
Proceedings, 44th IEEE Southeastern Symposium on System Theory (SSST)
Jascksonville FL, USA May 11-13, 2012

Robot Operating Systems:
Bridging the Gap between Human and Robot

John Kerr, Kevin Nickels

Trinity University Engineering
jkerr@trinity.edu, kevin.nickels@trinity.edu

Abstract - A robot operating system (ROS) is a collection of
programs which allow a user to easily control the mobile
operations of a robot. This paper describes research conducted
on sixteen different ROSs to determine which one will most
accommodate future Trinity undergraduates for use in further
robotics research. The goal of this research is to reduce this list
of 16 ROSs to a single ROS that can be used by Trinity
undergraduates with limited programming experience to
perform simple robotic motion tasks. First, a detailed list of
criteria describing the ideal ROS was created. The list of ROSs
was narrowed down to a single ROS that best fit these criteria.
This ROS is called Player/Stage. Next, Player/Stage was tested to
ensure the validity of the research performed. In these tests, a
robot’s mobility and sensors were controlled by a user via
Player/Stage. This ROS excelled in both the mobility tests and
the sensor tests, and also proved simple to navigate and manage.

I. INTRODUCTION

In order to understand what a robot operating system is and
what function it serves, it is important to first understand the
function of an ordinary operating system on a personal
computer. An operating system is a collection of programs
which control the raw computing power of the hardware of
the computer. The operating system retains control of the
hardware by choosing when application programs will
receive computer resources, and when these programs will
not. Computer resources can be either hardware or software;
examples include the CPU, main memory, input-output
devices, communication devices, and data.

The operating system also provides a user-friendly
environment for the execution of the application programs,
with the ultimate goal of producing useful work. A user-
friendly environment is one in which the low-level details of
the bare hardware machine are separated and hidden so as to
provide the user with an interface that is clean, uncluttered,
and easy to navigate.

A robot operating system (ROS) is similar to that of an
operating system on a personal computer, in that it comprises
a collection of programs which offer control to a user. In the
case of an ROS however, these programs allow a user to
control the mobile operations of a robot rather than
applications on a computer. A good ROS will also make this
control user-friendly.

This research consisted of analyzing 16 ROSs in order to
determine which one would best serve Trinity engineering
undergraduate students in future research and in the
classroom. These students are assumed to have a basic
knowledge of a common programming language, such as C or

java, along with a limited knowledge of embedded systems,
as this is typical for the target audience.

II. GOALS AND PURPOSE

The goals of this research are all intended to benefit the
programs and classes at Trinity University in some way, and
the purpose is to set the foundation for these goals to be
implemented. There are three goals of this research, and each
of these goals will improve programs at Trinity. The first goal
of this research is to have a working robot operating system
to be used as a teaching tool in the Trinity classroom. This
will allow professors to use this technology at Trinity to help
reduce the barriers to entry in robotics. For example, some
students may be interested in getting a robot to move around
a room and avoid obstacles, but might find the smaller, lower
level tasks daunting; such as calculating the rotational
velocity of a wheel and the rotary time required to move a
robot 10 feet forward.

The second goal of this research is to help prevent
‘reinventing the wheel’. Often in the robotics field, the
microprocessor that controls a robot has very specific code
that is required to program it. This means that if a year or two
down the line, the microprocessor being used becomes
obsolete and must be replaced, all of the code that was written
thus far to control that robot is no longer compatible and will
not work. Robot operating systems allow for controlling code
to be written in a common, more abstract language, and thus
to be easily transferrable to a different controlling
microprocessor. Therefore, having a working robot operating
system for students to use will be beneficial to the
engineering program at Trinity because there will be less
wasted time due to incompatibility issues.

The third and final goal of this research is to allow a better,
more relevant engineering education to be provided to Trinity
engineering students. If an acceptable robot operating system
is found that can be used as a teaching tool by Trinity
engineering professors, Trinity students will be able to work
with tools that are pertinent to current engineering practices.

III. METHODOLOGY

To narrow down the list of ROSs, it was first considered
what was needed from an ideal ROS. Therefore, the first step
was to create a list of criteria which would designate
attributes required from the ROS. The ROS that most closely
fit these criteria would, in theory, best fulfill the research
goals.

Proceedings, 44th IEEE Southeastern Symposium on System Theory (SSST)
Jascksonville FL, USA May 11-13, 2012

After gaining a better grasp on what type of ROS was
required, the first pass at literary research began. Key points
of each of the 16 ROSs such as the developer of the ROS, the
date of the latest update released, the number and quality of
tutorials, etc., were noted and compared. From this
information, it was possible to eliminate six of the initial 16
ROSs.

Also, after looking at these ROSs closer and gaining more
knowledge of how an ideal ROS should function, it was then
possible to update the criteria by both adding criteria that
were not considered beforehand and detailing specifics of the
criteria already present. Taking this one step further, points
were assigned out of a total of 100 to each criterion according
to how important each one was.

With these new weighted criteria, the next step was to
perform a second research pass at the 10 remaining ROSs on
the list. With each ROS, each criterion was given a score out
of its total weighted score. In this way, once the ROS was
given a score in each of the criterion categories, the
summation of these scores would yield a final overall score
out of 100 for each ROS remaining on the list. These scores
allowed for seven more ROSs to be eliminated. However,
three ROSs each scored high enough on this absolute scale, as
well as close enough to each other that a final research pass
was required to narrow down the list to only one ROS.

In the final pass of research, it was considered how each
ROS was being used in current research, either in academia
or in industry. This research allowed the most relevant and
useful ROS out of the three remaining to be chosen.

Once this ROS was chosen, a copy of the software was
downloaded and tested on a Linux based workstation
controlling an iRobot Create mobile robot. Tests included
simple physical mobile and sensor operations, as well as
simulations of both.

IV. CRITERIA

The characteristics that affect the utility of an ROS, based
on the research goals, can be divided into five criteria; easy to
use, capable, adaptable, easy to install and maintain, and
developmental stage.

Easy to use encompasses not only a user-friendly interface
that provides basic functions which keep the low-level,
unnecessary details of the hardware separated and hidden, but
it also includes documentation provided for the ROS in
question. Documentation consists of tutorials, downloadable
code, and a dictionary of functions; all generally found on the
official website of the ROS in question. Tutorials, if
provided, must be well written and detailed, and also must be
simple enough to be understood by the target undergraduate
student who has a basic level of programming skill. Functions
are code which is used to command a robot. A dictionary of
these functions is useful because it provides a quick and easy
way to look up specific commands needed by the user.
Finally, downloadable code can be useful because other users
could have already written programs that perform the actions
the user needs, thus saving valuable time. The easy to use

criterion was assigned a weight of 23 which is the highest of
all the criteria.

The ROS also has to be capable. This criterion can be split
into the capability of the ROS simulator, and the capability of
the ROS to physically control the mobile operations and
sensors of the robot. The properties that make a simulator
useful are its power and simplicity. Power refers to the ability
of the simulator to provide useful data to the user. Simplicity,
not to be confused with a lack of power, refers to how easy
the simulator is to use. A simulator can be very powerful, but
if the target user cannot understand how to get useful data
from it, it will not be as helpful. The other aspect to the
criterion of capability is the ability of the ROS to control the
physical mobile operations as well as the sensors of a robot.
ROSs control these aspects of a robot by means of modules or
toolkits, which are parts of code which include functions that
tell the robot specifically what to do. The capable criterion
was given a weight of 22, which means that it is the second
most influential criterion on the overall score of an ROS.

Adaptability includes the supported operating systems that
can run the ROS, as well as the supported robot hardware that
the ROS can run. If the ROS can run on both the Windows
operating system as well as multiple Linux based operating
systems, then more choice is provided to the user, which can
be beneficial. More importantly however, the number of
supported robot hardware that the ROS can run affects the
number of robots that the ROS can control. The adaptability
criterion was given a weight of 20.

The ability of the ROS to be easily installed and
maintained is also important because this saves time, as well
as ensures that the ROS will not fall out of use. As far as
installation is concerned, typically, ROSs that run on Linux
based operating systems are much more difficult to install
that just double clicking a setup file on a Windows based
operating system. With respect to the maintenance of an
ROS, this can be measured by how much active development
and support is given to the ROS by its creator; more
specifically, how often it is updated or upgraded. The easy to
install and maintain criterion was given a weight of 20 as well
because it is of similar importance to adaptability.

 The final criterion that determines the overall score of an
ROS is its developmental stage. If the ROS has been around a
while, then it will be less likely to contain bugs or errors in
the code. This criterion was weighted 15 which is slightly
lower than the others only because an ROS that is new, but
still has all of the other qualities proposed by the criteria
should not be eliminated simply because it is newer.

V. SECOND RESEARCH PASS RESULTS

Table 1 shows the scored results from the second pass of
research of each of the 10 ROSs judged. The final ROS on
this list, Webots, was deemed too expensive during this
second pass of research and therefore did not receive any
scores. This is not an issue for any of the other nine ROSs
however because they are all free of charge.

Proceedings, 44th IEEE Southeastern Symposium on System Theory (SSST)
Jascksonville FL, USA May 11-13, 2012

Table 1: Robot Operating System Criteria Scores
ROS Ref Ease of Use Capable Adaptable Ease of Install/Maintain Development Total (of100)

CARMEN [4] 14 15 11 16 15 71
RDS [10] 20 19 18 18 15 92
MOOS [12] 7 5 8 5 10 35
Player/Stage [15] 18 20 18 17 15 90
ROS [20] 10 14 19 13 15 71
Orocos [14] 8 4 0 20 15 47
YARP [27] 12 0 5 19 15 51
MRPT [13] 15 7 15 18 14 69
Urbi [25] 12 16 20 14 15 77
Webots [26] - - - - - -

As seen in Table 1, Microsoft Robotics Developer Studio

(RDS) and Player/Stage scored high above all the others on
the list, but are very close to each other. RDS has a simple
and easy to understand interface. It includes extensive,
detailed tutorials that a novice programmer would easily be
able to grasp. It has eight supported robots, which is fewer
than some of the other ROSs that were looked at. However,
the robots supported are all at the complexity level and price
range of the type of robots that would be used in a Trinity
classroom. RDS is well developed and has extensive support
from Microsoft. It also comes equipped with a beautiful
three-dimensional simulator called Visual Simulation
Environment (VSE) that seems to provide useful data to the
user [10]. Figure 1 shows an example of a simulated robot in
a simulated environment using VSE.

Fig. 1. Simulated robot using VSE in Microsoft Robotics Developer Studio
[1].

Player/Stage does not have as simple an interface as RDS.

However, the documentation provided for it on the official
Player/Stage website is more extensive. It has slightly fewer
tutorials, but it makes up for it with its dictionary of functions
and commands. This dictionary provides a function for nearly
every possible command that a robot could perform.
Player/Stage also provides a clean and useful two-
dimensional simulator as well as another simulator (Gazebo)

that simulates robots and environments in three dimensions. It
supports 13 different robots and as with RDS, these robots are
all at the correct complexity level and price range required.
Player/Stage is a well rounded and well developed robot
operating system.

With such a close outcome, a different type of research was
required to decide between the two. Also, while researching
the robot operating system named ROS, it was found that it is
actually the most widely used robot operating system
available. Therefore, despite the low scores it received, this
robot operating system was included in the final research
process.

ROS contains relevant documentation and tutorials. It uses
the same two-dimensional simulator (stage) and three-
dimensional simulator (gazebo) as Player, contains
approximately 60 supported robots, and is well developed,
powerful, and complex. The issue with ROS is that it is more
complex than is needed to meet the research goals. It is
designed to be used by programmers with more experience
than the target audience; programmers who aim to produce
solutions to problems that are far more complex than simple
mobility or sensor operations. ROS would be far too difficult
for a student with limited programming experience to
manage.

VI. USE IN ROBOTICS RESEARCH

The final pass at research dealt with determining which
robot operating systems were used frequently in current
research, be it in academia or industry.

An example of how powerful and complex ROS can be is
demonstrated in an experiment at the Worcester Polytech.
Institution in Worcester, Massachusetts. A computational
model was developed that could recognize engagement such
as gestures or speech between a human and a humanoid robot
[23]. In order to test the model over a broad range of robot
architectures, the ROS framework was used [23].

RDS is not well known at all in the academic research area.
Little could be found of any experiments or scientific studies
which used RDS as a framework. Every source found that
utilized RDS seemed to portray it as a tool for robot hobbyists
rather than researchers. For instance, according to Max
Reichardt, Lisa Wilhelm, Martin Proetzsch, and Karsten

Proceedings, 44th IEEE Southeastern Symposium on System Theory (SSST)
Jascksonville FL, USA May 11-13, 2012

Berns, “Explicitly targeting non-programmers, … [the
language used by Microsoft Robotics Developer Studio] is
hardly used in professional robotic projects to our
knowledge” [9]. Another source that provides evidence that
RDS is not widely used as a full robot operating system in
research presents a research scenario in which the simulator
of RDS is used to acquire helpful data [24]. However, no
other aspects of the robot operating system are used.

Player/Stage however had plenty of appearances in
academic research endeavors. Sklar, Elizabeth, Simon
Parsons, and Susan Epstein describe a demonstration which
shows a framework developed for experimentation in human-
robot-team-based interaction and coordination [23]. The
experiment consists of sending out multiple robots in
different directions to scope out unknown areas. These areas
represent areas that could be harmful to human subjects, such
as war zones or structurally unsound buildings. The robots
communicate with each other with the goal of finding
different objects which represent wounded or stranded people
in these hazardous areas. Player/Stage is used as the robot
operating system which controls these robots.

VII. FINAL RESULTS, TESTING, AND VALIDATION

Due to its lack of presence in the academic and research
community, RDS was eliminated from the acceptable robot
operating system candidates. ROS was eliminated as well due
to its complex and confusing nature. With no restrictions on
the programming skill of the user, ROS could have been the
best choice for a robot operating system. However, since the
system chosen has to be worked by students with limited
programming experience, ROS was not the best candidate.
Therefore, Player/Stage was chosen as the best possible robot
operating system for the purpose of this research.

In order to verify the usefulness of Player/Stage, the system
was installed on a Linux based computer, and many aspects
of it were tested. At first, the tutorials [17] were difficult to
comprehend, but after a day or so of performing simple
functions using Player/Stage, it became simple for the first
author, an undergraduate in the target user group, to work
with.

The first aspect of Player/Stage that was tested was the
two-dimensional simulator called Stage. Figure 2 shows an
example image of a Stage simulation.

Fig. 2. Two-dimensional simulation using Stage [6].

This simulator provides useful data back to the user while

remaining simple to utilize. Examples of useful data include
robot sensor readings as well as the Cartesian coordinate
position of the robot in real time as the robot makes its way
around the environment. The robot sensor readings can be
seen in Fig. 2 as the light blue shaded region surrounding the
red dot in the middle. This red dot represents the robot, and
the shaded region represents what the robot can see at the
current position. As the robot makes its way around the
environment, this shaded region will change as different
objects obstruct the line-of-sight of the robot sensor.

Once the simulator was assessed, tests were conducted in
order to determine how Player/Stage fared when controlling a
physical robot. The robot used in this test was an iRobot
Create, which is very similar to the iRobot Roomba vacuum
cleaning robot, only without the vacuum cleaner attached to
the bottom of it. This robot contains an infrared sensor on the
front top of it as well as a bumper sensor which sends a signal
to the robot each time it runs into an obstacle. Figure 3 shows
the iRobot Create.

Proceedings, 44th IEEE Southeastern Symposium on System Theory (SSST)
Jascksonville FL, USA May 11-13, 2012

Fig. 3. iRobot Create [7].

Simple maneuverability tests were conducted, such as

commanding the robot to continuously travel in a square
pattern. Next, mobile operations and sensor commands were
combined in slightly more complex tests including
commanding the robot to turn clockwise slightly every time it
sensed the front bumper sensor being pressed. In this way, the
robot would make its way around the outer perimeter of an
environment. Figure 4 shows an example of an environment
traversed using this method.

---Figure 4---

Under control of Player/Stage, the robot was able to
successfully maneuver around the perimeter of this four-
walled structure. Each time the robot would come into contact
with the outside wall, it would correct its direction slightly
clockwise and then continue moving forward. In a few tests,
the robot would disconnect from the outer wall briefly
because it had rotated too far. This problem was easily solved
by reducing the allowed amount of time the wheels would
rotate and spin the robot after each bumper sensor reading.
With this implemented, the robot followed the perimeter
more closely.

Finally, mobile operations, the bumper sensor, as well as
the infrared sensor were all tested simultaneously. In this test,
the robot was commanded to move forward until it registered
either a contact from the bumper sensor or an infrared signal.
Once this signal was received, the robot would turn 180° and
then continue moving forward. A physical object was placed
at one end of the robot’s path and an infrared emitter was
placed at the other end. In this way, the robot would simply
move back and forth along this line from the object to the
infrared emitter and then back to the object, etc. Figure 5
shows this environment with the infrared emitter on the right
and the physical object on the left.

---Figure 5---

All three of these tests performed as expected, and with
satisfactory results.

VIII. CONCLUSIONS

This research endeavor spanned two and a half months. In
this time, a viable ROS was found, tested, and validated that
could be used by Trinity undergraduates with limited
programming experience. These tests were conducted by the
first author, an undergraduate in the target user group. With
no prior experience working with robot operating systems and
with a limited knowledge of programming, this student was
able to control a robot with multiple scenarios both in
simulation and also physically within a time period of about
25 hours. Due to the success of the tests performed,
Player/Stage has been chosen as the best ROS candidate. It is
easy to use, capable, adaptable, easy to install and maintain,
and well developed.

Obtaining this ideal robot operating system has not directly
fulfilled the goals set forth at the beginning of the research in
order to benefit the engineering programs at Trinity
University. However, this research has set the foundation for
these goals to eventually be implemented. In this way, this
research has helped to ensure a better engineering experience
for future Trinity engineering students.

REFERENCES
[1] "A Platform for Developing Robotic Applications." Microsoft Robotics

Developer Studio 4 Beta. Microsoft, Sept. 2011. [Online]. Available:
http://www.microsoft.com/robotics/Content.aspx?pg=Product
[Accessed: 18 Nov. 2011].

[2] "AnyKode Marilou - Modeling and Simulation Environment for
Robotics." ANYKODE, 2011. [Online]. Available:
http://www.anykode.com/index.php [Accessed: 18 Nov. 2011].

[3] Brooks, Alex, Tobias Kaupp, Alex Makarenko, and Michael Moser.
"Orca: Components for Robotics." Orca Robotics. [Online]. Available:
http://orca-robotics.sourceforge.net/ [Accessed: 18 Nov. 2011].

[4] CARMEN. CARMEN-Team. [Online]. Available:
http://carmen.sourceforge.net/home.html [Accessed: 18 Nov. 2011].

[5] "DROS." Dave's Robotic Operating System. [Online]. Available:
http://dros.org/ [Accessed: 18 Nov. 2011].

[6] "INSTALLING PLAYER-STAGE : WHAT WORKED FOR ME."
Mobotica. 29 Mar. 2010. [Online]. Available:
http://mobotica.blogspot.com/2010/03/installing-player-stage-what-
worked-for.html [Accessed: 18 Nov. 2011].

[7] Kirbis, David S. "Arduino Controlled IRobot Create Computer Vision
Cinema." Computer Vision Cinema. 14 June 2011. [Online]. Available:
http://cvcinema.blogs.upv.es/2011/06/14/arduino-controlled-irobot-
create [Accessed: 18 Nov. 2011].

[8] "MARIE: Mobile and Autonomous Robotics Integration." MARIE.
2009. [Online]. Available:
http://marie.sourceforge.net/wiki/index.php/Description [Accessed: 18
Nov. 2011].

[9] M. Reichardt, L. Wilhelm, M. Proetzsch, and K. Berns. “Applications
of Visualization Technology in Robotics Software Development,”
Germany, University of Kaiserslautern, Department of Computer
Sciences.

[10] "Microsoft Robotics Developer Studio." Microsoft, 2011. [Online].
Available: http://www.microsoft.com/robotics/ [Accessed: 18 Nov.
2011].

[11] Milenkovič, Milan. Operating Systems: Concepts and Design. New
York: McGraw-Hill, 1987.

Proceedings, 44th IEEE Southeastern Symposium on System Theory (SSST)
Jascksonville FL, USA May 11-13, 2012

[12] "MOOS: Cross Platform Software for Robotics Research." Robotics
Research Group Home Page. Oxford Mobile Robotics Group. [Online].
Available:
http://www.robots.ox.ac.uk/~mobile/MOOS/wiki/pmwiki.php
[Accessed: 18 Nov. 2011].

[13] "MRPT: Mobile Robot Programming Toolkit." The Mobile Robot
Programming Toolkit. 2011. [Online]. Available: http://www.mrpt.org/
[Accessed: 18 Nov. 2011].

[14] "Orocos." The Orocos Project | Smarter Control in Robotics &
Automation. [Online]. Available: http://www.orocos.org [Accessed: 18
Nov. 2011].

[15] "Player/Stage." The Player Project: Free Software Tools for Robot and
Sensor Applications. 2010. [Online]. Available:
http://playerstage.sourceforge.net/ [Accessed: 18 Nov. 2011].

[16] "Player/Stage." Tutorials. 2010. [Online]. Available:
http://playerstage.sourceforge.net/doc/Player-
3.0.2/player/group__tutorials.html [Accessed: 18 Nov. 2011].

[17] Rich, C., B. Ponsler, A. Holroyd, and C. L. Sidner. "Recognizing
Engagement in Human-robot Interaction." Human-Robot Interaction
(HRI), 5th ACM/IEEE International Conference (2010): 375-82. IEEE
Xplore.

[18] "RIK: Robot Intelligence Kernel." Idaho National Laboratory, 2011.
[Online]. Available:
https://inlportal.inl.gov/portal/server.pt/community/robot_intelligence_
kernel/457 [Accessed: 18 Nov. 2011].

[19] "Robotic Machine Vision Software." RoboRealm: Vision for Machines.
2005. [Online]. Available: http://www.roborealm.com/index.php
[Accessed: 18 Nov. 2011].

[20] "ROS: Robot Operating System." ROS.org. [Online]. Available:
http://www.ros.org/wiki/ [Accessed: 18 Nov. 2011].

[21] Silberschatz, Abraham, and Peter B. Galvin. Operating System
Concepts. Reading, MA: Addison Wesley Longman, 1998.

[22] Singhal, Mukesh, and Niranjan G. Shivaratri. Advanced Concepts in
Operating Systems: Distributed, Database, and Multiprocessor
Operating Systems. New York: McGraw-Hill, 1994.

[23] Sklar, Elizabeth, Simon Parsons, and Susan Epstein. "Developing a
Framework for Team-based Robotics Research." [Online]. Available:
www.cs.hunter.cuny.edu/~epstein/papers/sklar-parsons-et-al3.pdf
[Accessed: 18 Nov. 2011].

[24] S. Cook, T. Mansell, Q. Do, P. Campbell, P. Relf, and S. Shoval,
Stephen, “Infrastructure to Support Teaching and Research in the
Systems Engineering of Evolving Systems,” 7th Annual Conference on
Systems Engineering Research, 2009.

[25] "Urbi." UrbiForge Main/Home Page. UrbiForge, 2011. [Online].
Available: http://www.urbiforge.com/ [Accessed: 18 Nov. 2011].

[26] "Webots 6." Webots: Robot Simulator. Cyberbotics: Professional
Mobile Robot Simulation. [Online]. Available:
http://www.cyberbotics.com/ [Accessed: 18 Nov. 2011].

[27] "YARP: Yet Another Robot Platform." 2011. [Online]. Available:
http://eris.liralab.it/yarpdoc/index.html [Accessed: 18 Nov. 2011].

