Commands

Palm OS Programming Development Tools Guide 257
1/18/00

Response
Packet

typedef struct SysPktGetTrapBreaksRspType
{

_sysPktBodyCommon;
Word trapBP[dbgTotalTrapBreaks];

}SysPktGetTrapBreaksRspType;

Fields

<-- _sysPktBodyCommon
The common packet header, as described in
_SysPktBodyCommon.

<-- trapBP An array with an entry for each of the possible
trap breaks. A value of 0 indicates that the trap
break is not used.

Get Trap Conditionals

Purpose Retrieves the trap conditionals values from the debugging target.

Comments Trap conditionals are used when setting A-Traps for library calls.
You can set a separate conditional value for each A-Trap.

The body of the response packet contains an array with
dbgTotalBreakpoints values in it, one for each possible trap
break.

Each trap conditional is a value; if the value of the first word on the
stack matches the conditional value when the trap is called, the
debugger breaks.

Commands The Get Trap Conditionals request and response commands
are defined as follows:

#define sysPktGetTrapConditionsCmd0x14
#define sysPktGetTrapConditionsRsp0x94

Request Packet typedef struct SysPktGetTrapConditionsCmdType
{

Debugger Protocol Reference
The Debugger Protocol Commands

258 Palm OS Programming Development Tools Guide
1/18/00

_sysPktBodyCommon;
}SysPktGetTrapConditionsCmdType

Fields

--> _sysPktBodyCommon
The common packet header, as described in
_SysPktBodyCommon.

Response
Packet

typedef struct SysPktGetTrapConditionsRspType
{

_sysPktBodyCommon;
Word trapParam[dbgTotalTrapBreaks];

}SysPktGetTrapConditionsRspType

Fields

<-- _sysPktBodyCommon
The common packet header, as described in
_SysPktBodyCommon.

<-- trapParam An array with an entry for each of the possible
trap breaks. A value of 0 indicates that the trap
conditional is not used .

Message

Purpose Sends a message to display on the debugging target.

Comments Application can compile debugger messages into their code by
calling the DbgMessage function.

The debugging target does not send back a response packet for this
command.

Commands The Message request command is defined as follows:

#define sysPktRemoteMsgCmd0x7F

Request Packet typedef struct SysPktRemoteMsgCmdType

Debugger Protocol Reference
The Debugger Protocol Commands

Palm OS Programming Development Tools Guide 259
1/18/00

{
_sysPktBodyCommon;
Byte text[1];

}SysPktRemoteMsgCmdType;

Fields

--> _sysPktBodyCommon
The common packet header, as described in
_SysPktBodyCommon.

--> text .

Read Memory

Purpose Reads memory values from the debugging target.

Comments This command can read up to sysPktMaxMemChunk bytes of
memory. The actual size of the response packet depends on the
number of bytes requested in the request packet.

Commands The Read Memory command request and response commands are
defined as follows:

#define sysPktReadMemCmd0x01
#define sysPktReadMemRsp0x81

Request Packet typedef struct SysPktReadMemCmdType
{

_sysPktBodyCommon;
void* address;
Word numBytes;

}SysPktReadMemCmdType;

Fields

--> _sysPktBodyCommon
The common packet header, as described in
_SysPktBodyCommon.

Debugger Protocol Reference
The Debugger Protocol Commands

260 Palm OS Programming Development Tools Guide
1/18/00

--> address The address in target memory from which to
read values.

--> numBytes The number of bytes to read from target
memory.

Response
Packet

typedef struct SysPktReadMemRspType
{

_sysPktBodyCommon;
//Byte data[?];

}SysPktReadMemRspType;

Fields

<-- _sysPktBodyCommon
The common packet header, as described in
_SysPktBodyCommon.

<-- data The returned data. The number of bytes in this
field matches the numBytes value in the
request packet.

Read Registers

Purpose Retrieves the value of each of the target processor registers.

Comments The eight data registers are stored in the response packet body
sequentially, from D0 to D7. The seven address registers are stored in
the response packet body sequentially, from A0 to A6.

Commands The Read Registers command request and response commands
are defined as follows:

#define sysPktReadRegsCmd0x05
#define sysPktReadRegsRsp0x85

Request Packet typedef struct SysPktReadRegsCmdType
{

_sysPktBodyCommon;

Debugger Protocol Reference
The Debugger Protocol Commands

Palm OS Programming Development Tools Guide 261
1/18/00

}SysPktReadRegsCmdType;

Fields

--> _sysPktBodyCommon
The common packet header, as described in
_SysPktBodyCommon.

Response
Packet

typedef struct SysPktReadRegsRspType
{

_sysPktBodyCommon;
M68KRegsType reg;

}SysPktReadRegsRspType;

Fields

<-- _sysPktBodyCommon
The common packet header, as described in
_SysPktBodyCommon.

<-- reg The register values in sequential order: D0 to
D7, followed by A0 to A6.

RPC

Purpose Sends a remote procedure call to the debugging target.

Comments .

Commands The RPC request and response commands are defined as follows:

#define sysPktRPCCmd0x0A
#define sysPktRPCRsp0x8A

Request Packet typedef struct SysPktRPCType
{

_sysPktBodyCommon;
Word trapWord;
DWord resultD0;

Debugger Protocol Reference
The Debugger Protocol Commands

262 Palm OS Programming Development Tools Guide
1/18/00

DWord resultD0;
Word numParams;
SysPktRPCParamTypeparam[?];

}

Fields

--> _sysPktBodyCommon
The common packet header, as described in
_SysPktBodyCommon.

--> trapWord The system trap to call.

--> resultD0 The result from the D0 register.

--> resultA0 The result from the A0 register.

--> numParams The number of RPC parameter structures in the
param array that follows.

--> param An array of RPC parameter structures, as
described in SysPktRPCParamType.

Set Breakpoints

Purpose Sets breakpoints on the debugging target.

Comments The body of the request packet contains an array with
dbgTotalBreakpoints values in it, one for each possible
breakpoint. If a breakpoint is currently disabled on the debugging
target, the enabled field for that breakpoint is set to 0.

The dbgTotalBreakpoints constant is described in Breakpoint
Constants.

Commands The Set Breakpoints command request and response
commands are defined as follows:

#define sysPktSetBreakpointsCmd0x0C
#define sysPktSetBreakpointsRsp0x8C

Request Packet typedef struct SysPktSetBreakpointsCmdType
{

Debugger Protocol Reference
The Debugger Protocol Commands

Palm OS Programming Development Tools Guide 263
1/18/00

_sysPktBodyCommon;
BreakpointType db[dbgTotalBreakpoints];

}SysPktSetBreakpointsCmdType

Fields

--> _sysPktBodyCommon
The common packet header, as described in
_SysPktBodyCommon.

--> bp An array with an entry for each of the possible
breakpoints. Each entry is of the type
BreakpointType.

Response
Packet

typedef struct SysPktSetBreakpointsRspType
{

_sysPktBodyCommon;
}SysPktSetBreakpointsRspType

Fields

<-- _sysPktBodyCommon
The common packet header, as described in
_SysPktBodyCommon.

Set Trap Breaks

Purpose Sets breakpoints on the debugging target.

Comments The body of the request packet contains an array with
dbgTotalBreakpoints values in it, one for each possible trap
break. If a trap break is currently disabled on the debugging target,
the value of that break is set to 0.

The dbgTotalBreakpoints constant is described in Breakpoint
Constants.

Commands The Set Breakpoints command request and response
commands are defined as follows:

Debugger Protocol Reference
The Debugger Protocol Commands

264 Palm OS Programming Development Tools Guide
1/18/00

#define sysPktSetTrapBreaksCmd0x0C
#define sysPktSetTrapBreaksRsp0x8C

Request Packet typedef struct SysPktSetTrapBreakssCmdType
{

_sysPktBodyCommon;
Word trapBP[dbgTotalBreakpoints];

}SysPktSetTrapBreaksCmdType

Fields

--> _sysPktBodyCommon
The common packet header, as described in
_SysPktBodyCommon.

--> trapBP An array with an entry for each of the possible
trap breaks. If the value of an entry is 0, the
break is not currently in use.

Response
Packet

typedef struct SysPktSetTrapBreaksRspType
{

_sysPktBodyCommon;
}SysPktSetTrapBreaksRspType

Fields

<-- _sysPktBodyCommon
The common packet header, as described in
_SysPktBodyCommon.

Set Trap Conditionals

Purpose Sets the trap conditionals values for the debugging target.

Comments Trap conditionals are used when setting A-Traps for library calls.
You can set a separate conditional value for each A-Trap.

Debugger Protocol Reference
The Debugger Protocol Commands

Palm OS Programming Development Tools Guide 265
1/18/00

The body of the request packet contains an array with
dbgTotalBreakpoints values in it, one for each possible trap
break.

Each trap conditional is a value; if the value of the first word on the
stack matches the conditional value when the trap is called, the
debugger breaks.

Commands The Set Trap Conditionals request and response commands
are defined as follows:

#define sysPktSetTrapConditionsCmd0x15
#define sysPktSetTrapConditionsRsp0x95

Request Packet typedef struct SysPktSetTrapConditionsCmdType
{

_sysPktBodyCommon;
Word trapParam[dbgTotalTrapBreaks];

}SysPktSetTrapConditionsCmdType

Fields

--> _sysPktBodyCommon
The common packet header, as described in
_SysPktBodyCommon.

--> trapParam An array with an entry for each of the possible
trap breaks. A value of 0 indicates that the trap
conditional is not used .

Response
Packet

typedef struct SysPktSetTrapConditionsRspType
{

_sysPktBodyCommon;
}SysPktSetTrapConditionsRspType

Fields

<-- _sysPktBodyCommon
The common packet header, as described in
_SysPktBodyCommon.

Debugger Protocol Reference
The Debugger Protocol Commands

266 Palm OS Programming Development Tools Guide
1/18/00

State

Purpose Sent by the host program to query the current state of the debugging
target, and sent by the target whenever it encounters an exception
and enters the debugger.

Comments The debugging target sends the State response packete whenever
it enters the debugger for any reason, including a breakpoint, a bus
error, a single step, or any other reason.

Commands The State request and response commands are defined as follows:

#define sysPktStateCmd0x00
#define sysPktStateRsp0x80

Request Packet typedef struct SysPktStateCmdType
{

_sysPktBodyCommon;
} SysPktStateCmdType

Fields

--> _sysPktBodyCommon
The common packet header, as described in
_SysPktBodyCommon.

Response
Packet

typedef struct SysPktStateRspType
{

_sysPktBodyCommon;
Boolean resetted;
Word exceptionId;
M68KregsType reg;
Word inst[sysPktStateRspInstWords];
BreakpointTypebp[dbgTotalBreakpoints];
void* startAddr;
void* endAddr;
char name[sysPktMaxNameLen];
Byte trapTableRev;

} SysPktStateRspType;

Debugger Protocol Reference
The Debugger Protocol Commands

Palm OS Programming Development Tools Guide 267
1/18/00

Fields

<-- _sysPktBodyCommon
The common packet header, as described in
_SysPktBodyCommon.

<-- resetted A Boolean value. This is TRUE if the debugging
target has just been reset.

<-- exceptionId The ID of the exception that caused the
debugger to be entered.

<-- reg The register values in sequential order: D0 to
D7, followed by A0 to A6.

<-- inst A buffer of the instructions starting at the
current program counter on the debugging
target.

<-- bp An array with an entry for each of the possible
breakpoints. Each entry is of the type
BreakpointType.

<-- startAddr The starting address of the function that
generated the exception.

<-- endAddr The ending address of the function that
generated the exception.

<-- name The name of the function that generated the
exception. This is a null-terminated string. If no
name can be found, this is the null string.

<-- trapTableRev The revision number of the trap table on the
debugging target. You can use this to determine
when the trap table cache on the host computer
is invalid.

Debugger Protocol Reference
The Debugger Protocol Commands

268 Palm OS Programming Development Tools Guide
1/18/00

Toggle Debugger Breaks

Purpose Enables or disables breakpoints that have been compiled into the
code.

Comments A breakpoint that has been compiled into the code is a special TRAP
instruction that is generated when source code includes calls to the
DbgBreak and DbgSrcBreak functions.

Sending this command toggles the debugging target between
enabling and disabling these breakpoints.

Commands The Toggle Debugger Breaks request and response commands
are defined as follows:

#define sysPktDbgBreakToggleCmd0x0D
#define sysPktDbgBreakToggleRsp0x8D

Request Packet typedef struct SysPktDbgBreakToggleCmdType
{

_sysPktBodyCommon;
}SysPktDbgBreakToggleCmdType;

Fields

--> _sysPktBodyCommon
The common packet header, as described in
_SysPktBodyCommon.

Response
Packet

typedef struct SysPktDbgBreakToggleRspType
{

_sysPktBodyCommon;
Boolean newState

}SysPktDbgBreakToggleRspType;

Fields

<-- _sysPktBodyCommon
The common packet header, as described in
_SysPktBodyCommon.

Debugger Protocol Reference
The Debugger Protocol Commands

Palm OS Programming Development Tools Guide 269
1/18/00

<-- newState A Boolean value. If this is set to TRUE, the new
state has been set to enable breakpoints that
were compiled into the code. If this is set to
FALSE, the new state has been set to disable
breakpoints that were compiled into the code.

Write Memory

Purpose Writes memory values to the debugging target.

Comments This command can write up to sysPktMaxMemChunk bytes of
memory. The actual size of the request packet depends on the
number of bytes that you want to write.

Commands The Write Memory command request and response commands are
defined as follows:

#define sysPktWriteMemCmd0x02
#define sysPktWriteMemRsp0x82

Request Packet typedef struct SysPktWriteMemCmdType
{

_sysPktBodyCommon;
void* address;
Word numBytes;
//Byte data[?]

}SysPktWriteMemCmdType;

Fields

--> _sysPktBodyCommon
The common packet header, as described in
_SysPktBodyCommon.

--> address The address in target memory to which the
values are written.

--> numBytes The number of bytes to write.

--> data The bytes to write into target memory. The size
of this field is defined by the numBytes
parameter.

Debugger Protocol Reference
The Debugger Protocol Commands

270 Palm OS Programming Development Tools Guide
1/18/00

Response
Packet

typedef struct SysPktWriteMemRspType
{

_sysPktBodyCommon;
}SysPktWriteMemRspType;

Fields

<-- _sysPktBodyCommon
The common packet header, as described in
_SysPktBodyCommon.

Write Registers

Purpose Sets the value of each of the target processor registers.

Comments The eight data registers are stored in the request packet body
sequentially, from D0 to D7. The seven address registers are stored in
the request packet body sequentially, from A0 to A6.

Commands The Write Registers command request and response
commands are defined as follows:

#define sysPktWriteRegsCmd0x06
#define sysPktWriteRegsRsp0x86

Request Packet typedef struct SysPktWriteRegsCmdType
{

_sysPktBodyCommon;
M68KRegsType reg;

}SysPktWriteRegsCmdType;

Fields

-->_sysPktBodyCommon
The common packet header, as described in
_SysPktBodyCommon.

Debugger Protocol Reference
Summary of Debugger Protocol Packets

Palm OS Programming Development Tools Guide 271
1/18/00

--> reg The new register values in sequential order: D0
to D7, followed by A0 to A6.

Response
Packet

typedef struct SysPktWriteRegsRspType
{

_sysPktBodyCommon;
}SysPktWriteRegsRspType;

Fields

<-- _sysPktBodyCommon
The common packet header, as described in
_SysPktBodyCommon.

Summary of Debugger Protocol Packets
Table A.2 summarizes the command packets that you can use with
the debugger protocol.

Table A.2 Debugger protocol command packets

Command Description

Continue Tells the debugging target to continue execution.

Find Searches for data in memory on the debugging
target.

Get Breakpoints Retrieves the current breakpoint settings from the
debugging target.

Get Routine Name Determines the name, starting address, and ending
address of the function that contains the specified
address.

Get Trap Breaks Retrieves the settings for the trap breaks on the
debugging target.

Get Trap Conditionals Retrieves the trap conditionals values from the
debugging target.

Debugger Protocol Reference
Summary of Debugger Protocol Packets

272 Palm OS Programming Development Tools Guide
1/18/00

Message Sends a message to display on the debugging target.

Read Memory Reads memory values from the debugging target.

Read Registers Retrieves the value of each of the target processor
registers.

RPC Sends a remote procedure call to the debugging
target.

Set Breakpoints Sets breakpoints on the debugging target.

Set Trap Breaks Sets breakpoints on the debugging target.

Set Trap Conditionals Sets the trap conditionals values for the debugging
target.

State Sent by the host program to query the current state of
the debugging target, and sent by the target
whenever it encounters an exception and enters the
debugger.

Toggle Debugger Breaks Enables or disables breakpoints that have been
compiled into the code.

Write Memory Writes memory values to the debugging target.

Write Registers Sets the value of each of the target processor
registers.

Table A.2 Debugger protocol command packets (continued)

Command Description

Palm OS Programming Development Tools Guide 273
1/18/00

B
Host Control API
This appendix describes the host control API, which you can use the
to call emulator-defined functions while your application is running
under the Palm OS® Emulator. For example, you can make function
calls to start and stop profiling in the emulator.

IMPORTANT: This chapter describes the version of the host
control API that shipped on the Metrowerks CodeWarrior for the
Palm Operating System, Version 6 CD-ROM. If you are using a
different version, the features in your version might be different
than the features described here.

The host control functions are defined in the HostControl.h
header file. These functions are invoked by executing a trap/
selector combination that is defined for use by the emulator and
other foreign host environments. Palm OS Emulator catches the
calls intended for it that are made to this selector.

Constants
This section lists the constants that you use with the host control
API.

Host Error Constants
Several of the host control API functions return a HostErr value.

enum
{
hostErrNone = 0,
hostErrUnknownGestaltSelector,
hostErrDiskError,
hostErrOutOfMemory,
hostErrMemReadOutOfRange,

Host Control API
Constants

274 Palm OS Programming Development Tools Guide
1/18/00

hostErrMemWriteOutOfRange,
hostErrMemInvalidPtr,
hostErrInvalidParameter,
hostErrTimeout,
hostErrInvalidDeviceType,
hostErrInvalidRAMSize,
hostErrFileNotFound,
hostErrRPCCall,
hostErrSessionRunning,
hostErrSessionNotRunning,
hostErrNoSignalWaiters,
hostErrSessionNotPaused
};

hostErrNone No error.

hostErrUnknownGestaltSelector
The specified Gestalt selector value is not valid.

hostErrDiskError
A disk error occurred.

hostErrOutOfMemory
There is not enough memory to complete the
request.

hostErrMemReadOutOfRange
An out of range error occurred during a
memory read.

hostErrMemWriteOutOfRange
An out of range error occurred during a
memory write.

hostErrMemInvalidPtr
The pointer is not valid.

hostErrInvalidParameter
A parameter to a function is not valid.

hostErrTimeout
A timeout occurred.

hostErrInvalidDeviceType
The specified device type is not valid.

Host Control API
Constants

Palm OS Programming Development Tools Guide 275
1/18/00

hostErrInvalidRAMSize
The specified RAM size value is not valid.

hostErrFileNotFound
The specified file could not be found.

hostErrRPCCall
A function that must be called remotely was
called by an application. These functions
include: HostSessionCreate ,
HostSessionOpen , HostSessionClose ,
HostSessionQuit , HostSignalWait , and
HostSignalResume .

hostErrSessionRunning
A session is already running and one of the
following functions was called:
HostSessionCreate , HostSessionOpen ,
or HostSessionQuit .

hostErrSessionNotRunning
No session is running and the
HostSessionClose function was called.

hostErrNoSignalWaiters
The HostSendSignal function was called,
but there are no external scripts waiting for a
signal.

hostErrSessionNotPaused
The HostSignalResume function was called,
but the session has not been paused by a call to
HostSendSignal .

Host Function Selector Constants
You can use the host function selector constants with the
HostIsSelectorImplemented function to determine if a certain
function is implemented on your debugging host. Each constant is
the name of a function, with the Host portion replaced by
HostSelector .

typedef enum
{

Host Control API
Constants

276 Palm OS Programming Development Tools Guide
1/18/00

hostSelectorGetHostVersion,
hostSelectorGetHostID,
hostSelectorGetHostPlatform,
hostSelectorIsSelectorImplemented,
hostSelectorGestalt,
hostSelectorIsCallingTrap,
hostSelectorProfileInit,
hostSelectorProfileStart,
hostSelectorProfileStop,
hostSelectorProfileDump,
hostSelectorProfileCleanup,
hostSelectorProfileDetailFn,
hostSelectorErrNo,
hostSelectorFClose,
hostSelectorFEOF,
hostSelectorFError,
hostSelectorFFlush,
hostSelectorFGetC,
hostSelectorFGetPos,
hostSelectorFGetS,
hostSelectorFOpen,
hostSelectorFPrintF,
hostSelectorFPutC,
hostSelectorFPutS,
hostSelectorFRead,
hostSelectorRemove,
hostSelectorRename,
hostSelectorFReopen,
hostSelectorFScanF,
hostSelectorFSeek,
hostSelectorFSetPos,
hostSelectorFTell,
hostSelectorFWrite,
hostSelectorTmpFile,
hostSelectorTmpNam,
hostSelectorGetEnv,
hostSelectorMalloc,
hostSelectorRealloc,
hostSelectorFree,
hostSelectorGremlinIsRunning,

Host Control API
Constants

Palm OS Programming Development Tools Guide 277
1/18/00

hostSelectorGremlinNumber,
hostSelectorGremlinCounter,
hostSelectorGremlinLimit,
hostSelectorGremlinNew,
hostSelectorImportFile,
hostSelectorExportFile,
hostSelectorGetPreference),
hostSelectorSetPreference,
hostSelectorLogFile,
hostSelectorSetLogFileSize,
hostSelectorSessionCreate,
hostSelectorSessionOpen,
hostSelectorSessionClose,
hostSelectorSessionQuit,
hostSelectorSignalSend,
hostSelectorSignalWait,
hostSelectorSignalResume,
hostSelectorTraceInit,
hostSelectorTraceClose,
hostSelectorTraceOutputT,
hostSelectorTraceOutputTL,
hostSelectorTraceOutputVT,
hostSelectorTraceOutputVTL,
hostSelectorTraceOutputB,
hostSelectorLastTrapNumber

} HostControlTrapNumber;

Host ID Constants
Some of the host control API functions use a Host ID value to
specify the debugging host type.

enum
{
hostIDPalmOS,
hostIDPalmOSEmulator,
hostIDPalmOSSimulator
};

Host Control API
Constants

278 Palm OS Programming Development Tools Guide
1/18/00

hostIDPalmOS A Palm Computing Platform hardware device.

hostIDPalmOSEmulator
The Palm OS Emulator application.

hostIDPalmOSSimulator
The Macintosh Simulator application.

Host Platform Constants
Several of the host control API functions use a HostPlatform
value to specify operating system hosting the emulation.

enum
{

hostPlatformPalmOS,
hostPlatformWindows,
hostPlatformMacintosh,
hostPlatformUnix

};

hostPlatformPalmOS
The Palm OS platform.

hostPlatformWindows
The Windows operating system platform.

hostPlatformMacintosh
The Mac OS platform.

hostPlatformUnix
The Unix operating system platform.

Host Signal Constants
This section describes the host signal values, which you can use
with the HostSendSignal.

enum
{

hostSignalReserved,
hostSignalIdle,
hostSignalQuit,
hostSignalSessionStarted,

Host Control API
Constants

Palm OS Programming Development Tools Guide 279
1/18/00

hostSignalSessionStopped,
hostSignalGremlinStarted,
hostSignalGremlinSuspended,
hostSignalGremlinResumed,
hostSignalGremlinStopped,
hostSignalHordeStopped,
hostSignalUser

};

hostSignalReserved
System-defined signals start here.

hostSignalIdle
Palm OS Emulator is about to go into an idle
state.

hostSignalQuit
Palm OS Emulator is about to quit.

hostSignalSessionStarted
Not Yet Implemented.

hostSignalSessionStopped
Not Yet Implemented.

hostSignalGremlinStarted
Not Yet Implemented.

hostSignalGremlinSuspended
Not Yet Implemented.

hostSignalGremlinResumed
Not Yet Implemented.

hostSignalGremlinStopped
Not Yet Implemented.

hostSignalHordeStopped
Not Yet Implemented.

hostSignalUser
User-defined signals start at this value.

Host Control API
Data Types

280 Palm OS Programming Development Tools Guide
1/18/00

Data Types
This section describes the data types that you use with the host
control API.

HostFILE
The host control file operations create and use the HostFile data
structure for file access.

typedef struct HostFILE
{

long _field;
} HostFILE;

HostBool
The host control API defines HostBool for use as a Boolean value.

typedef long HostBool;

HostGremlinInfo
The host control API defines the HostGremlinInfo structure type
to store information about a horde of gremlins.

typedef struct HostGremlinInfo
{

long fFirstGremlin;
long fLastGremlin;
long fSaveFrequency;
long fSwitchDepth;
long fMaxDepth;
long fAppNames[200];

};

typedef struct HostGremlinInfo HostGremlinInfo;

HostGremlinInfo Fields

fFirstGremlin The number of the first gremlin to run.

fLastGremlin The number of the last gremlin to run.

Host Control API
Functions

Palm OS Programming Development Tools Guide 281
1/18/00

fSaveFrequency The gremlin snapshot frequency.

fSwitchDepth The number of gremlin events to generate
before switching to another gremlin.

fMaxDepth The maximum number of gremlin events to
generate for each gremlin.

fAppNames A comma-separated string containing a list of
application names among which the gremlin
horde is allowed to switch.

If this string is empty, all applications are
available for use with the gremlins.

If this string begins with a dash ('-'), the
applications named in the string are excluded,
rather than included in the list of available
applications.

HostID
The host control API defines HostID for use as an identifier value.

typedef long HostID;

HostPlatform
The host control API defines HostPlatform for use as a platform
identifier value.

typedef long HostPlatform;

HostSignal
The host control API defines HostSignal for use as a platform
identifier value.

typedef long HostSignal;

Functions
This section describes the host control API functions.

Host Control API
Functions

282 Palm OS Programming Development Tools Guide
1/18/00

HostErrNo

Purpose To return the value of errNO, the standard C library variable that
reflects the result of many standard C library functions. You can call
this function after calling one of the Host Control functions that
wraps the standard C library.

IMPORTANT: The HostErrNo function is only applicable to
functions that wrap the standard C library. It is not applicable to all
Host Control functions.

Prototype long HostErrNo(void);

Parameters None.

Result The error number.

HostExportFile

Purpose Copies a database from the handheld device to the desktop
computer.

Prototype HostErr HostExportFile(const char* fileName,
long cardNum, const char* dbName);

Parameters fileName The file name to use on the desktop computer.

cardNum The number of the card on the handheld device
on which the database is contained.

dbName The name of the handheld database.

Result Returns 0 if the operation was successful, and a non-zero value if
not.

Host Control API
Functions

Palm OS Programming Development Tools Guide 283
1/18/00

HostFClose

Purpose Closes a file on the desktop computer.

Prototype long HostFClose(HostFILE* f);

Parameters f The file to close.

Result Returns 0 if the operation was successful, and a non-zero value if
not.

HostFEOF

Purpose Determines if the specified file is at its end.

Prototype long HostFEOF(HostFILE* f);

Parameters f The file to test.

Result Returns 0 if the specified file is at its end, and a non-zero value
otherwise.

HostFError

Purpose Retrieves the error code from the most recent operation on the
specified file.

Prototype long HostFError(HostFILE* f);

Parameters f The file.

Result The error code from the most recent operation on the specified file.
Returns 0 if no errors have occurred on the file.

Host Control API
Functions

284 Palm OS Programming Development Tools Guide
1/18/00

HostFFlush

Purpose Flushes the buffer for the specified file.

Prototype long HostFFlush(HostFILE* f);

Parameters f The file to flush.

Result Returns 0 if the operation was successful, and a non-zero value if
not.

HostFGetC

Purpose Retrieves the character at the current position in the specified file.

Prototype long HostFGetC(HostFILE* f);

Parameters f The file.

Result The character, or EOF to indicate an error.

HostFGetPos

Purpose Retrieves the current position in the specified file.

Prototype long HostFGetPos(HostFILE* f, long* posn);

Parameters f The file.

posn Upon successful return, the current position in
the file.

Result Returns 0 if the operation was successful, and a non-zero value if
not.

Host Control API
Functions

Palm OS Programming Development Tools Guide 285
1/18/00

HostFGetS

Purpose Retrieves a character string from the selected file and returns a
pointer to that string.

Prototype char* HostFGetS(char* s, long n, HostFILE* f);

Parameters s A pointer to the string buffer to be filled with
characters from the file.

n The number of characters to retrieve.

f The file.

Result The character string, or NULL to indicate an error.

HostFOpen

Purpose Opens a file on the desktop computer.

Prototype HostFILE* HostFOpen(const char* name,
const char* mode);

Parameters name The name of the file to open.

mode The mode to use when opening the file.

Result The file stream pointer, or NULL to indicate an error.

HostFPrintF

Purpose Writes a formatted string to a file.

Prototype long HostFPrintF(HostFILE* f, const char* format,
...);

Parameters f The file to which the string is written.

format The format specification.

Host Control API
Functions

286 Palm OS Programming Development Tools Guide
1/18/00

... String arguments.

Result The number of characters actually written.

HostFPutC

Purpose Writes a character to the specified file.

Prototype long HostFPutC(long c, HostFILE* f);

Parameters c The character to write.

f The file to which the character is written.

Result The number of characters written, or EOF to indicate an error.

HostFPutS

Purpose Writes a string to the specified file.

Prototype long HostFPutS(const char* s, HostFILE* f);

Parameters s The string to write.

f The file to which the character is written.

Result A non-negative value if the operation was successful, or a negative
value to indicate failure.

HostFRead

Purpose Reads a number of items from the file into a buffer.

Prototype long HostFRead(void* buffer, long size,
long count, HostFILE* f);

Parameters buffer The buffer into which data is read.

size The size of each item.

Host Control API
Functions

Palm OS Programming Development Tools Guide 287
1/18/00

count The number of items to read.

f The file from which to read.

Result The number of items that were actually read.

HostFree

Purpose Frees memory on the desktop computer.

Prototype void HostFree(void* p);

Parameters p A pointer to the memory block to be freed.

Result None.

HostFReopen

Purpose Changes the file with which the stream f is associated.
HostFReopen first closes the file that was associated with the
stream, then opens the new file and associates it with the same
stream.

Prototype HostFILE* HostFReopen(const char* name,
const char* mode, HostFILE *f);

Parameters name The name of the file to open.

mode The mode to use when opening the file.

f The file from which to read.

Result The file stream pointer, or NULL to indicate an error.

Host Control API
Functions

288 Palm OS Programming Development Tools Guide
1/18/00

HostFScanF

Purpose Reads formatted text from a file.

Prototype long HostFReopen(HostFILE* f, const char *fmt,
...);

Parameters f The file from which to read input.

fmt A format string, as used in standard C-library
calls such as scanf .

... The list of variables into which scanned input
are written.

Result The number of items that were read, or a negative value to indicate
an error.

Returns EOF if end of file was reached while scanning.

HostFSeek

Purpose Moves the file pointer to the specified position.

Prototype long HostFSeek(HostFILE* f, long offset,
long origin);

Parameters f The file.

offset The number of bytes to move from the initial
position, which is specified in the origin
parameter.

origin The initial position.

Result Returns 0 if the operation was successful, and a non-zero value if
not.

Host Control API
Functions

Palm OS Programming Development Tools Guide 289
1/18/00

HostFSetPos

Purpose Sets the position indicator of the file.

Prototype long HostFSetPos(HostFILE* f, long posn);

Parameters f The file.

posn The position value.

Result Returns 0 if the operation was successful, and a non-zero value if
not.

HostFTell

Purpose Retrieves the current position of the specified file.

Prototype long HostFTell(HostFILE* f);

Parameters f The file.

Result Returns -1 to indicate an error.

HostFWrite

Purpose Writes data to a file.

Prototype long HostFWrite(const void* buffer, long size,
long count, HostFILE* f);

Parameters buffer The buffer that contains the data to be written.

size The size of each item.

count The number of items to write.

f The file to which the data is written.

Result The number of items actually written.

Host Control API
Functions

290 Palm OS Programming Development Tools Guide
1/18/00

HostGetEnv

Purpose Retrieves the value of an environment variable.

Prototype char* HostGetEnv(char* varName);

Parameters varName The name of the environment variable that you
want to retrieve.

Result The string value of the named variable, or NULL if the variable
cannot be retrieved.

HostGestalt

Purpose Currently does nothing except return an “invalid selector” error. In
the future, this function will be used for queries about the runtime
environment.

Prototype HostErr HostGestalt(long gestSel, long* response);

Parameters

HostGetHostID

Purpose Retrieves the ID of the debugging host. This is one of the constants
described in Host ID Constants. Palm OS Emulator always returns
the value hostIDPalmOSEmulator .

Prototype HostID HostGetHostID(void);

Parameters None.

Result The host ID.

Host Control API
Functions

Palm OS Programming Development Tools Guide 291
1/18/00

HostGetHostPlatform

Purpose Retrieves the host platform ID, which is one of the values described
in Host Platform Constants.

Prototype HostPlatform HostGetHostPlatform(void);

Parameters None.

Result The platform ID.

HostGetHostVersion

Purpose Retrives the version number of the debugging host.

Prototype long HostGetHostVersion(void);

Parameters None.

Result The version number.

Comments This function returns the version number in the same format that is
used by the Palm OS, which means that you can access the version
number components using the following macros from the
SystemMgr.h file:

sysGetROMVerMajor(dwROMVer)
sysGetROMVerMinor(dwROMVer)
sysGetROMVerFix(dwROMVer)
sysGetROMVerStage(dwROMVer)
sysGetROMVerBuild(dwROMVer)

Host Control API
Functions

292 Palm OS Programming Development Tools Guide
1/18/00

HostGetPreference

Purpose Retrieves the specified preference value.

Prototype HostBool HostGetPreference(const char* prefName,
char* prefValue);

Parameters prefName The name of the preference whose value you
want to retrieve.

prefValue Upon successful return, the string value of the
specified preference.

Result A Boolean value that indicates whether the preference was
successfully retrieved.

Comments Each preference is identified by name. You can view the preference
names in the Palm OS Emulator preferences file for your platform,
as shown in Table B.1.

See Also The HostSetPreference function.

Table B.1 Palm OS Emulator preferences file names and
locations

Platform File name File location

Macintosh Palm OS Emulator Preferences In the Preferences
folder.

Windows Palm OS Emulator Preferences.ini In the Windows System
directory.

Unix .poserrc In your home directory.

Host Control API
Functions

Palm OS Programming Development Tools Guide 293
1/18/00

HostGremlinCounter

Purpose Returns the current event count of the currently running gremlin.

Prototype long HostGremlinCounter(void);

Parameters None.

Result The event count.

Comments This return value of this function is only valid if a gremlin is
currently running.

HostGremlinIsRunning

Purpose Determines if a gremlin is currently running.

Prototype HostBool HostGremlinIsRunning(void);

Parameters None.

Result A Boolean value indicating whether a gremlin is currently running.

HostGremlinLimit

Purpose Retrieves the limit value of the currently running gremlin.

Prototype long HostGremlinLimit(void);

Parameters None.

Result The limit value of the currently running gremlin.

Comments This return value of this function is only valid if a gremlin is
currently running.

Host Control API
Functions

294 Palm OS Programming Development Tools Guide
1/18/00

HostGremlinNew

Purpose Creates a new gremlin.

Prototype HostErr HostGremlinNew(
const HostGremlinInfo* info);

Parameters TBD.

HostGremlinNumber

Purpose Retrieves the number of the currently running gremlin.

Prototype long HostGremlinNumber(void);

Parameters None.

Result The gremlin number of the currently running gremlin.

Comments This return value of this function is only valid if a gremlin is
currently running.

HostImportFile

Purpose Copies a database from the desktop computer to the handheld
device, and stores it on the specified card number. The database
name on the handheld device is the name stored in the file.

Prototype HostErr HostImportFile(const char* fileName,
long cardNum);

Parameters fileName The file on the desktop computer that contains
the database.

Host Control API
Functions

Palm OS Programming Development Tools Guide 295
1/18/00

cardNum The card number on which the database is to be
installed. You almost always use 0 to specify
the built-in RAM.

Result Returns 0 if the operation was successful, and a non-zero value if
not.

HostLogFile

Purpose Returns a reference to the file that the Emulator is using to log
information. You can use this to add your own information to the
same file.

Prototype HostFILE* HostLogFile(void);

Parameters None.

Result A pointer to the log file, or NULL if not successful.

HostIsCallingTrap

Purpose Determines if Palm OS Emulator is currently calling a trap.

Prototype HostBool HostIsCallingTrap(void);

Parameters None.

Result TRUE if Palm OS Emulator is currently calling a trap, and FALSE if
not.

Host Control API
Functions

296 Palm OS Programming Development Tools Guide
1/18/00

HostIsSelectorImplemented

Purpose Determines if the specified function selector is implemented on the
debugging host.

Prototype HostBool HostIsSelectorImplemented(long selector);

Parameters selector The function selector. This must be one of the
constants described in Host Function Selector
Constants.

Result TRUE if the specified function selector is implemented on the host,
and FALSE if not.

HostMalloc

Purpose Allocates a memory block on the debugging host.

Prototype void* HostMalloc(long size);

Parameters size The number of bytes to allocate.

Result A pointer to the allocated memory block, or NULL if there is not
enough memory available.

HostProfileCleanup

Purpose Releases the memory used for profiling and disables profiling.

Prototype HostErr HostProfileCleanup(void);

Parameters None.

Result Returns 0 if the operation was successful, and a non-zero value if
not.

Host Control API
Functions

Palm OS Programming Development Tools Guide 297
1/18/00

HostProfileDetailFn

Purpose Profiles the function that contains the specified address.

Prototype HostErr HostProfileDetailFn(void* addr,
HostBool logDetails);

Parameters addr The address in which you are interested.

logDetails A Booleavn value. If this is TRUE, profiling is
performed at a machine-language instruction
level, which means that each opcode is treated
as its own function.

Result Returns 0 if the operation was successful, and a non-zero value if
not.

HostProfileDump

Purpose Writes the current profiling information to the named file.

Prototype HostErr HostProfileDump(const char* filename);

Parameters filename The name of the file to which the profile
information gets written.

Result Returns 0 if the operation was successful, and a non-zero value if
not.

HostProfileInit

Purpose Initializes and enables profiling in the debugging host.

Prototype HostErr HostProfileInit(long maxCalls,
long maxDepth);

Parameters maxCalls The maximum number of calls to profile.

Host Control API
Functions

298 Palm OS Programming Development Tools Guide
1/18/00

maxDepth The maximum profiling depth.

Result Returns 0 if the operation was successful, and a non-zero value if
not.

HostProfileStart

Purpose Turns profiling on.

Prototype HostErr HostProfileStart(void);

Parameters None.

Result Returns 0 if the operation was successful, and a non-zero value if
not.

HostProfileStop

Purpose Turns profiling off.

Prototype HostErr HostProfileStop(void);

Parameters None.

Result Returns 0 if the operation was successful, and a non-zero value if
not.

HostRealloc

Purpose Reallocates space for the specified memory block.

Prototype void* HostRealloc(void* ptr, long size);

Parameters ptr A pointer to a memory block that is being
resized.

Host Control API
Functions

Palm OS Programming Development Tools Guide 299
1/18/00

size The new size for the memory block.

Result A pointer to the allocated memory block, or NULL if there is not
enough memory available.

HostRemove

Purpose Deletes a file.

Prototype long HostRemove(const char* name);

Parameters name The name of the file to be deleted.

Result Returns 0 if the operation was successful, and a non-zero value if
not.

HostRename

Purpose Renames a file.

Prototype long HostRemove(const char* oldName,
const char* newName);

Parameters oldName The name of the file to be renamed.

newName The new name of the file.

Result Returns 0 if the operation was successful, and a non-zero value if
not.

Host Control API
Functions

300 Palm OS Programming Development Tools Guide
1/18/00

HostSessionClose

Purpose Closes the current emulation session.

Prototype HostErr HostSessionClose(const char* psfFileName);

Parameters psfFileName The name of the file to which the current
session is to be saved.

Result Returns 0 if the operation was successful, and a non-zero value if
not.

Comments This function is defined for external RPC clients to call; the effect of
calling it for Palm OS applications running on the emulated device
is undefined.

HostSessionCreate

Purpose Creates a new emulation session.

Prototype HostErr HostSessionCreate(const char* device,
long ramSize, const char* romPath);

Parameters device The name of the handheld device to emulate in
the session.

ramSize The amount of emulated RAM in the new
session.

romPath The path to the ROM file for the new session.

Result Returns 0 if the operation was successful, and a non-zero value if
not.

Comments This function is defined for external RPC clients to call; the effect of
calling it for Palm OS applications running on the emulated device
is undefined.

Host Control API
Functions

Palm OS Programming Development Tools Guide 301
1/18/00

WARNING! This function is not implemented in the current
version of Palm OS Emulator; however, it will be implemented in
the near future.

HostSessionOpen

Purpose Opens a previously saved emulation session.

Prototype HostErr HostSessionOpen(const char* psfFileName);

Parameters psfFileName The name of the file containing the saved
session that you want to open.

Result Returns 0 if the operation was successful, and a non-zero value if
not.

Comments This function is defined for external RPC clients to call; the effect of
calling it for Palm OS applications running on the emulated device
is undefined.

WARNING! This function is not implemented in the current
version of Palm OS Emulator; however, it will be implemented in
the near future.

HostSessionQuit

Purpose Asks Palm OS Emulator to quit. Returns an error if a session is
already running.

Prototype HostErr HostSessionQuit(void);

Parameters None.

Result Returns 0 if the operation was successful, and a non-zero value if
not.

Host Control API
Functions

302 Palm OS Programming Development Tools Guide
1/18/00

Comments This function is defined for external RPC clients to call; the effect of
calling it for Palm OS applications running on the emulated device
is undefined.

IMPORTANT: This function is defined for external RPC clients
to call, and returns an error if you call it from within a Palm
application.

HostSetLogFileSize

Purpose Determines the size of the logging file that Palm OS Emulator is
using.

Prototype void HostSetLogFileSize(long size);

Parameters size The new size for the logging file, in bytes.

Result None.

Comments By default, Palm OS Emulator saves the last 1 megabyte of log data
to prevent logging files from becoming enormous. You can call this
function to change the log file size.

HostSetPreference

Purpose Sets the specified preference value.

Prototype void HostSetPreference(const char* prefName,
const char* prefValue);

Parameters prefName The name of the preference whose value you
are setting.

prefValue The new value of the preference.

Result None.

Host Control API
Functions

Palm OS Programming Development Tools Guide 303
1/18/00

Comments Each preference is identified by name. You can view the preference
names in the Palm OS Emulator preferences file for your platform,
as shown in Table B.1.

See Also The HostGetPreference function.

HostSignalResume

Purpose Restarts Palm OS Emulator after it has issued a signal.

Prototype HostErr HostSignalResume(void);

Parameters None.

Result Returns 0 if the operation was successful, and a non-zero value if
not.

Comments Palm OS Emulator waits to be restarted after issuing a signal to
allow external scripts to perform operations.

See Also The HostSignalSend and HostSignalWait functions.

IMPORTANT: This function is defined for external RPC clients
to call, and returns an error if you call it from within a Palm
application.

Host Control API
Functions

304 Palm OS Programming Development Tools Guide
1/18/00

HostSignalSend

Purpose Sends a signal to any scripts that have HostSignalWait calls
pending.

Prototype HostErr HostSignalSend(HostSignal signalNumber);

Parameters signalNumber The signal for which you want to wait. This can
be a predefined signal or one that you have
defined.

Result Returns 0 if the operation was successful, and a non-zero value if
not.

Comments Palm OS Emulator halts and waits to be restarted after sending the
signal. This allows external scripts to perform operations. The
external script must call the HostSignalResume function to restart
POSE.

If there are not any scripts waiting for a signal, Palm OS Emulator
does not halt.

The predefined signals are:

• hostSignalIdle , which Palm OS Emulator issues when it
detects that it is going into an idle state.

• hostSignalQuit , which Palm OS Emulator issues when it
is about to quit.

See Also The HostSignalResume and HostSignalWait functions.

HostSignalWait

Purpose Waits for a signal from POSE, and returns the signalled value.

Prototype HostErr HostSignalWait(long timeout,
HostSignal* signalNumber);

Parameters timeout The number of milliseconds to wait for the
signal before timing out.

Host Control API
Functions

Palm OS Programming Development Tools Guide 305
1/18/00

signalNumber The signal for which you want to wait. This can
be a predefined signal or one that you have
defined.

Result Returns 0 if the operation was successful, and a non-zero value if
not.

Comments The predefined signals are:

• hostSignalIdle , which Palm OS Emulator issues when it
detects that it is going into an idle state.

• hostSignalQuit , which Palm OS Emulator issues when it
is about to quit.

See Also The HostSignalResume and HostSignalSend functions.

IMPORTANT: This function is defined for external RPC clients
to call, and returns an error if you call it from within a Palm
application.

HostTmpFile

Purpose Returns the temporary file used by the debugging host.

Prototype HostFILE* HostTmpFile(void);

Parameters None.

Result A pointer to the temporary file, or NULL if an error occurred.

Host Control API
Functions

306 Palm OS Programming Development Tools Guide
1/18/00

HostTmpNam

Purpose Creates a unique temporary file name.

Prototype char* HostTmpNam(char* s);

Parameters s Either be a NULL pointer or a pointer to a
character array. The character array must be at
least L_tmpnam characters long.

If s is not NULL, the newly created temporary
file name is stored into s .

Result A pointer to an internal static object that the calling program can
modify.

HostTraceInit

Purpose Initiates a connection to the external trace reporting tool.

Prototype void HostTraceInit(void);

Parameters None.

NOTE: The tracing functions are used in conjunction with an
external trace reporting tool. You can call these functions to send
information to the external tool in real time.

Result None.

Host Control API
Functions

Palm OS Programming Development Tools Guide 307
1/18/00

HostTraceClose

Purpose Closes the connection to the external trace reporting tool.

Prototype void HostTraceClose(void);

Parameters None.

Result None.

HostTraceOutputT

Purpose Outputs a text string to the external trace reporting tool.

Prototype void HostTraceOutputT(unsigned short moduleId,
const char* fmt, ...);

Parameters moduleId The ID of the Palm OS subsystem from which
this output originates. You can use this with the
external tracing tool to filter traces according to
their origin.

The ID must match one of the error classes
defined in the SystemMgr.h file.

fmt A format string, as used in standard C-library
calls such as printf . The format string has the
following form:

% flags width type

... The list of variables to be formatted for output.

Host Control API
Functions

308 Palm OS Programming Development Tools Guide
1/18/00

Table B.2 shows the flag types that you can use in the format
specification for the tracing output functions.

Table B.3 shows the output types that you can use in the format
specification for the tracing output functions.

Result None.

Table B.2 Trace function format specification flags

Flag Description

- Left-justified output.

+ Always display the sign symbol.

space Display a space when the value is positive, rather than
a '+' symbol.

Alternate form specifier.

Table B.3 Trace function format specification types

Flag Description

% Displays the '%' character.

s Displays a null-terminated string value.

c Displays a character value.

ld Displays an Int32 value.

lu Displays a UInt32 value.

lx or lX Displays a UInt32 value in hexadecimal.

hd Displays an Int16 value.

hu Displays a UInt16 value.

hx or hX Displays an Int16 or UInt16 value i hexadecimal.

Host Control API
Functions

Palm OS Programming Development Tools Guide 309
1/18/00

HostTraceOutputTL

Purpose Outputs a text string, followed by a newline, to the external trace
reporting tool. This function performs the same operation as the
HostTraceOutputT function, and adds the newline character.

Prototype voidHostTraceOutputTL(unsigned short moduleId,
const char* fmt, ...);

Parameters moduleId The ID of the Palm OS subsystem from which
this output originates. You can use this with the
external tracing tool to filter traces according to
their origin.

The ID must match one of the error classes
defined in the SystemMgr.h file.

fmt A format string, as used in standard C-library
calls such as printf . For more information
about the formatting specification, see the
description of the HostTraceOutputT function.

... The list of variables to be formatted for output.

Result None.

HostTraceOutputVT

Purpose Outputs a text string to the external trace reporting tool.

Prototype void HostTraceOutputVT(unsigned short moduleId,
const char* fmt, va_list vargs);

Parameters moduleId The ID of the Palm OS subsystem from which
this output originates. You can use this with the
external tracing tool to filter traces according to
their origin.

The ID must match one of the error classes
defined in the SystemMgr.h file.

Host Control API
Functions

310 Palm OS Programming Development Tools Guide
1/18/00

fmt A format string, as used in standard C-library
calls such as printf . For more information
about the formatting specification, see the
description of the HostTraceOutputT function.

vargs A structure containing the variable argument
list. This is the same kind of variable argument
list used for standard C-library functions such
as vprintf .

Result None.

HostTraceOutputVTL

Purpose Outputs a text string, followed by a newline, to the external trace
reporting tool. This function performs the same operation as the
HostTraceOutputVT function, and adds the newline character.

Prototype void HostTraceOutputVTL(unsigned short moduleId,
const char* fmt, va_list vargs);

Parameters moduleId The ID of the Palm OS subsystem from which
this output originates. You can use this with the
external tracing tool to filter traces according to
their origin.

The ID must match one of the error classes
defined in the SystemMgr.h file.

fmt A format string, as used in standard C-library
calls such as printf . For more information
about the formatting specification, see the
description of the HostTraceOutputT function.

vargs A structure containing the variable argument
list. This is the same kind of variable argument
list used for standard C-library functions such
as vprintf .

Result None.

Host Control API
Summary of Host Control API Functions

Palm OS Programming Development Tools Guide 311
1/18/00

HostTraceOutputB

Purpose Outputs a buffer of data, in hex dump format, to the external trace
reporting tool.

Prototype void HostTraceOutputB(unsigned short moduleId,
const unsigned char* buffer,
unsigned long len/*size_t*/);

Parameters moduleId The ID of the Palm OS subsystem from which
this output originates. You can use this with the
external tracing tool to filter traces according to
their origin.

The ID must match one of the error classes
defined in the SystemMgr.h file.

buffer A pointer to a buffer of raw data.

len The number of bytes of data in the buffer.

Result None.

Summary of Host Control API Functions
The tables in this section summarize the host control API functions.

Host Control Database Functions
Table B.4 Host control database functions

Function Description

HostExportFile Copies a database from the handheld device to
the desktop computer.

HostImportFile Copies a database from the desktop computer to
the handheld device, and stores it on the
specified card number. The database name on
the handheld device is the name stored in the
file.

Host Control API
Summary of Host Control API Functions

312 Palm OS Programming Development Tools Guide
1/18/00

Host Control Environment Functions

Host Control Gremlin Functions

Table B.5 Host control environment functions

Function Description

HostGestalt Currently does nothing except to return an
“invalid selector” error.

HostGetHostID Retrieves the ID of the debugging host. Palm OS
Emulator always returns the value
hostIDPalmOSEmulator .

HostGetHostPlatform Retrieves the host platform ID.

HostGetHostVersion Returns the version number of the debugging
host.

HostIsCallingTrap Returns a Boolean indicating whether the
specified function selector is implemented on
the debugging host.

HostIsSelectorImplemented Returns a Boolean indicating whether the
specified function selector is implemented on
the debugging host.

Table B.6 Host control gremlin functions

Function Description

HostGremlinCounter Returns the current count for the currently
running gremlin.

HostGremlinIsRunning Returns a Boolean value indicating whether a
gremlin is currently running.

HostGremlinLimit Returns the limit value of the currently running
gremlin.

HostGremlinNew Creates a new gremlin.

HostGremlinNumber Returns the gremlin number of the currently
running gremlin.

Host Control API
Summary of Host Control API Functions

Palm OS Programming Development Tools Guide 313
1/18/00

Host Control Logging Functions

Host Control Preference Functions

Host Control Profiling Functions

Table B.7 Host control preference functions

Function Description

HostLogFile Returns a reference to the file that Palm OS
Emulator is using to log information.

HostSetLogFileSize Modifies the size of the logging file.

Table B.8 Host control preference functions

Function Description

HostGetPreference Retrieves the value of a preference.

HostSetPreference Sets a new value for a preference.

Table B.9 Host control profiling functions

Function Description

HostProfileCleanup Releases the memory used for profiling and
disables profiling.

HostProfileDetailFn Profiles the function that contains the specified
address.

HostProfileDump Writes the current profiling information to the
named file.

HostProfileInit Initializes and enables profiling in the
debugging host.

HostProfileStart Turns profiling on.

HostProfileStop Turns profiling off.

Host Control API
Summary of Host Control API Functions

314 Palm OS Programming Development Tools Guide
1/18/00

Host Control RPC Functions

Host Control Standard C-Library Functions

Table B.10 Host control RPC functions

Function Description

HostRename Closes the currently executing emulation
session.

HostSessionClose Closes the current emulation session

HostSessionCreate Creates a new emulation session.

HostSessionOpen Opens a previously saved emulation session.

HostSessionQuit Asks Palm OS Emulator to quit.

HostSignalResume Resumes Palm OS Emulator after it has halted
to wait for external scripts to handle a signal.

HostSignalSend Sends a signal to external scripts.

HostSignalWait Waits for Palm OS Emulator to send a signal.

Table B.11 Host control standard C-library functions

Function Description

HostErrNo Returns the error number from the most recent
host control API operation.

HostFClose Closes a file on the desktop computer. Returns 0
if the operation was successful, and a non-zero
value if not.

HostFEOF Returns 0 if the specified file is at its end, and a
non-zero value otherwise.

HostFError Returns the error code from the most recent
operation on the specified file. Returns 0 if no
errors have occurred on the file.

HostFFlush Flushes the buffer for the specified file.

Host Control API
Summary of Host Control API Functions

Palm OS Programming Development Tools Guide 315
1/18/00

HostFGetC Returns the character at the current position in
the specified file. Returns EOF to indicate an
error.

HostFGetPos Retrieves the current position in the specified
file. Returns 0 if the operation was successful,
and a non-zero value if not.

HostFGetS Retrieves a character string from the selected
file and returns a pointer to that string. Returns
NULL to indicate an error.

HostFOpen Opens a file on the desktop computer and
returns a HostFILE pointer for that file.
Returns NULL to indicate an error.

HostFPrintF Writes a formatted string to a file, and returns
the number of characters written.

HostFPutC Writes a character to the specified file, and
returns the character written. Returns EOF to
indicate an error.

HostFPutS Writes a string to the specified file, and returns
a non-negative value to indicate success.

HostFRead Reads a number of items from the file into a
buffer. Returns the number of items that were
actually read.

HostFree Frees memory on the desktop computer.

HostFReopen Associates a file stream with a different file.

HostFScanF Scans a file for formatted input.

HostFSeek Moves the file pointer to the specified position,
and returns 0 to indicate success.

HostFSetPos Sets the position indicator of the file, and
returns 0 to indicate success.

Table B.11 Host control standard C-library functions

Function Description

Host Control API
Summary of Host Control API Functions

316 Palm OS Programming Development Tools Guide
1/18/00

Host Control Tracing Functions

HostFTell Retrieves the current position of the specified
file. Returns -1 to indicate an error.

HostFWrite Writes data to a file, and returns the actual
number of items written.

HostGetEnv Retrieves the value of an environment variable.

HostMalloc Allocates a memory block on the debugging
host, and returns a pointer to the allocated
memory. Returns NULL if there is not enough
memory available.

HostRealloc Reallocates space for the specified memory
block.

HostRemove Deletes a file.

HostRename Renames a file.

HostTmpFile Returns the temporary file used by the
debugging host.

HostTmpNam Creates a unique temporary file name.

Table B.11 Host control standard C-library functions

Function Description

Table B.12 Host control tracing functions

Function Description

HostTraceInit Must be called before logging any trace
information.

HostTraceClose Must be called when done logging trace
information.

HostTraceOutputT Outputs text to the trace log using printf-style
formatting.

Host Control API
Summary of Host Control API Functions

Palm OS Programming Development Tools Guide 317
1/18/00

HostTraceOutputTL Outputs text to the trace log using printf-style
formatting, and appends a newline character to
the text.

HostTraceOutputVT Outputs text to the trace log using vprintf-style
formatting.

HostTraceOutputVTL Outputs text to the trace log using vprintf-style
formatting, and appends a newline character to
the text.

HostTraceOutputB Outputs a buffer of raw data to the trace log in
hex dump format.

Table B.12 Host control tracing functions (continued)

Function Description

Host Control API
Summary of Host Control API Functions

318 Palm OS Programming Development Tools Guide
1/18/00

Palm OS Programming Development Tools Guide 319
1/18/00

C
Simple Data Types
Table C.1 describes the simple data types, which have been renamed
in the newest release of the Palm OS® software.

Table C.1 Simple Data Types

Old data type name New data type name Description

Byte UInt8 unsigned 8-bit value

UChar UInt8 unsigned 8-bit value

SByte Int8 signed 8-bit value

Int Int16 signed 16-bit value

SWord Int16 signed 16-bit value

Short Int16 signed 16-bit value

UShort UInt16 unsigned 16-bit value

UInt UInt16 unsigned 16-bit value

Word UInt16 unsigned 16-bit value

Long Int32 signed 32-bit value

SDWord Int32 signed 32-bit value

ULong UInt32 unsigned 32-bit value

DWord UInt32 unsigned 32-bit value

Handle MemHandle a handle to a memory chunk

VoidHand MemHandle a handle to a memory chunk

Ptr MemPtr a pointer to memory

VoidPtr MemPtr A pointer to memory

Palm OS Programming Development Tools Guide 321
1/18/00

D
Resource Tools
There are two tools provided with the Metrowerks CodeWarrior
environment that you can use to work with resources:

• Use the Rez tool to compile a textual description of the
resources for your application into a resource file.

• Use the DeRez tool to decompile a resource file into a text
file.

Both of these tools are standard Apple Computer tools for working
with MacOS application resources. Documentation for both the Rez
and DeRez programs is found in the Apple book Building and
Managing Programs in MPW, 2nd Edition. This book is available
online at the following URL:

http://developer.apple.com/tools/mpw-tools/books.html

http://developer.apple.com/tools/mpw-tools/books.html

Palm OS Programming Development Tools Guide 323
1/18/00

Glossary

Term Definition

application error message A message displayed when software running on the
handheld device calls a system function such as
ErrDisplayFileLineMsg or SysFatalAlert.

BigROM The ROM code that initializes the hardware and contains all
of the system code.

command request packet A packet sent from a debugging host to a debugging target
that requests a certain action.

command response
packet

A packet sent from a debugging target to a debugging host
in response to a command request packet, or in response to a
state change.

console nub A background thread on the handheld device that listens for
commands on the serial or USB port. This thread provides
the functionality required to perform database and heap
management functions, and must be activated before Palm
Debugger’s console commands can be sent to the device.

debugger nub A background thread on the handheld device that listens for
commands on the serial or USB port. This thread provides
the functionality required to support debugging of Palm OS
applications, and must be activated before Palm Debugger’s
debugging commands can be sent to the device.

debugging host The desktop computer that hosts the debugging program.

debugging target The handheld device ROM or emulator running the
executable that is being debugged.

gremlin A series of user input events that test your your application’s
capabilities.

Glossary

324 Palm OS Programming Development Tools Guide
1/18/00

gremlin horde A group of gremlins that you can use to test specific
capabilities.

heap scrambling The process of moving items around in a heap to test if a
program has correctly used handles for memory accesses.
Direct memory pointers will no longer work after the heap
has been scrambled, but handles do continue to work.

message packet A packet sent from a debugging host to a debugging target

processor exception An error condition that involves the CPU pushing the
current program counter and processor state onto the stack,
and then branching through a low-memory vector.

memory access exception An error condition that involves access to a memory location
the application is not supposed to access.

skin A set of graphics that an application uses to creates its
appearance. You can change the appearance of an
application such as the Palm OS Emulator by changing its
skin.

SmallROM The bootstrap code on the handheld device. This is the code
at the very front of the device ROM that can initialize the
hardware and activate the debugger nub.

Term Definition

Palm OS Programming Development Tools Guide 325
1/18/00

Index

Symbols
> command 132

A
AddRecord command 184
AddResource command 184
alias command 133
aliases 106
aliases command 133
arithmetic operators 93
assigning values to registers 97
assignment operator 94
atb command 134
atc command 134
atd command 134
atr command 135
att command 135
AttachRecord command 185
AttachResource command 185

B
basic debugging tasks 96
Battery command 186
baud rate

changing in Palm Debugger 123
baud rate, changing 123
BigROM 80
bitwise operators 94
bootstrap command 136
br command 136, 137
brd command 137
Break command 234
break command 79
breakpoint constants 247
BreakpointType structure 250
building project for Simulator 237

C
CardFormat command 186
CardInfo command 187
cardinfo command 137
cast operator 93

ChangeRecord command 187, 188
choosing Simulator as project target 237
cl command 138
Close command 188
ColdBoot command 188
command constants 247
command line options

for Palm OS Emulator 20
command packets

Continue 250
Find 252
Get Breakpoints 253
Get Routine Name 254
Get Trap Breaks 256
Get Trap Conditionals 257
HostErrNo 282
Message 258
Read Memory 259
Read Registers 260
RPC 261
Set Breakpoints 262
Set Trap Breaks 263
Set Trap Conditionals 264
State 266
Toggle Debugger Breaks 268
Write Memory 269
Write Registers 270

command request packets 243
command response packets 244
command syntax 86
commands

debugger protocol 250
connecting to handheld device 78
Console comjmand 234
console commands 177, 183

AddRecord 184
AddResource 184
AttachRecord 185
AttachResource 185
Battery 186
CardFormat 186
CardInfo 187
ChangeRecord 187, 188
Close 188
ColdBoot 188
Create 189

Index

326 Palm OS Programming Development Tools Guide
1/18/00

Del 189
DelRecord 190
DelResource 190
DetachRecord 191
DetachResource 191
Dir 192
DM 194
Doze 194
Exit 194
Export 195
Feature 196
FindRecord 197
Free 197
GDB 197
GetResource 198
Gremlin 198
GremlinOff 198
HC 199
HChk 199
HD 200
Help 202
HF 202
HI 203
HL 203
HS 204
HT 204
HTorture 205
Import 206
Info 207
Kinfo 208
Launch 209
ListRecords 210
ListResources 210
Lock 210
Log 211
MDebug 211
MoveRecord 213
New 213
Open 214
Opened 214
Performance 215
PowerOn 215
Reset 216
Resize 216
SaveImages 217
SB 217
SetInfo 217

SetOwner 218
SetOwnerInfo 218
SetResourceInfo 219
SimSync 219
Sleep 219
StoreInfo 220
Switch 221
SysAlarmDump 221
Unlock 222

console stub 174
console window 77

activating input 174
using 177

constants
breakpoint 247
debugger protocol command 247
debugging 171
host control API 273
host control error 273
host control ID 277
host control platform 278
host function selector 275
host signal platform 278
packet 246
state 247

Continue 250
CPU registers window 77
Create command 189

D
data types

host control API 280
database commands 104
db command 138
DbgBreak 79
debug options 37
debugger

connecting with Palm OS Emulator 52
debugger protocol

breakpoint constants 247
command constants 247
command request packets 243
command response packets 244
commands 250
Continue command 250

Index

Palm OS Programming Development Tools Guide 327
1/18/00

Find command 252
Get Breakpoints command 253
Get Routine Name command 254
Get Trap Breaks command 256
Get Trap Conditionals command 257
host and target 243
Message command 258
message packets 244
packet communications 244, 246
packet constants 246
packet structure 244
packet summary 271
packet types 243
Read Memory command 259
Read Registers command 260
RPC command 261
Set Breakpoints command 262
Set Trap Breaks command 263
Set Trap Conditional command 264
State command 266
state constants 247
Toggle Debugger Breaks command 268
Write Memory command 269
Write Registers command 270

debugger protocol API 243
debugger stub 79
debugging

with Palm OS Emulator 14
debugging commands

> 132
alias 133
aliases 106, 133
atb 134
atc 134
atd 134
atr 135
att 135
automatic loading of definitions 107
binary numbers in 91
bootstrap 136
br 136, 137
brd 137
cardinfo 137
character constants in 91
cl 138
db 138
decimal numbers in 92

dir 139
dl 141
dm 141
dump 142
dw 142
dx 143
expression operators 93
fb 143
fill 144
fl 144
flow control 100
ft 145
fw 145
g 146
gt 146
hChk 147
hd 147
help 149
hexadecimal numbers in 92
hl 150
ht 151
il 151
info 153
keywords 153
load 154
opened 154
penv 155
reg 156
reset 156
run 157
s 157
save 158
sb 158
sc 158
sc6 159
sc7 160
script files 107
shortcut characters in 96
sizeof 161
sl 161
ss 161
storeinfo 162
structure templates 105
summary 167
sw 163
t 163
templates 164

Index

328 Palm OS Programming Development Tools Guide
1/18/00

typedef 164
typeend 165
using expressions in 90
var 165
variables 166
wh 166

debugging conduits
shortcut numbers 80, 175

debugging constants 171
debugging host 243
debugging memory corruption problems 117
debugging target 243
debugging variables 170
debugging window 77

activating 79
using 88

debugging window commands 131
debugging with Palm OS Emulator 37
defining structure templates 105
Del command 189
DelRecord command 190
DelResource command 190
dereference operator 93
DetachRecord command 191
DetachResource command 191
differences between Simulator and Palm OS

hardware 230
Dir command 192
dir command 139
disassembling memory 98
displaying and disassembling memory 98
displaying memory 98
displaying registers and memory 97
dl command 141
DM command 194
dm command 141
downloading ROM images 33
Doze command 194
dump command 142
dw command 142
dx command 143

E
Edit menu 233

emulator 13
about 13
and HotSync application 62
and serial communications 61
command line options 20
compared to simulator 229
connecting with Palm Debugger 52
debug options 37
debugging 37
debugging with 14
display 26
downloading 16
downloading ROM images 33
entering data in 32
error conditions 65
error handling 64
error messages 66
extended features 15
gremlins and logging 49
hardware button use 31
installing applications 61
list of files included 18
loading a ROM file 34
loading ROM images 33
logging options 40
menu commands 28
menus 26
new configuration dialog box 36
on-screen image 13
preference dialog box 59
profiling 53
profiling with 19
properties dialog box 59
saving and restoring sessions 57
saving the screen 57
session configuration 55
session configuration dialog box 25
session features 54
snapshots 49
source level debugging 52
speeding up synchronization operations 63
standard device features 15
starting execution 23
startup dialog box 23
testing 37
transferring ROM images 34
user interface 25

Index

Palm OS Programming Development Tools Guide 329
1/18/00

using gremlins 44
using ROM images 16, 36
using the mouse as a stylus 14
version numbers 18

entering commands in Palm Debugger 83
error handling

in Palm OS Emulator 64
error messages

in Palm Debugger 112
in Palm OS Emulator 66

Event Trace 234
Event Trace command 234
event trace window 239
Exit command 194
Export command 195
expression language for Palm Debugger 131
expressions in Palm Debugger 90

F
fb command 143
Feature command 196
fill command 144
Find 252
finding code in the debugger 114
finding memory corruption problems 117
finding specific code 114
FindRecord command 197
fl command 144
flow control commands 100
Free command 197
ft command 145
functions

host control 281
HostExportFile 282
HostFClose 283
HostFEOF 283
HostFError 283
HostFFlush 284
HostFGetC 284
HostFGetPos 284
HostFGetS 285
HostFOpen 285
HostFPrintF 285
HostFPutC 286
HostFPutS 286

HostFRead 286
HostFree 287
HostFReopen 287
HostFScanf 288
HostFSeek 288
HostFSetPos 289
HostFTell 289
HostFWrite 289
HostGestalt 290
HostGetEnv 290
HostGetHostID 290
HostGetHostPlatform 291
HostGetHostVersion 291
HostGetPreference 292
HostGremlinCounter 293
HostGremlinIsRunning 293
HostGremlinLimit 293
HostGremlinNew 294
HostGremlinNumber 294
HostImportFile 294
HostIsCallingTrap 295
HostIsSelectorImplemented 296
HostLogFile 295
HostMalloc 296
HostProfileCleanup 296
HostProfileDetailFn 297
HostProfileDump 297
HostProfileInit 297
HostProfileStart 298
HostProfileStop 298
HostRealloc 298
HostRemove 299
HostSessionClose 300
HostSessionCreate 300
HostSessionOpen 301
HostSessionQuit 301
HostSetLogFileSize 302
HostSetPreference 302
HostSignalResume 303, 304
HostSignalWait 304
HostTmpFile 305
HostTmpNam 306
HostTraceClose 307
HostTraceInit 306, 309
HostTraceOutputB 311
HostTraceOutputT 307
HostTraceOutputTL 309

Index

330 Palm OS Programming Development Tools Guide
1/18/00

HostTraceOutputVTL 310
fw command 145

G
g command 146
GDB command 197
GDbgWasEntered 79
Get Breakpoints 253
Get Routine Name 254
Get Trap Breaks 256
Get Trap Conditionals 257
GetResource command 198
Gremlin command 198
Gremlin menu 235
GremlinOff command 198
gremlins 44

and logging 49
in Simulator 240
snapshots 49

gt command 146

H
handheld device

connecting with Palm Debugger 78
hardware buttons

in Palm OS Emulator 31
HC command 199
HChk command 199
hChk command 147
HD command 200
hd command 147
heap and database commands 104
heap commands 104
Help command 202
help command 149
HF command 202
HI command 203
HL command 203
hl command 150
host control

constants 273
data types 280
database functions 311
environment functions 312

function summary 311
functions 281
gremlin functions 312
host error constants 273
host function selector constants 275
host ID constants 277
host platform constants 278
host signal constants 278
HostBool data type 280
HostErrNo function 282
HostExportFile function 282
HostFClose function 283
HostFEOF function 283
HostFError function 283
HostFFlush function 284
HostFGetC function 284
HostFGetPos function 284
HostFGetS function 285
HostFILE data type 280
HostFOpen function 285
HostFPrintf function 285
HostFPutS function 286
HostFRead function 286
HostFree function 287
HostFReopen function 287
HostFScanF function 288
HostFSeek function 288
HostFSetPos function 289
HostFTell function 289
HostFWrite function 289
HostGestalt function 290
HostGetEnv function 290
HostGetHostID function 290
HostGetHostPlatform function 291
HostGetHostVersion function 291
HostGetPreference function 292
HostGremlinCounter function 293
HostGremlinIsRunning function 293
HostGremlinLimit function 293
HostGremlinNew function 294
HostGremlinNumber function 294
HostID data type 281
HostImportFile function 294
HostIsCallingTrap function 295
HostIsSelectorImplemented function 296
HostLogFile function 295
HostMalloc function 296

Index

Palm OS Programming Development Tools Guide 331
1/18/00

HostPlatform data type 281
HostProfileCleanup function 296
HostProfileDetailFn function 297
HostProfileDump function 297
HostProfileInit function 297
HostProfileStart function 298
HostProfileStop function 298
HostPutC function 286
HostRealloc function 298
HostRemove function 299
HostSessionClose function 300
HostSessionCreate function 300
HostSessionOpen function 301
HostSessionQuit function 301
HostSetLogFileSize function 302
HostSetPreference function 302
HostSignal data type 281
HostSignalResume function 303, 304
HostSignalWait function 304
HostTmpFile function 305
HostTmpNam function 306
HostTraceClose function 307
HostTraceInit function 306, 309
HostTraceOutputB function 311
HostTraceOutputT function 307
HostTraceOutputTL function 309
HostTraceOutputVTL function 310
logging functions 313
preference functions 313
profiling functions 313
RPC functions 314, 316
standard C-library functions 314

host control API 273
host error constants 273
host function selector constants 275
host ID constants 277
host platform constants 278
host signal constants 278
HostBool data type 280
HostErrNo 282
HostExportFile 282
HostFClose 283
HostFEOF 283
HostFError 283
HostFFlush 284
HostFGetC 284

HostFGetPos 284
HostFGetS 285
HostFILE data type 280
HostFOpen 285
HostFPrintF 285
HostFPutC 286
HostFPutS 286
HostFRead 286
HostFree 287
HostFReopen 287
HostFScanF 288
HostFSeek 288
HostFSetPos 289
HostFTell 289
HostFWrite 289
HostGestalt 290
HostGetEnv 290
HostGetHostID 290
HostGetHostPlatform 291
HostGetHostVersion 291
HostGetPreference 292
HostGremlinCounter 293
HostGremlinIsRunning 293
HostGremlinLimit 293
HostGremlinNew 294
HostGremlinNumber 294
HostID data type 281
HostImportFile 294
HostIsCallingTrap 295
HostIsSelectorImplemented 296
HostLogFile 295
HostMalloc 296
HostPlatform data type 281
HostProfileCleanup 296
HostProfileDetailFn 297
HostProfileDUmp 297
HostProfileInit 297
HostProfileStart 298
HostProfileStop 298
HostRealloc 298
HostRemove 299
HostSessionClose 300
HostSessionCreate 300

Index

332 Palm OS Programming Development Tools Guide
1/18/00

HostSessionOpen 301
HostSessionQuit 301
HostSetLogFileSize 302
HostSetPreference 302
HostSignal data type 281
HostSignalResume 303, 304
HostSignalWait 304
HostTmpFile 305
HostTmpNam 306
HostTraceClose 307
HostTraceInit 306, 309
HostTraceOutputB 311
HostTraceOutputT 307
HostTraceOutputTL 309
HostTraceOutputVTL 310
HotSync application

and Palm OS Emulator 62
HS command 204
HT command 204
ht command 151
HTorture command 205

I
il command 151
Import command 206
importing a database 177
Info command 207
info command 153
installing applications

in Palm OS Emulator 61

K
keywords command 153
Kinfo command 208

L
Launch command 209
ListRecords command 210
ListResources command 210
load command 154
loading debugger definitions 107
loading ROM images 33
local variables

displaying in Palm Debugger 120
Lock command 210
Log command 211
logging options 40
logging while running gremlins 49

M
MDebug command 211
memory corruption 117
menus in Palm Debugger 84
Message 258
message packets 244
Modem Panel command 236
Modem Port command 236
Modem.prc 236
MoveRecord command 213

N
Network Panel command 236
Network.prc 236
New command 213, 235

O
Open command 214
Opened command 214
opened command 154
operators in debugging commands 93

P
packet communications 246
packet constants 246
packet types 243
Palm Debugger 114, 123

> command 132
about 76
AddRecord command 184
AddResource command 184
address values 88
alias command 133
aliases 106
aliases command 133
and memory corruption problems 117
arithmetic operators 93

Index

Palm OS Programming Development Tools Guide 333
1/18/00

assigning values to registers 97
assignment operator 94
atb command 134
atc command 134
atd command 134
atr command 135
att command 135
AttachRecord command 185
AttachResource command 185
basic tasks 96
Battery command 186
bitwise operators 94
bootstrap command 136
br command 136, 137
brd command 137
CardFormat command 186
CardInfo command 187
cardinfo command 137
cast operator 93
ChangeRecord command 187, 188
cl command 138
Close command 188
ColdBoot command 188
command options 87, 130, 182
command reference 129
command syntax 86, 129, 181
connecting to handheld device 78
console commands 183
console window 77, 177
CPU registers window 77
Create command 189
db command 138
debugger environment variables 170
debugging command summary 167
debugging window 77
debugging window commands 131
Del command 189
DelRecord command 190
DelResource command 190
dereference operator 93
DetachRecord command 191
DetachResource command 191
dir command 139
displaying local variables 120
displaying registers and memory 97
dl command 141
DM command 194

dm command 141
Dor command 192
Doze command 194
dump command 142
dw command 142
dx command 143
entering commands 83
error messages 112
Exit command 194
Export command 195
expression language 90, 131
fb command 143
Feature command 196
fill command 144
FindRecord command 197
fl command 144
flow control commands 100
Free command 197
ft command 145
fw command 145
g command 146
GDB command 197
GetResource command 198
Gremlin command 198
GremlinOff command 198
gt command 146
HC command 199
HChk command 199
hChk command 147
HD command 200
hdcommand 147
heap and database commands 104
Help command 202
help command 149
HF command 202
HI command 203
HL command 203
hl command 150
HS command 204
HT command 204
ht command 151
HTorture command 205
il command 151
Import command 206
importing system extensions and libraries 124
Info command 207
info command 153

Index

334 Palm OS Programming Development Tools Guide
1/18/00

keywords command 153
Kinfo command 208
Launch command 209
ListRecords command 210
ListResources command 210
load command 154
Lock command 210
Log command 211
MDebug command 211
menus 84
MoveRecord command 213
New command 213
numeric and address values 131, 183
numeric values 88
Open command 214
Opened command 214
opened command 154
penv command 155
Performance command 215
performing calculations 113
PowerOn command 215
predefined constants 171
reg command 156
register variables 94
repeating commands 113
Reset command 216
reset command 156
Resize command 216
run command 157
s command 157
save command 158
SaveImages command 217
SB command 217
sb command 158
sc command 158
sc6 command 159
sc7 command 160
script files 107
SetInfo command 217
SetOwner command 218
SetRecordInfo command 218
SetResourceInfo command 219
shortcut characters 96
shortcut characters in 113
SimSync command 219
sizeof command 161

sl command 161
Sleep command 219
source debugging limitations 111
source menu 109
source window 77, 107
ss command 161
StoreInfo command 220
storeinfo command 162
structure templates 105
sw command 163
Switch command 221
symbol files 109
SysAlarmDump command 221
t command 163
templates command 164
tips and examples 112
typedef command 164
typeend command 165
unary operators 93
Unlock command 222
using 75
using console and debugging windows 82
using the debugging window 88
var command 165
variables command 166
wh command 166
windows 77

Panel menu 236
Pause command 234
penv command 155
Performance command 215
performing calculations in Palm Debugger 113
Playback command 234
port selection in Simulator 235, 236
PowerOn command 215
Preference dialog box 59
Printer Port command 236
profiling

with Palm OS Emulator 19
profiling code 53
Properties dialog box 59

Q
Quit command 233

Index

Palm OS Programming Development Tools Guide 335
1/18/00

R
Read Memory 259
Read Registers 260
Realtime command 235
Record command 234
reg command 156
register variables 94
Replay menu 234
Reset command 216
reset command 156
Resize command 216
resource tools 321
Resume command 235
ROM images 16

downloading 33
loading into the emulator 34
transferring 34
using 36

RPC 261
run command 157

S
s command 157
Save As command 234
Save Before Quitting command 233
Save Card 0 command 233
Save Card 1 command 233
save command 158
SaveImages command 217
saving and restoring sessions 57
saving the screen 57
SB command 217
sb command 158
sc command 158
sc6 command 159
sc7 command 160
screen shots 57
script files 107
scripts in Simulator 239
serial communications

and Palm OS Emulator 61
Serial Port menu 235
session features 54

Set Breakpoints 262
Set Trap Breaks 263
Set Trap Conditionals 264
SetInfo command 217
SetOwner command 218
SetOwnerInfo command 218
SetResourceInfo command 219
shortcut characters in Palm Debugger 113
shortcut number 80, 175
shortcut numbers 80, 175
simple data types 319
SimSync command 219
Simulator

and Palm OS hardware 230
console 234
event trace 234
menu commands 232–236
port selection 235, 236

simulator
about 227
application problems 230
Break command 234
building a project for 237
compared to emulator 229
compared to handheld device 229
Console command 234
controls 228
Edit menu 233
Event Trace command 234
event trace window 239
File menu 232
Gremlin menu 235
menus 232
Modem Panel command 236
Modem Port command 236
Network Panel command 236
New Gremlin command 235
Pause command 234
Playback command 234
Printer Port command 236
Quit command 233
Realtime command 235
Record command 234
Replay menu 234
restrictions 227
Resume command 235

Index

336 Palm OS Programming Development Tools Guide
1/18/00

Save As command 234
Save Before Quitting command 233
Save Card 0 command 233
Save Card 1 command 233
saving memory to file 241
screen 228
scripting 239
Serial Port Menu 235
Step command 235
Stop command 235
target 237
tracing events 238
user interface differences 232
Using 236
using 227
using gremlins 240
using with CodeWarrior debugger 238
warning about 227
Window menu] 233

sizeof command 161
sl command 161
Sleep command 219
SmallROM 80
snapshots 49
soft reset 82, 176
source level debugging 52
source window 77, 107

and symbol files 109
context menu 111
debugging limitations 111
debugging with 108
menu 109

specifying Palm Debugger numeric and address
value 131, 183

specifying Palm Debugger options 130, 182
ss command 161
State 266
state constants 247
Step command 235
Stop command 235
StoreInfo command 220
storeinfo command 162
structure templates 105
stylus

in emulator 14

sw command 163
Switch command 221
symbol files

using 109
synchronizing

with Palm OS Emulator 63
SysAlarmDump command 221
SysPktBodyCommon structure 248
SysPktBodyType structure 249
SysPktRPCParamType structure 249
system extensions

importing 124
system libraries

importing 124

T
t command 163
TCP/IP applications, debugging 236
templates 105
templates command 164
testing

Gremlins 235
Replay in Simulator 234

testing with Palm OS Emulator 37
Toggle Debugger Breaks 268
tracing events 238
transferring ROM images 34
typedef command 164
typeend command 165

U
unary operators 93
Unlock command 222
user interface

of Palm OS Emulator 25
using ROM images 36

V
var command 165
variables 170
variables command 166
versions

of Palm OS Emulator 18

Index

Palm OS Programming Development Tools Guide 337
1/18/00

W
wh command 166
Window menu 233

windows
in Palm Debugger 77

Write Memory 269
Write Registers 270

Index

338 Palm OS Programming Development Tools Guide
1/18/00

	Front
	Table of Contents
	About This Document
	Palm OS® SDK Documentation
	What This Volume Contains
	Conventions Used in This Guide

	Using the Palm OS® Emulator
	About the Palm OS Emulator
	Standard Device Features
	Extended Emulation Features
	Debugging Features
	Using ROM Images

	Downloading and Running Palm OS Emulator
	Palm OS Emulator Runtime Requirements
	Downloading Palm OS Emulator
	Versions of Palm OS Emulator
	Command Line Options
	How Palm OS Emulator Starts Execution

	The Palm OS Emulator User Interface
	The Palm OS Emulator Display
	Using the Menus
	Using the Hardware Buttons
	Entering Data
	Control Keys

	Loading ROM Images
	Downloading a ROM Image Obtained From Palm
	Transferring a ROM Image From a Handheld
	Transferring a ROM File in Windows
	Transferring a ROM File On a Macintosh
	Using a ROM Image in Palm OS Emulator

	Using the Binder to Create an Executable
	Testing and Debugging With Palm OS Emulator
	Testing Software
	Debug Options
	Logging Options
	Using Gremlins
	Setting Breakpoints
	Source Level Debugging
	Connecting the Emulator With Palm Debugger
	Profiling Your Code

	Palm OS Emulator Session Features
	Configuring a New Session
	Dragging and Dropping Files
	Saving and Restoring Session State
	Saving the Screen
	Changing the Emulator’s Appearance

	The Palm OS Emulator Runtime Environment
	Palm OS Emulator Properties
	Installing Applications
	Serial Communications and Palm OS Emulator
	Using the HotSync Application With the Palm OS Emulator

	Palm OS Emulator Error Handling
	Detecting an Error Condition
	Error Condition Types
	Error Messages

	Sending Commands to Palm OS Emulator
	The RPC2 Packet Format

	Getting Help With Palm OS Emulator

	Using Palm Debugger
	About Palm Debugger
	Connecting Palm Debugger With a Target
	Connecting to The Palm OS® Emulator
	Connecting to The Handheld Device
	Using the Console and Debugging Windows Together

	Entering Palm Debugger Commands
	Palm Debugger Menus
	Palm Debugger Command Syntax

	Using the Debugging Window
	Using Debugger Expressions
	Performing Basic Debugging Tasks
	Advanced Debugging Features

	Using the Source Window
	Debugging With the Source Window
	Using Symbol Files
	Using the Source Menu
	Source Window Debugging Limitations

	Palm Debugger Error Messages
	Palm Debugger Tips and Examples
	Performing Calculations
	Shortcut Characters
	Repeating Commands
	Finding a Specific Function
	Finding Memory Corruption Problems
	Displaying Local Variables and Function Parameters
	Changing the Baud Rate Used by Palm Debugger
	Debugging Applications That Use the Serial Port
	Importing System Extensions and Libraries
	Determining the Current Location Within an Application

	Palm Debugger Command Reference
	Command Syntax
	Specifying Numeric and Address Values
	Using the Expression Language

	Debugging Window Commands
	>
	alias
	aliases
	atb
	atc
	atd
	atr
	att
	bootstrap
	br
	brc
	brd
	cardInfo
	cl
	db
	dir
	dl
	dm
	dump
	dw
	dx
	fb
	fill
	fl
	ft
	fw
	g
	gt
	hChk
	hd
	help (?)
	hl
	ht
	il
	Info
	keywords
	load
	opened
	penv
	reg
	reset
	run
	s
	save
	sb
	sc
	sc6
	sc7
	sizeof
	sl
	ss
	storeInfo
	sw
	t
	templates
	typedef
	typeend
	var
	variables
	wh

	Debugging Command Summary
	Flow Control Commands
	Memory Commands
	Template Commands
	Register Commands
	Utility Commands
	Console Commands
	Miscellaneous Debugger Commands
	Debugger Environment Variables
	Predefined Constants

	Using the Console Window
	About the Console Window
	Connecting the Console Window
	Activating Console Input
	Using Shortcut Numbers to Activate the Windows

	Using the Console Window
	Command Syntax
	Specifying Numeric and Address Values

	Console Window Commands
	AddRecord
	AddResource
	AttachRecord
	AttachResource
	Battery
	CardFormat
	CardInfo
	ChangeRecord
	ChangeResource
	Close
	ColdBoot
	Create
	Del
	DelRecord
	DelResource
	DetachRecord�
	DetachResource
	Dir
	DM
	Doze
	Exit
	Export
	Feature
	FindRecord
	Free
	GDB
	GetResource
	Gremlin
	GremlinOff
	HC
	HChk
	HD
	Help
	HF
	HI
	HL
	HS
	HT
	HTorture
	Import
	Info
	KInfo
	Launch
	ListRecords
	ListResources
	Lock
	Log
	MDebug
	MoveRecord
	New
	Open
	Opened
	Performance
	PowerOn
	Reset
	Resize
	SaveImages
	SB
	SetInfo
	SetOwner
	SetRecordInfo
	SetResourceInfo
	SimSync
	Sleep
	StoreInfo
	Switch
	SysAlarmDump
	Unlock

	Console Command Summary
	Card Information Commands
	Chunk Utility Commands
	Database Utility Commands
	Debugging Utility Commands
	Gremlin Commands
	Heap Utility Commands
	Host Control Commands
	Miscellaneous Utility Commands
	Record Utility Commands
	Resource Utility Commands
	System Commands

	Using the Palm Simulator
	About the Simulator
	The Simulator Compared to The Emulator
	Differences Between the Simulator and Actual Hardware

	Simulator Menu Commands Summary
	File Menu
	Edit Menu
	Window Menu
	Replay Menu
	Gremlin Menu
	Serial Port Menu
	Panel Menu

	Using the Simulator
	Building a Project for Use With the Simulator
	Tracing Events
	Scripting Pen and Key Events
	Using Gremlins
	Saving Memory Information to File

	Debugger Protocol Reference
	About the Palm Debugger Protocol
	Packets
	Packet Structure
	Packet Communications

	Constants
	Packet Constants
	State Constants
	Breakpoint Constants
	Command Constants

	Data Structures
	_SysPktBodyCommon
	SysPktBodyType
	SysPktRPCParamType
	BreakpointType

	The Debugger Protocol Commands
	Continue
	Find
	Get Breakpoints
	Get Routine Name
	Get Trap Breaks
	Get Trap Conditionals
	Message
	Read Memory
	Read Registers
	RPC
	Set Breakpoints
	Set Trap Breaks
	Set Trap Conditionals
	State
	Toggle Debugger Breaks
	Write Memory
	Write Registers

	Summary of Debugger Protocol Packets

	Host Control API
	Constants
	Host Error Constants
	Host Function Selector Constants
	Host ID Constants
	Host Platform Constants
	Host Signal Constants

	Data Types
	HostFILE
	HostBool
	HostGremlinInfo
	HostID
	HostPlatform
	HostSignal

	Functions
	HostErrNo
	HostExportFile
	HostFClose
	HostFEOF
	HostFError
	HostFFlush
	HostFGetC
	HostFGetPos
	HostFGetS
	HostFOpen
	HostFPrintF
	HostFPutC
	HostFPutS
	HostFRead
	HostFree
	HostFReopen
	HostFScanF
	HostFSeek
	HostFSetPos
	HostFTell
	HostFWrite
	HostGetEnv
	HostGestalt
	HostGetHostID
	HostGetHostPlatform
	HostGetHostVersion
	HostGetPreference
	HostGremlinCounter
	HostGremlinIsRunning
	HostGremlinLimit
	HostGremlinNew
	HostGremlinNumber
	HostImportFile
	HostLogFile
	HostIsCallingTrap
	HostIsSelectorImplemented
	HostMalloc
	HostProfileCleanup
	HostProfileDetailFn
	HostProfileDump
	HostProfileInit
	HostProfileStart
	HostProfileStop
	HostRealloc
	HostRemove
	HostRename
	HostSessionClose
	HostSessionCreate
	HostSessionOpen
	HostSessionQuit
	HostSetLogFileSize
	HostSetPreference
	HostSignalResume
	HostSignalSend
	HostSignalWait
	HostTmpFile
	HostTmpNam
	HostTraceInit
	HostTraceClose
	HostTraceOutputT
	HostTraceOutputTL
	HostTraceOutputVT
	HostTraceOutputVTL
	HostTraceOutputB

	Summary of Host Control API Functions
	Host Control Database Functions
	Host Control Environment Functions
	Host Control Gremlin Functions
	Host Control Logging Functions
	Host Control Preference Functions
	Host Control Profiling Functions
	Host Control RPC Functions
	Host Control Standard C-Library Functions
	Host Control Tracing Functions

	Simple Data Types
	Resource Tools
	Glossary
	Index

