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Abstract— This paper describes the design, validation, and

integration of a tool to locate a portion of the Instrument

Deployment Device (IDD) on the Mars Exploration Rover

(MER) vehicles on Mars in imagery from the front Hazard

avoidance cameras, and to track the differences between the

predicted and detected position of the manipulator over time.

The analysis of Kinematic-Vision Residuals, or the difference

between where a manipulator is expected to appear in on-

board imagery and where it actually appears in the imagery,

yields insight into several aspects of an operational robotic

system. The fidelity of the IDD and camera models is eval-

uated. Systematic changes in the performance over time can

give insight to rover degradation or other changes. Finally,

new models can be proposed and evaluated on the basis of

trended data over time.
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1. INTRODUCTION

The Mars Exploration Rover (MER) vehicles were designed

to deploy scientific instruments on Mars [1]. To support

this mission, several engineering cameras are located on the

rover, including the front hazard-avoidance cameras (fhaz-
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IEEEAC paper # 1049

cams). The fhazcams are utilized to avoid hazards while

driving autonomously, as well as to select science targets to

sample with one of the three in-situ instruments located on

five degree-of-freedom robot arm (known as the Instrument

Deployment Device, or IDD) that is used to place three in-

situ instruments: the Alpha Proton X-Ray Spectrometer, or

APXS, the Mössbauer spectrometer, and a microscopic im-

ager, or MI.[2].

Since science targets are selected in imagery from the fhaz-

cams, the difference between the 3D location of a target se-

lected in this imagery and the actual 3D location reached

by the IDD is a useful metric. This difference, termed the

Kinematic-Vision Residual, is formally defined to be, for a

given pose of the IDD, the root-sum-square (RSS) difference

between the 3D location of a point on the IDD predicted by

the IDD model and the 3D location of that same point as mea-

sured by the fhazcams and their associated models. Neither

part of this closed loop is perfect - there are inevitable er-

rors in both the IDD model and the camera models, and this

analysis does not subscribe errors to either the IDD or the

camera system but rather looks at the closed loop system per-

formance.

2. THE FIDUCIAL DETECTOR

The Mössbauer spectrometer has a contact plate (MBCP) that

is visible in some images, such as Figure 1, that are taken

when the rover is positioning and utilizing the MI. Although

not designed to be a fiducial, because the MBCP has inner and

outer rings with well known dimensions and tend to appear in

hazcam images with contrasting intensities, an algorithm to

detect the plate can be designed.

To achieve maximum robustness and accuracy, the approach

taken was to match a directed edge template of the fiducial by
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Figure 1. An example pose from the Spirit MER vehicle

with the MBCP indicated.

shifting a template of the MBCP with increasing step resolu-

tion in a local area and of the image. The template is created

by projecting the edges of the MBCP rigns to the images us-

ing the kinematic prediction of the 3D position of the MBCP

in space.

Although using a feature detector (a Harris corner detector [3]

for example) is fast and invariant to affine transformations, it

is prone to false positives, particularly with direct sunlight on

the specular metal end-effector. Some examples of images

that challenge fiducial detection are given in 2.

With a good prediction, a standard image-based template

correlation method (using normalized cross correlation, [4])

would be robust to false matches like spurious points or

edges, but is computationally expensive. A further motiva-

tion for using the model-based correlation approach is that,

while fiducials were not explicitly placed on the MER IDD,

portions of the instruments on the end-effector can serve the

purpose but are difficult to detect with a feature detector. The

contact ring of the Mössbauer Spectrometer appears as the

projection of two concentric circles and provides a unique tar-

get with respect to the environment and spacecraft visible by

the cameras. However, unlike a standard corner fiducial it has

the disadvantage of requiring foreshortening compensation to

accurately localize its center.

The algorithm implemented is a correlation-based approach,

but only matches step features (edges) to improve robustness

and speed. Using the camera, IDD, and fiducial models, a

template of sampled fiducial edges is created and then cor-

Figure 2. Some example poses illustrating the variability of

appearances of the MBCP. Note the specular reflections in

some images.

related across the image. Although of the same computa-

tion order as correlating an image-based template, correlating

sampled edge points produces a significantly lower multipier

constant.

For a given IDD pose, the fiducial template is created by sam-

pling the predicted position of the rings’ edges (circles of ra-

dius rinner and router, as angle θ ranges from 0 to 2π) and

projecting these positions to 2D image coordinates (ps) via

camera and IDD models (M camera
world and Tworld

fiducial). More in-

formation about the camera and IDD models can be found in

[5] and [6], respectively.

ps = M camera
world Tworld

fiducial





r cos θ
r sin θ

0





∀ θ ∈ [0, 2π], r ∈ {rinner, router} (1)
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The camera model accounts for all image parameters (includ-

ing distortion) and consequently works for very wide field of

view images without requiring the expense of image rectifica-

tion. While the parametric template implemented is specific

to the MER fiducial, any template with edges or step func-

tions could be used.

The correlation score is defined as the sum of directional

derivatives (tangent to the edge) at each of the image (I) co-

ordinates in the direction of the fiducial center (c).

c = M camera
world Tworld

fiducial





0
0
0



 (2)

To find the fiducial, the template is correlated across a lo-

cal area (of window size w) in the image with shifts of size

∆p. Initially, the template is correlated at only the pixel level

(∆p = 1). Once the maximum score has been found (at ∆p)

the template is correlated at sub-pixel steps in a sub-window

about this point to localize the template further.

∆p = max
∆p

∑

s+∆p

[

I(ps −
ps − c

‖ps − c‖
) − I(ps +

ps − c

‖ps − c‖
)

]

∀ ∆p ∈ [−⌈w/2⌉, ⌈w/2⌉] (3)

An example of the initial sub-sampled template points and the

locations that maximize the location are shown in Figure 3 b.

The correlation score using ∆p = 1 and ∆p = 0.1 are shown

in Figure 3 c and d. Note that the curvature of the peak of the

sub-pixel step size is an indication of the precision that can

be achieved.

Verification of Fiducial Detection Results

This fiducial detector, as designed, is quite reliable. It can

find the MBCP in a variety of situations, as illustrated in Fig-

ure 4. However, the false-positive rate of the fiducial detector

as initially implemented was too high for deployment as an

automatic tool in the downlink processing for the MER vehi-

cles.

To achieve even more reliable results, several metrics were

considered. These include the intersection of the normal of

the MBCP with the image plane, the contrast between the

inner and outer rings of the MBCP, the aspect ratio of the

MBCP in the images, and the ray gap (distance of closest in-

tersection of the projection rays from the left and right cam-

eras).

A random sampling of full-resolution fhazcam images was

used to train the fiducial detector. Several observers indepen-

dently rated the fiducial detector, recording both type I and

type II errors (false positives and false negatives), as shown

Figure 4. Some example poses illustrating the performance

of the fiducial detector.

in Table 1. A combination of the above metrics were used

to reduce the type I error rate to less than 5%, one of the the

acceptance criteria. The type II error rate was not considered

in the final testing, but every attempt was made to minimize

it without unduly compromising the type I rate. For each data

set, the first data column shows the number of poses in the

data set. The second and third data columns show the number

of poses where the fiducial detector correctly found the fidu-

cial, as indicated by automatic and manual measures. The

fourth through seventh columns indicate the number of true

positives (the automatic system and manual scores both indi-

cate that the fiducial detector succeeded in finding the fidu-

cial), true negatives (the automatic system and manual scores

both indicate that the fiducial detector did not succeeded in

finding the fiducial), false positives (the automatic system in-

dicated that the fiducial detector succeeded but the manual

scores indicated that it did not) and false negatives (the auto-

matic system indicated that the fiducial detector did not suc-

ceed but the manual scores indicated that it did). Finally, the

type I error rate is given for each data set. Note that the data

set includes all possible images where the MBCP is viewable

by the cameras, but does not account for images that are satu-

rated, contain specularities, or have extreme viewing angles.

This results in the low number of fiducials found as compared

to the total number of poses.

An independent random sample of images was used to test

the fiducial detector for acceptance. The type I errors were

manually scored as described above. The results, as shown in

Table 2, have type I error rates of under 5% for all data sets.

3. ARM & CAMERA MODELS

When projecting from joint angles to a 3D position in space,

a deflected-kinematic model [7] that accounts for gravity-

induced deflections as well as the calibrated forward kinemat-

ics of the IDD. When triangulating from the projection of the

MBCP in the left and right image to compute the workspace

location of the MBCP, a CAHVORE camera model [5] is
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(a) (b)

(c) (d)

Figure 3. Pixel (c) and sub-pixel (d) correlation scores for the predicted and detected sampled template (+’s in b) of image

(a). Red is a low correlation score (good match), and blue is a high correlation score (poor match).

Table 1. Training Data for Fiducial Detection

Rover DataSet Number Fiducial Fiducial True True False False Neg 1-FP Rate

Poses Found Found Positives Negatives Positives Negatives

(Automatic) (Manual)

mera alpha 20 11 11 10 8 1 1 95%

merb alpha 20 15 15 14 4 1 1 95%

mera beta 17 4 11 3 5 1 8 94%

merb beta 40 27 32 24 5 3 8 93%

mera gamma 34 26 33 26 1 0 7 100%

merb gamma 43 6 18 3 22 3 15 93%
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Table 2. Testing Data for Fiducial Detection. A sol is a Martian day.

Poses MBCP Found MBCP Found False False

(Auto) (Manual) Positives Positive Rate

mera sol 0-160 (512) - hips 88 29 27 2 2.3%

merb sol 0-160 (512) - hips 147 64 62 2 1.4%

mera sol 0-160 (512) - onboard 88 14 13 1 1.1%

merb sol 0-160 (512) - onboard 147 64 63 1 0.7%

mera sol 176 (training) - hips 20 7 7 0 0.0%

merb sol 155 (training) - hips 20 14 14 0 0.0%

mera sol 176 (training) - onboard 20 9 8 1 5.0%

merb sol 155 (training) - onboard 20 15 15 0 0.0%

mera all data - hips 215 109 108 1 0.5%

merb all data - hips 146 61 60 1 0.7%

mera all data - onboard 215 111 109 2 0.9%

merb all data - onboard 146 58 57 1 0.7%

used.

The fhazcams were also carefully calibrated before launch

[8]. These models are on-board the rovers, and are used for

hazard avoidance and autonomous driving. They were also

used for IDD planning and command generation at the be-

ginning of the mission. These models will be referred to as

the ATLO models, since the calibration was done in the As-

sembly, Test, and Launch Operations (ATLO) phase of the

project. These models are reported to have mean stereo rang-

ing performance of 3.9mm of a very limited data set during

ATLO [6].

Before launch, the IDD was also carefully calibrated, result-

ing in ATLO IDD models that tested to a mean positioning

accuracy of 2.081mm for Spirit and 1.331mm for Opportu-

nity, and a mean repeatability of 0.34mm for Spirit1[6].

Combining the open-loop2 positioning accuracy of the IDD

and the stereo ranging performance of the fhazcams, it is

expected that before launch the IDD could be positioned to

within 4.42 mm for Spirit and 4.12 mm for Opportunity [6],

[9].

In Summer 2004, after some time doing operations on the

surface, some degradation in the positioning accuracy of the

IDD was noticed. By capturing the 3D position of the MBCP

from the IDD model and manually capturing the 2D loca-

tions of the MBCP images from fhazcam imagery, new cam-

era models were created. This procedure is referred to as

the Hybrid Image-Plane/Stereo (HIPS) technique [10]. These

models have been in use for IDD planning and command gen-

eration since this time.

Once the KVRes tool was verified as described above, much

more 5D data (kinematic 3D position and image 2D location)

were available. The data from the beginning of the mission

1No repeatability tests were reported for Opportunities IDD.
2with respect to vision - there are closed-loop joint controllers on the IDD.

to sol 600 were used with the HIPS technique to generate a

new set of HIPS camera models, referred to henceforth as the

HIPS2 models.

One use of this analysis tool is to compare these three sets of

camera models. The tool can analyze the continuing utility of

the HIPS models and expected benefit of the use of the HIPS2

models.

4. RESULTS

As mentioned above, one use of the KVRes tool is to compare

the impact of different camera models for the front hazcams

on the Kinematic-Vision Residuals. In this section, we show

this comparison for the original ATLO models, for the HIPS

camera models, and for the proposed HIPS2 camera models.

In these plots, only points that were automatically accepted

by the fiducial detector are shown, resulting in different num-

ber of data points for the same time span. False positives have

been manually removed from these results.

“Early” Data

From egress to approximately sol 160, only low-resolution

fhazcam images of the MBCP are available. The three sets

of camera models were evaluated based on these images, to

investigate the possibility of a post-landing physical camera

shift.

Thus, the KVRes tool was used to analyze the Kinematic-

Vision Residuals for this time period, with each set of mod-

els. Summary plots for this time period are shown in Fig-

ures 5 and 6, for MERA (Spirit) and MERB (Opportunity),

respectively. The RSS (Root Sum of Squares) length of the

3D vector between the predicted location of the MBCP ac-

cording to the kinematic model and the detected location of

the MBCP as measured by vision is shown on the Y axis,

and the time is shown on the X axis. This vector is termed

the Kinematic-Visual Residual, or simply the Residual. The

10mm specification for positioning accuracy of the MBCP [1]

is shown as a horizontal red line.
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In Figures 5 and 6, the first row (a) shows the Residual length

when the ATLO camera models are used to triangulate the

detected position of the MBCP. The second row (b) shows

the same length, when the HIPS camera models, and the last

row (c) shows the results with the proposed HIPS2 camera

models.

For these data, the HIPS models performed the best, with the

HIPS2 models performing almost as well. The ATLO models

did not result in good agreement between the kinematic pre-

dictions of the position of the MBCP and the observed loca-

tion of the MBCP. However, the precision of these predictions

is not as high as the experiment below, as only low-resolution

fhazcam images of the MBCP were recorded.

HIPS Training Sol

As described in detail in [10], in Summer 2004 (sol 176 for

mera and sol 160 for merb) a set of fhazcam images were

taken and manually processed to create the HIPS camera

models. This set of images was processed with KVRes, with

summaries given in Figure 7 and 8. Some of the training data

were rejected by the false-positive rejection tools described

above. As before (a) shows the performance with ATLO

camera models, (b) with HIPS models, and (c) with HIPS2

models. The HIPS models perform the best on these data.

This is to be expected since these are the data with which

these models were trained. The HIPS2 models perform al-

most as well, and the ATLO models perform the least well.

Recent Data

As mentioned above, all but the most recent KVRes results

were used to create a new set of HIPS models (the HIPS2)

models. In this section, the most recent data (i.e. those not

used to create the models) are analyzed for KVRes using

each set of models, with summaries given in Figure 9 and

10. These results show that the increased performance of

the HIPS2 models in the region of the training data does gen-

eralize over the life of the mission, resulting in more accu-

rate predictions of where the MBCP will appear in fhazcam

images. More importantly, this characteristic implies better

positioning accuracy of the IDD on science targets.

Full Data Set

Finally, the KVRes tools is run on all available high-

resolution data, with summaries given in Figure 11 and 12.

Before approximately sol 160, only low-resolution data were

taken from the fhazcams. To avoid problems comparing the

low-resolution and high-resolution camera models, only the

latter are used.

These data illustrate the performance of the various camera

models over the complete data set. The mean residual is

reduced from 6.11mm and 3.82mm using HIPS to 3.13mm

and 2.77mm, for MERA (Spirit) and MERB (Opportunity)

respectively, using HIPS2. The median residual is reduced

from 6.28mm and 3.01mm to 2.83mm and 2.01mm. Finally,
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Figure 5. KVRes for all models, on early data (sol 0 to

160), for MERA (Spirit)
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Figure 6. KVRes for all models, on early data (sol 0 to

160), for MERB (Opportunity)
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Figure 7. KVRes for all models, on HIPS training data (sol

155), for MERA (Spirit). The x axis is time: all images are

from the same sol.
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Figure 8. KVRes for all models, on HIPS training data (sol

176), for MERB (Opportunity). The x axis is time: all

images are from the same sol.
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Figure 9. KVRes for all models, on recent data (since sol

600), for MERA (Spirit)
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Figure 10. KVRes for all models, on recent data (since sol

600), for MERB (Opportunity)
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Figure 11. KVRes for all models, on all high resolution

data (since sol 160), for MERA (Spirit)
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Figure 12. KVRes for all models, on all high resolution

data (since sol 160), for MERB (Opportunity)

the number of predictions above the 10mm threshold is re-

duced from 7% and 4% to 1% and 0%.

5. CONCLUSIONS

The KVRes tool was developed to track the length of the

residual between the kinematic prediction of the position of

the Mössbauer Contact Plate and the location as detected by

vision. This residual gives some indication of the health of the

complete Vision-IDD system, which impacts the positioning

accuracy of the IDD. The positioning accuracy of the IDD is

an important characteristic for the collection and analysis of

science data.

This analysis does not reveal the distribution of the errors be-

tween the vision and IDD systems, as it only compares the

two predictions for the Mössbauer Contact Plate position.

Some indications, such as continued nominal stow/unstow

characteristics of the IDD, point to the majority of this error

being camera-related, but this is an open discussion at press

time.

The pre-flight camera models, as well as two sets of camera

models developed since the vehicles have landed on Mars,

have been compared with the length of the KV Residual

used as a metric. This illustrates that the HIPS models that

have been in use since Summer 2004 yield significant im-

provements in prediction accuracy, and that a proposed set of

HIPS2 models would yield some additional accuracy in pre-

dictions.

6. FUTURE WORK

Some method for automatically flagging suspected false pos-

itives for manual review should be implemented. Even a sim-

ple measure such as enforcing the review of all KVRes mea-

surements above the 10mm design specification would reduce

the workload to a very manageable size. For example, 8 of

the 109 image pairs on MERA (Spirit) would need to be re-

viewed, and 2 of 57 on MERB (Opportunity).

The current models locate the position of a single point on the

IDD tool turret, and track this point. It would be desirable to

additionally detect and track the orientation of the IDD, and

compare this against the design specification of 5o in orienta-

tion accuracy for novel science targets.

Generating camera models based on different time periods

and comparing KV Residuals using these camera models may

reveal more information about if and how the closed-loop

Vision-IDD system is evolving over time.
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