
Blender for robotics and robotics for Blender

Herman Bruyninckx,∗

Dept. of Mechanical Engineering
K.U.Leuven, Belgium

http://www.orocos.org

Abstract

Computer animation and robotics have most of their
mathematical foundations in common. So, Blender
is a natural (but still undiscovered and imperfect)
GUI candidate for robot simulation and program-
ming. The robotics research community lacks an
advanced graphical tool such as Blender, but, on
the other hand, it has more advanced and efficient
algorithms than Blender for the physically realistic
simulation of armatures. For example, the inverse
kinematis of humanoid structures, taking into ac-
count their dynamics, and with a generic approach
for the automatic generation of natural motions. In
this paper, I make concrete suggestions about addi-
tions to the Blender code base, in order to support
these complex armatures and IPO’s. My suggestions
touch the following parts of Blender: moto (Motion
Toolkit), gameengine, and (especially) iksolver.

1 Introduction

Robotics and computer animation have much of
their mathematical background in common: 3D mo-
tion specification and visualisation; forward and in-
verse kinematics of “armatures”; interaction with
the “outside world” via sensors and actuators; there
exist some commercial programming and visualisa-
tion tools, but they are expensive and have a high
degree of lock-in; there exist some other open source
programs, but they miss one or more of the core
components.

Blender seems to be, in the long term, a perfect
match for all robotics needs. The reasons why it will
be a perfect match are:

• It has a very good basic design, with reasonably

∗The author gratefully acknowledges the financial support
by K.U.Leuven’s Concerted Research Action GOA/99/04,
and the OCEAN project of the European Union’s IST pro-
gramme.

well decoupled and accessible code.

• It contains most of the basic data structures
and libraries for robotics. In casu, moto and
iksolver.

• It contains good support for rendering of the
simulated motion, including the generation of
videos.

• It is fast.

• It is customizable.

• The “competition” in the robotics domain is
very immature.

The reasons why it is not yet a perfect match are:

• Real physical units must be used everywhere,
i.e., a Blender unit should be given a unique
meaning, for example: 1 Blender unit = 1mm.
Robotics is not just interested in something that
looks realistically, it has to be realistic.

• The inverse kinematics solver is too simplistic:
only a general-purpose algorithm is provided,
and all joints are by default spherical. Robotics
has multiple armature families for which ef-
ficient but dedicated algorithms exist; in ad-
dition, the one-dimensional revolute and pris-
matic joints are the building blocks in robotics
(Fig. 1), but they are not basic building blocks
in Blender’s armatures.

• Robotics has multiple IPO families for auto-
matic trajectory generation, i.e., not just spline
interpolation between key frames.

• The Blender interface is too difficult for roboti-
cists.

This paper gives a roadmap for the evolution of
Blender towards a must-have tool for every robotics

1



research lab. Fortunately, most of this roadmap con-
tains most probably also developments that the non-
robotics Blender community would like to see hap-
pen. The core of this roadmap is about easier and
more natural generation of motions.

Figure 1: Robotics “armatures” have typically only
one-dimensional revolute joints.

2 Robotics armatures

This Section explains the differences between the de-
fault approaches towards armatures in Blender and
in robotics. (“Kinematic chain” is the more usual
name for armatures in robotics.)

2.1 Armature joint types

Figure 1 depicts a “classical” serial robot arm, with
six revolute joints. Figure 2 depicts the topology
of a typical “humanoid” robot: each subset in this
tree-structure is a serial robot it itself. Blender offers
only spherical joints, and requires the programmer
to specify constraints to “block” some of the degrees
of freedom. So, armatures based on real revolute
joints have only very ineffcient kinematics calcula-
tions in Blender, while these constraints are “built-
in” in the usual kinematics algorithms in robotics.

These differences between spherical joint-based
and revolute joint-based armatures have some, but
rather limited, consequences for the code that is al-
ready in Blender:

• The programmer must be able to assign to each
joint in an armature one of the following types:
revolute, prismatic, spherical, gimbal, etc.

• The meaning and construction of the Jaco-
bian matrices and their mathematics as imple-
mented in iksolver remain basically the same,
but the “constructors” must be aware of the
type-dependency of the armature joints.

foot

leg
lower lower

leg

foot

upper
legleg

upper

upper
arm

upper
arm

lower
arm

lower
arm

handhand

headpelvis

trunk

12

87

4321

65

9 10

11

13 14

0

Figure 2: The “topology” of a humanoid robot has
the form of a tree, with each node possibly being a
serial chain in itself.

2.2 Realistic physical properties for
armatures

In order to make Blender armatures more appropri-
ate for use in robotics research, an armature data
structure should contain the following information,
ordered according to usefulness and complexity:

• Kinematic state: position, velocity and acceler-
ation, as function of the time.

• Dynamic state: mass distribution of the bodies
that make up the armature; force (or torque)
applied at the joint; elasticity of the joint; and
friction in the joint.

In its simplest form, this information is time-
invariant, and given by constant property val-
ues. In a more advanced mode, these are func-
tion pointers to which the programmer can at-
tach callback functions. This can happen via
the built-in Python, or by dynamic linking with
an external code library (to obtain the highest
efficiency).

Of course, corresponding interfaces must be pro-
vided to fill in and monitor this information during
programming or during a simulation.

With the dynamics library ODE, Blender contains
already infrastructure for realistic dynamic simula-
tion, but this is only good for not-connected sets of

2



bodies: bouncing balls, colliding objects, etc. Arma-
tures can be done with it too, but then each joint
introduces lots of “stiff” constraints, and that ap-
proach introduces numerical inefficiency and inac-
curacies.

3 Constraint-based IPO’s

Interpolation curves (IPOs) in Blender are “tuned”
via key frames: the programmer defines some points
where an armature has to pass through, and uses
spline-like curves to provide smooth interpolation
through these points. This approach is very flexi-
ble, in that about any possible motion can be pro-
grammed and tuned this way, but it is often too
difficult for:

• Complex motions, i.e., with under- or over-
constrained systems. (An under-constrained
system is often called redundant.) Apparently,
Blender treats constraints as an ordered list of
“rules” to apply to the representation of the ar-
mature and its motion, but this can be made
much more efficient for cases with linear con-
straints (or locally linearizable constraints) on
the armature’s motion parameters.

• Natural motions, i.e., motions that follow the
laws of physics. For example, the natural
falling, walking or jumping of a human body is
governed by the laws of Newtonian dynamics.

For both categories of motions, robotics has devel-
oped quite efficient algorithms over the last decade.
The following subsections outline what these are and
how these could be integrated into Blender.

The easiest way to describe these constraints is
to look at the mathematical representations. So,
every armature has the following Jacobian relation-
ship between, on the one hand, the velocities q̇ at
the armature’s joints, and, on the other hand, the
instantaneous velocity (“twist”) t at the “end-point”
of the armature:

t = Jq̇. (1)

J is the matrix whose columns each contain the end-
point twist generated by a unit velocity at the cor-
responding joint; t is always a six-vector. So, if the
armature has more than six degrees of freedom in
its joints, Eq. (1) has multiple solutions. Hence, it
always has a null space, i.e., a set of joint velocities
that do not move the end-effector:

Null (J(q)) =
{
q̇N | J(q) q̇N = 0

}
. (2)

This null space depends on the current joint posi-
tions. Equation (2) implies that an arbitrary vector
of the null space of the Jacobian can be used as an
internal motion of the robot:

t = J(q) q̇ = J(q)
(
q̇ + q̇N

)
. (3)

The inverse kinematics of a redundant armature re-
quire the user to specify a criterion with which to
solve the ambiguities in the joint positions and ve-
locities (internal motions) corresponding to the spec-
ified end-point position and velocity. Some examples
of redundancy resolution criterions are:

1. Keep the joints as close as possible to a spec-
ified position. The goal of this criterion is to
avoid that joints reach their mechanical limits.
A simple approach to reach this goal is to attach
virtual springs to the joints, with the equilib-
rium position of the springs near the middle of
the motion range of the joints. With this spring
model, the redundancy resolution criterion cor-
responds to the minimization of the potential
energy in the springs.

2. Minimize the kinetic energy of the manipulator,
[13].

3. Maximize the manipulability of the manipula-
tor, i.e., keep the robot close to the joint posi-
tions that give it the best ability to move and/or
exert forces in all directions, [9, 15, 18, 21].

4. Minimize the joint torques required for the mo-
tion. The goal of this criterion is to avoid satu-
ration of the actuators, and to execute the task
with minimum “effort,” [8, 12].

5. Execute a high priority task but use the redun-
dancy to achieve a lower priority task in paral-
lel, [19].

6. Avoid obstacles in the robot’s workspace. For
example, a robot with an extra shoulder or el-
bow joint can reach “around” obstacles, [2, 11].

7. Avoid singularities in the robot kinematics, [1,
3, 16, 20, 22].

8. Travel through singularities while keeping the
joint velocities bounded, [5, 14].

Many of these redundancy resolution criterions (im-
plicitly or explicitly) rely on the concept of the ex-
tended Jacobian, [1]. This approach starts from the
observation that the 6×n Jacobian can be made into

3



a n× n matrix by adding n− 6 rows to it, collected
here in a (n− 6)× n matrix A:

J̄ =

 J(q)

A(q)

 . (4)

This is equivalent to adding n− 6 linear constraints
on the joint velocities:

A(q)q̇ = 0. (5)

In order to obtain a full-rank extended Jacobian
J̄ , the constraint matrix A must be full rank, and
transversal (or “transient”) to the Jacobian J , i.e.,
the null spaces of A and J should have no elements
in common, [23]. Equation (4) then has a uniquely
defined inverse:

J̄−1 =
(
B

∣∣ ∗) . (6)

The n×6 matrix B is a so-called generalized inverse,
or pseudo-inverse, often denoted by B = J†, [4,
6, 17]: it satisfies JB = 16×6 and BJ = 1n×n.
(This follows straightforwardly from the definition
of J̄ .) With it, the forward velocity kinematics can
be “inverted”:

q̇ = B t. (7)

Do not forget that the resulting joint velocities de-
pend on the choice of the constraint matrix A. The
following paragraphs derive this general result of
Eq. (7) in more detail and in an alternative way for
the particular example of the kinetic energy mini-
mization criterion. The kinetic energy T of a serial
armature is of the form

T =
1
2
q̇T M(q) q̇. (8)

Since T is a positive scalar (and hence TT = T ),
the inertia matrix M is both invertible and sym-
metric. Minimizing the kinetic energy, while at the
same time obeying the inverse kinematics require-
ment that t = J q̇, transforms the solution to the
following constrained optimization problem: min

q̇
T =

1
2
q̇T M(q) q̇,

such that t = J(q) q̇.

(9)

The classical solution of this kind of problem uses
Lagrange multipliers, [7, 24], i.e., the constraint in
(9) is integrated into the functional T to be mini-
mized as follows:

min
q̇

T ′ =
1
2
q̇T M q̇ + λT (t− J q̇) . (10)

(For notational simplicity, we dropped the depen-
dence of M and J on the joint positions q.) λ is the
column vector of the (currently unknown) Lagrange
multipliers. They can be physically interpreted as
the impulses (forces times mass) generated by vio-
lating the constraint t−J q̇ = 0. (Check the physical
units!) The Lagrange multipliers are determined to-
gether with the desired joint velocities by setting to
zero the partial derivatives of the functional T ′ with
respect to the minimization parameter vector q̇:

q̇
1×7

T M
7×7

− λT

1×6
J

6×7
= 0 1×7. (11)

This gives a set of seven equations, in the seven
joint velocities and the six Lagrange multipliers.
These Lagrange multipliers can be solved for by
post-multiplying Eq. (11) by M−1JT :

q̇T JT = λT
(
J M−1JT

)
. (12)

The left-hand side of this equation equals the trans-
pose of the end-point twist, (t)T , and the matrix
triplet on the right-hand side is a square 6 × 6 ma-
trix that can be inverted (at least if the manipulator
is not in a singular configuration). Hence,

λT = (t)T
(
J M−1JT

)−1

. (13)

Equations (11) and (13), and the fact that M is
symmetric, yield

q̇ = M−1JT
(
J M−1JT

)−1

t (14)

= J†
M−1t. (15)

J†
M−1 is a n×6(n > 6) matrix, the so-called weighted

pseudo-inverse of J , with M−1 acting as weighting
matrix on the space of joint velocities, [4, 6, 17]. It
is not a good idea to calculate the solution q̇ by the
straightforward matrix multiplications of Eq. (14);
better numerical techniques exist, see e.g. [10].

The redundancy resolution approaches based on
an extended Jacobian yield only local optimality.
For example, one minimizes the instantaneous ki-
netic energy, not the kinetic energy over a complete
motion. The success of the extended Jacobian ap-
proach is due to the fact that analytical solutions
exist for quadratic cost functions only.

3.1 Interface extensions

The features described in the previous sections re-
quire some additions to Blender’s interface, espe-
cially for the specification of constraints. In addi-
tion, the IPO interface is currently not fully com-
patible with constraint-based programming, because

4



Figure 3: This figure shows snapshots of two simulations rendered in (but not generated by) Blender, and
based on the complex motion generation explained in this paper.

the resulting motion need not be splines, and, con-
versely, changing the resulting curves in the IPO
window will most probably violate the constraints
that generated the original motion curves.

4 Examples

Figure 3 shows two examples of the automatic
constraint-based interpolation technique of Sec-
tion 3. In both cases, the robot has eight degrees
of freedom: six revolute joints in the arm, and two
driven wheels on the platform.

The first example shows the robot executing two
independent motions: each motion involves a sim-
ulated “laser beam” traversing a circular trajectory
on a plane. The timing and dimensions of both cir-
cular motions are arbitrary and not correlated. Each
of them gives rise to one linear velocity constraint:
the intersection point of the beam with the plane
must have an instantaneous velocity tangential to
the desired circle.

The second example shows the robot executing
a door-opening task. The constraints here are: (i)
the mobile part of the robot must move along a
straight line through the door, and (ii) the robot
rotates around the door’s hinge with a prescribed
speed. (Note that each of these two motion can be
specificied in more than one way.)

5 Conclusions

The extensions to Blender’s motion and kinematics
libraries discussed in this paper require rather large-

scale changes in the source code. However, most of
these changes are rather localized, and only few new
concepts or data structures must be introduced. The
author is very interested in brainstorming about the
technical contents of this paper, about its relevance
to Blender’s roadmap, and about the best imple-
mentation approach.

Future work of our group will be around the real-
istic simulation of the dynamics of humanoid robots;
or, equivalently, for all biological creatures. This in-
volves not only simulation of motion, but also the
introduction of controllers, sensors and logic bricks.

Acknowledgements

Tine Lefebvre, Panagiotis Issaris, Johan Rutgeerts,
Tinne De Laet, Friedl de Groote, Bart Demarsin,
Diederik Verscheure contributed in one way or an-
other to the ideas and experiments presented in this
paper.

References

[1] J. Baillieul. Kinematic programming alterna-
tives for redundant manipulators. In IEEE Int.
Conf. Robotics and Automation, pages 722–728,
St. Louis, MS, 1985.

[2] J. Baillieul. Avoiding obstacles and resolv-
ing kinematic redundancy. In IEEE Int. Conf.
Robotics and Automation, pages 1698–1704,
San Fransisco, CA, 1986.

5



[3] D. R. Baker and C. W. Wampler II. On the
inverse kinematics of redundant manipulators.
Int. J. Robotics Research, 7(2):3–21, 1988.

[4] A. Ben-Israel and T. N. E. Greville. Generalized
Inverses: Theory and Applications. Robert E.
Krieger Publishing Company, Huntington, NY,
reprinted edition, 1980.

[5] N. Boland and R. Owens. On the behaviour of
robots through singularities. In R. A. Jarvis,
editor, Int. Symp. Industrial Robots, pages
1122–1134, Sydney, Australia, 1988.

[6] S. L. Campbell and C. D. Meyer, Jr. General-
ized Inverses of Linear Transformations. Dover,
1991.

[7] R. Courant and D. Hilbert. Methods of math-
ematical physics. Interscience, New York, NY,
1970.

[8] A. S. Deo and I. D. Walker. Minimum effort
inverse kinematics for redundant manipulators.
IEEE Trans. Rob. Automation, 13(5):767–775,
1997.

[9] K. L. Doty, C. Melchiorri, E. M. Schwartz, and
C. Bonivento. Robot manipulability. IEEE
Trans. Rob. Automation, 11(3):462–468, 1995.

[10] G. Golub and C. Van Loan. Matrix Compu-
tations. The Johns Hopkins University Press,
1989.

[11] J. M. Hollerbach. Optimum kinematic de-
sign for a seven degree of freedom manipulator.
In Hanafusa and Inoue, editors, Robotics Re-
search: The Second International Symposium,
pages 215–222. MIT Press, Cambridge, MA,
1985.

[12] J. M. Hollerbach and K. C. Suh. Redundancy
resolution of manipulators through torque op-
timization. In IEEE Int. Conf. Robotics and
Automation, pages 1016–1021, St. Louis, MS,
1985.

[13] O. Khatib. Commande dynamique dans
l’espace opérationnel des robots manipulateurs
en présence d’obstacles. PhD thesis, Ecole
Nationale Supérieure de l’Aéronautique et de
l’Espace, Toulouse, 1980.

[14] J. Kieffer. Differential analysis of bifurcations
and isolated singularities for robots and mecha-
nisms. IEEE Trans. Rob. Automation, 10(1):1–
10, 1994.

[15] C. Klein and B. Blaho. Dexterity measures for
the design and control of kinematically redun-
dant manipulators. Int. J. Robotics Research,
6(2):72–83, 1987.

[16] J. Lloyd. Robot Trajectory Generation for
Paths with Kinematic Singularities. PhD the-
sis, McGill University, Montreal, Canada, 1995.

[17] M. L. Moe. Kinematics and rate control of the
Rancho arm. In Proceedings of the First CISM-
IFToMM Symposium on Theory and Practice of
Robots and Manipulators, pages 253–272, Wien,
Austria, 1973. Springer Verlag.

[18] Y. Nakamura. Advanced robotics: redundancy
and optimization. Addison-Wesley, Reading,
MA, 1991.

[19] Y. Nakamura, H. Hanafusa, and T. Yoshikawa.
Task-priority based redundancy control of
robot manipulators. Int. J. Robotics Research,
6(2):3–15, 1987.

[20] K. A. O’Neil, Y.-C. Chen, and J. Seng. Remov-
ing singularities of resolved motion rate control
of mechanisms, including self-motion. IEEE
Trans. Rob. Automation, 13(5):741–751, 1997.

[21] F. C. Park and J. W. Kim. Kinematic manip-
ulability of closed chains. In J. Lenarčič and
V. Parenti-Castelli, editors, Recent Advances
in Robot Kinematics, pages 99–108, Portorož-
Bernardin, Slovenia, 1996. Kluwer.

[22] T. Shamir. The singularities of redundant robot
arms. Int. J. Robotics Research, 9(1):113–121,
1990.

[23] T. Shamir and Y. Yomdin. Repeatability of re-
dundant manipulators: Mathematical solution
of the problem. IEEE Trans. Autom. Control,
33(11):1004–1009, 1988.

[24] G. Strang. Introduction to applied mathemat-
ics. Wellesley-Cambridge Press, Wellesley, MA,
1986.

6


