
Representing 2D Transformations as Matrices

John E. Howland
Department of Computer Science

Trinity University
One Trinity Place

San Antonio, Texas 78212-7200
Voice: (210) 999-7364
Fax: (210) 999-7477

E-mail: jhowland@Trinity.Edu
Web: http://www.cs.trinity.edu/˜jhowland/

June 28, 2004

Abstract

2D graphics transformations are represented as matrices. J programs for manipulating transformations

such as scaling, rotation and translation are given. Efficiency of matrix representation of transformations

is discussed.

Subject Areas: 2D Graphics Transformations.
Keywords: Modeling, J Programming Language, 2D Graphics Transformations.

1 Introduction

In these notes, we consider the problem of representing 2D graphics images which may be drawn as a sequence
of connected line segments. Such images may be represented as a matrix of 2D points

[

xi yi

]

. In the
following pages we use the J [Hui 2001] programming notation to describe the various transformations.

For example:

[ square =: 5 2 $ 0 0 10 0 10 10 0 10 0 0

0 0

10 0

10 10

0 10

0 0

represents the square shown in Figure 1
The idea behind this representation is that the first point represents the starting point of the first line

segment drawn while the second point represents the end of the first line segment and the starting point of
the second line segment. The drawing of line segments continues in similar fashion until all line segments
have been drawn. A matrix having n + 1 points describes a figure consisting of n line segments. It is
sometimes useful to think of each pair of consecutive points in this matrix representation,

1



2 ROTATION

(0,0)

(0,10) (10,10)

(10,0)

Figure 1: A Square

[

xi−1 yi−1

xi yi

]

as as a vector so that the square shown in Figure 1 is the result of drawing the vectors shown in Figure
2.

(0,10)

(0,0) (10,0)

(10,10)

Figure 2: The Vectors in A Square

2 Rotation

Suppose we wish to rotate a figure around the origin of our 2D coordinate system. Figure 3 shows the point
(x, y) being rotated θ degrees (by convention, counter clock-wise direction is positive) about the origin.

The equations for changes in the x and y coordinates are:

x′ = x × cos(θ) − y × sin(θ)
y′ = x × sin(θ) + y × cos(θ)

(1)

2



3 SCALING

(x,y)

(x’,y’)

θ

Figure 3: Rotating a Point About the Origin

If we consider the coordinates of the point (x, y) as a one row two column matrix
[

x y
]

and the
matrix

[

cos(θ) sin(θ)
−sin(θ) cos(θ)

]

then, given the J definition for matrix product, mp =: +/ . *, we can write Equations (1) as the matrix
equation

[

x′ y′
]

=
[

x y
]

mp

[

cos(θ) sin(θ)
−sin(θ) cos(θ)

]

(2)

We can define a J monad, rotate, which produces the rotation matrix. This monad is applied to an
angle, expressed in degrees. Positive angles are measured in a counter-clockwise direction by convention.

rotate =: monad def ’2 2 $ 1 1 _1 1 * 2 1 1 2 o. (o. y.) % 180’

rotate 90

0 1

_1 0

rotate 360

1 _2.44921e_16

2.44921e_16 1

We can rotate the square of Figure 1 by:

square mp rotate 90

0 0

0 10

_10 10

_10 0

0 0

producing the rectangle shown in Figure 4.

3 Scaling

Next we consider the problem of scaling (changing the size of) a 2D line drawing. Size changes are always
made from the origin of the coordinate system. The equations for changes in the x and y coordinates are:

3



3 SCALING

(−10,0)

(−10,10) (0,10)

(0,0)

Figure 4: The Square, Rotated 90 Degrees

x′ = x × Sx

y′ = y × Sy
(3)

As before, we consider the coordinates of the point (x, y) as a one row two column matrix
[

x y
]

and
the matrix

[

Sx 0
0 Sy

]

then, we can write Equations (3) as the matrix equation

[

x′ y′
]

=
[

x y
]

mp

[

Sx 0
0 Sy

]

(4)

We next define a J monad, scale, which produces the scale matrix. This monad is applied to a list of
two scale factors for x and y respectively.

scale =: monad def ’2 2 $ (0 { y.),0,0,(1 { y.)’

scale 2 3

2 0

0 3

We can now scale the square of Figure 1 by:

square mp scale 2 3

0 0

20 0

20 30

0 30

0 0

producing the square shown in Figure 5.

4



4 TRANSLATION

(20,0)

(20,30)(0,30)

(0,0)

Figure 5: Scaling a Square

4 Translation

The third 2D graphics transformation we consider is that of translating a 2D line drawing by an amount Tx

along the x axis and Ty along the y axis. The translation equations may be written as:

x′ = x + Tx

y′ = y + Ty
(5)

We wish to write the Equations 5 as a single matrix equation. This requires that we find a 2 by 2 matrix,

[

a b

c d

]

such that x×a+ y× c = x+Tx. From this it is clear that a = 1 and c = 0, but there is no way to obtain
the Tx term required in the first equation of Equations 5. Similarly we must have x × b + y × d = y + Ty.
Therefore, b = 0 and d = 1, and there is no way to obtain the Ty term required in the second equation of
Equations 5.

4.1 Homogenous Coordinates

From the above argument we now see the impossibility of representing a translation transformation as a
2 by 2 matrix. What is required at this point is to change the setting (2D coordinate space) in which we
phrased our original problem. In geometry, when one encounters difficulty when trying to solve a problem
in n space, it is customary to attempt to re-phrase and solve the problem in n + 1 space. In our case this
means that we should look at our 2D problem in 3 dimensional space. But how can we do this? Consider
that, given a point (x, y) in 2 space, we map that point to (x, y, 1). That is, we inject each point in the 2D
plane into the corresponding point in 3 space in the plane z = 1. If we are able to solve our problem in this
plane and find that the solution lies in the plane z = 1, then we may project this solution back to 2 space
by mapping each point (x, y, 1) to (x, y).

To summarize, we inject the 2D plane into 3 space by the mapping

(x, y) → (x, y, 1) (6)

5



4 TRANSLATION 4.1 Homogenous Coordinates

Then we solve our problem, ensuring that our solution lies in the plane z = 1. Our final answer is
obtained by the projection of the plane z = 1 on 2 space by the mapping

(x, y, 1) → (x, y) (7)

This process is referred to as using homogeneous coordinates. In the context of our problem (finding
matrix representations of rotation, scaling and translation transformations) we must inject our 2D line
drawings into the plane z = 1. In J we do this by using stitch, ,..

square ,. 1

0 0 1

10 0 1

10 10 1

0 10 1

0 0 1

We now must rewrite the Equations 5 as

x′ = x + Tx

y′ = y + Ty

z′ = z

(8)

Consider the 3 by 3 matrix





1 0 0
0 1 0
Tx Ty 1





We now see that the Equations 8 may be written as the matrix equation

[

x′ y′ 1
]

=
[

x y 1
]

mp





1 0 0
0 1 0
Tx Ty 1



 (9)

We define the J monad translate, which is applied to a list of two translate values Tx Ty .

translate =: monad def ’3 3 $ 1 0 0 0 1 0 , y. , 1’

translate 10 _10

1 0 0

0 1 0

10 _10 1

We translate the square of Figure 1 by

(square ,. 1) mp translate 10 _10

10 _10 1

20 _10 1

20 0 1

10 0 1

10 _10 1

6



5 SCALING AND ROTATION

USING HOMOGENEOUS COORDINATES 4.2 Efficiency of Transformations

4.2 Efficiency of Transformations

Notice that the translate matrix (having a last column 0 0 1) always produces a result which lies in the
plane z = 1. We can perform the translation operation and project the result back on the 2D plane (saving
computation time by not doing unnecessary multiplications and additions) by

(square ,. 1) mp 3 2 {. translate 10 _10

10 _10

20 _10

20 0

10 0

10 _10

producing the translated square shown in Figure 6

(10,−10) (20,−10)

(20,0)(10,0)

Figure 6: Translating a Square

5 Scaling and Rotation

Using Homogeneous Coordinates

We want to be able to combine sequences of rotations, scaling and translations together as a single 2D
graphics transformation. We accomplish this by simply multiplying the matrix representations of each
transformation using matrix multiplication. However, to do this, we must go back and rewrite the Equations
1 and 3 as the following:

x′ = x × cos(θ) − y × sin(θ)
y′ = x × sin(θ) + y × cos(θ)
z′ = z

(10)

x′ = x × Sx

y′ = y × Sy

z′ = z

(11)

Similarly we rewrite the matrix Equations 2 and 4 as:

[

x′ y′ 1
]

=
[

x y 1
]

mp





cos(θ) sin(θ) 0
−sin(θ) cos(θ) 0

0 0 1



 (12)

7



5 SCALING AND ROTATION

USING HOMOGENEOUS COORDINATES

[

x′ y′ 1
]

=
[

x y 1
]

mp





Sx 0 0
0 Sy 0
0 0 1



 (13)

We extend our earlier J definitions of rotate and scale to the homogenous coordinate system.

rotate =: monad def ’((2 2 $ 1 1 _1 1 * 2 1 1 2 o. (o. y.) % 180),.0),0 0 1’

rotate 180

_1 0 0

0 _1 0

0 0 1

(square ,. 1) mp 3 2 {. rotate 180

0 0

_10 0

_10 _10

0 _10

0 0

(0,0)(−10,0)

(−10,−10) (0,−10)

Figure 7: Rotating a Square 180 Degrees

scale =: monad def ’3 3 $ (0 { y.), 0 0 0 , (1 { y.), 0 0 0 1’

scale 2 3

2 0 0

0 3 0

0 0 1

(square ,. 1) mp 3 2 {. scale 2 3

0 0

20 0

20 30

0 30

0 0

Figure 5 shows the resulting scaled square.

8



6 COMBINING TRANSFORMATIONS

6 Combining Transformations

We can now combine together two transformations to form a single graphics operation. For example, suppose
we wish to first rotate an object 90 degrees and then scale the object by 2 along the x axis.

The rotation would be expressed as:

[r =: rotate 90

0 1 0

_1 0 0

0 0 1

Then the scaling operation would be expressed as:

[s =: scale 2 1

2 0 0

0 1 0

0 0 1

Applying these operations to the square, we have:

(((square ,. 1) mp 3 2 {. r) ,. 1) mp 3 2 {. s

0 0

0 10

_20 10

_20 0

0 0

6.1 Efficiency of Operations

However, notice that

(square ,. 1) mp 3 2 {. r mp s

0 0

0 10

_20 10

_20 0

0 0

produces the same result using far fewer multiplications and additions. Figure 8 shows the rotated and
scaled square.

We are allowed to perform the matrix multiplications of r and s before multiplying by square ,. 1

because matrix multiplication is associative.
Be careful! Matrix multiplication is not commumative.

r mp s

0 1 0

_2 0 0

0 0 1

s mp r

0 2 0

_1 0 0

0 0 1

9



7 ROTATING AN OBJECT ABOUT A POINT

(0,10)

(0,0)

(−20,10)

(−20,0)

Figure 8: Rotated and Scaled Square

This means we must be careful about the order of application of graphics transformations.
One might be concerned about whether or not multiplying rotation, scaling and/or translation matrices

produces a transformation which leaves our 2D lines in the plane z = 1. We can answer this question by
observing that each of these matrices has a last column of 0 0 1 . Hence, when multiplying any two of
these matrices, the product matrix has a last column of 0 0 1 .

7 Rotating an Object About a Point

As a final example, suppose we wish to rotate the square of Figure 1 90 degrees about its upper right corner.
We must first translate the point (10, 10) to the origin. This is the matrix

translate _10 _10

1 0 0

0 1 0

_10 _10 1

Then we must rotate 90 degrees

rotate 90

0 1 0

_1 0 0

0 0 1

Finally, we translate the square back with the matrix

translate 10 10

1 0 0

0 1 0

10 10 1

Putting this all together we have:

[xform =: (translate _10 _10) mp (rotate 90) mp translate 10 10

0 1 0

10



REFERENCES REFERENCES

_1 0 0

20 0 1

(square ,. 1) mp 3 2 {. xform

20 0

20 10

10 10

10 0

20 0

which is shown in Figure 9.

(20,0)

(20,10)(10,10)

(10,0)

Figure 9: Rotating a Square 90 Degrees About (10,10)

References

[Hui 2001] Hui, Roger K. W., Iverson, Kenneth E., J Dictionary, J Software, Toronto, Canada, May
2001.

11


