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Abstract

This project involves the use of two physical sensors
and several modular algorithms to generate a single
spatial representation of obstacles and free-space sur-
rounding a mobile robot. This representation is used
to track obstacles over time.

We define a unified architecture that utilized a spa-
tial object representation as the default communica-
tion conduit between all modules. This representation
includes an occupancy grid of the area immediately
surrounding the robot, along with geometric scaling
and density information, and confidence estimates for
these data. The flexibility of this architecture has been
demonstrated by utilizing both live and recorded data
sets from different lidar sensors, cameras, and pro-
cessing modules, with minimal or no changes to the
processing code.

This system shows promise as a flexible sensor fu-
sion framework for mobile robotics. Advantages to
this system over existing systems include the ability
to encapsulate sensors, so that downstream algorithms
don’t need to know the details of the sensor suite on
the robot, and for the system to automatically adjust
for conditions where a single sensor fails or performs
poorly but other sensors are functioning properly, such
as in open fields where the range of lidar data is quite
limited or in grassy areas where stereo range has well-
known problems.

1 Introduction

It is often useful in mobile robotics to fuse data
from multiple, possibly heterogeneous, sensors. In this
work, we consider an architecture targeted at track-
ing traversibility and obstacle information for the pur-
poses of navigation. This architecture is intended to
be extensible and to simplify the change or addition of
physical sensors as well as additional processing mod-
ules. The framework utilizes data encapsulation/data
hiding from physical sensors, as described in Section
2, aiding prototyping and scenario playback. This also
aids the development of modules that process obstacle
information without needing information about the
genesis of that information.
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A fusion of sensor data can happen at the data,
the feature, or the decision level [4]. Data fusion oc-
curs when the raw data from various sensors are com-
bined without significant post-processing. Feature fu-
sion occurs when features are extracted from data at
the sensor level before combinination. Fusion at the
decision level requires that the fuser algorithm accu-
mulate data from all sensors before fusing. Our algo-
rithm fuses at the feature and data levels, depending
on the sophistication of each physical sensor module.

Existing algorithms used include JPL-Stereo, a
range-from-stereo package [1] and foliage-detector, a
foliage filter for lidar data [3], both developed by the
Machine Vision group at JPL, and several supporting
libraries. The system was developed with flexibility
and extensibility in mind, and this was demonstrated
by the addition and integration of the stereo sensor
suite to the lidar/foliage framework with an integra-
tion time of approximately two days.

A new algorithm, described in Section 2.4, was de-
veloped to intelligently fuse the range data from mul-
tiple modules: stereo range, lidar range, lidar range
filtered by foliage detection, an object tracking mod-
ule, and the previous fused summary map. An object
tracker was developed based on optimal estimation
theory and modern radar tracking systems [2] that
tracked obstacles over time in this summary map.

2 Sensor Abstraction

Each processing block in our algorithm is defined
to be a sensor. Sensors can be physical, as in the case
of a lidar range finder, or virtual, as in the case of a fo-
liage detector module or the traversibility estimation
mentioned above. Each sensor takes as input a map
or maps from another sensor and/or an input stream
from a physical sensor. Each sensor provides (upon
request) one or several maps as output. Each sensor
must provide a minimal set of methods, including:

e trigger() - process the next set of data

e get_capabilities() - return a string describing
the sensor

e get map(n) - return the n'® map



map (type T):

T data(*,x*); // sensor-defined
uchar conf (*,%*);// confidence
timeval ts; // data timestamp
int dx,dy; // cell size (mm)
int sizex,sizey; // mapsize (cells)

Figure 1: Definition of Map

Each sensor may provide additional methods as
deemed appropriate. Each sensor provides access to
one or several output maps. These maps may illus-
trate, for example, the type of vegetation found or
the reflectance returns from a lidar scan for each cell
in the grid. These additional data, encapsulated in a
map, may be utilized by this sensor or any other sen-
sor to generate additional maps as described below.

2.1 Maps as Data Fusion Elements

The vehicle proposed in this work for the fusion
of this disparate information is the sensor map, as de-
fined in Figure 1. This data structure is a spatial envi-
ronment model, with each data element representing
some area in the world, some data about that region
of the world, and a confidence measure of this clas-
sification. Each map has a minimum requirement to
estimate the (binary) occupancy status of a cell (this
map is commonly referred to as an occupancy grid
[7]), and a confidence of that status. Each sensor also
has the ability to define additional data on its sensor
map, different maps, or even additional non-map in-
formation (such as the vector of angle/range pairs, in
the lidar sensor). For example, traversibility might be
estimated for each region based on the local texture
found in a visual image of that region, as done in [1],
and the traversibility tag encoded as a map.

2.2 History Mechanism

Each sensor can request that any other sensor keep
track of old maps for the purposes of temporal filter-
ing. Each sensor keeps a matrix of history requests,
including its own history preferences (for example, the
foliage filtering scheme described in [3] utilizes the
past two scans as well as the current scan). This en-
ables the system to keep only as many past maps as
necessary by eliminating multiple copies of maps.

2.3 Foliage Detection Sensor

As an example of a virtual sensor, the definition
of the foliage_detection sensor is given in Figure
2. The non_foliage map contains filtered versions of
the lidar return data, where some heuristics have been
used to throw out lidar range returns that correspond
to grass. A detailed description of this algorithm is
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sensor foliage_detection:

inputs:
map raw_lidar (type boolean);
outputs:
boolean alarm;
map non_foliage (type boolean);
methods:
trigger();
data_ready();
get_capabilities();
get_map (n);
configuration:
set_distances(dmin,dmax) ;

Figure 2: Definition of Foliage Detection Sensor

given in [3], and an alternative statistical formulation
is given in [8].

2.4 Summarizer Sensor

There is a virtual sensor called the summarizer
that agglomerates the information from all of other
sensors (including the previous summary map) to cre-
ate a summary map. This summary map represents
the aggregate best information available from all the
sensors that are on-line and operating correctly. Each
physical sensor module is responsible for providing
safety checks so that if the hardware malfunctions or
is not operational, the confidence values associated
with its data are set appropriately. The summarizer
combines the information (and associated confidence
levels) from the sensors with the summary map from
the previous time step to obtain a system-level esti-
mate of the map occupancy.

The summarizer has a rule base from which to
determine the appropriate weighting of sensor data,
in addition to the self-expressed confidence of these
data. For example, if the foliage detection sen-
sor is on-line, the impact of the raw_lidar data is
considerably reduced. The weighting of the previous
summarizer data relative to the other sensors deter-
mines the amount of memory the system has. This can
be adjusted according to a-priori assumptions about
the environment of the robot, and the data frame rate
of the sensor suite. In this way reasonable summary
maps can be generated no matter what combination
of sensors is operational at a given point in time.

In particular, the summary map data for cell (i, )
is computed as:

i, 7) = Slm, x csfi, 1)) > S, x e..9)] (1)
C(ivj) = gcs(i7j)/§1 (2)

where 0 < mws < 1 indicates the map weight-



ing described above, d(i,j) is a binary-valued entity
(1=full,0=empty), cs(%, j) is the sensor-expressed data
self-confidence, and the summary indices are as fol-
lows:

e f: s 3 ds(i,7) =full (sensor set voting full)
e ¢ s 3dy(i,j) =empty (sensor set voting empty)

o w: s3d,(i,7) = d(i,) (sensor set agreeing with
winning vote.)

The index (7,j) is adjusted in the case that the dif-
ferent maps being summarized have differing extents
and/or densities. The summary map therefore is of
the maximal extent of any of the component sensors,
and of the maximal density.

This arrangement has several potential benefits
over an explicit and direct estimation of map occu-
pancy as done, e.g., in [5]. The summary map struc-
ture is robust to sensor dropout; to similar but non-
identical sensor replacement, such as the replacement
of a failed component in the field; to degraded perfor-
mance of a single sensor, for example due to occlusion;
and to changing sensor suites. The summarizer algo-
rithm makes use of whatever sensors are available and
operating, without requiring recoding.

2.5 Object Tracking

An object tracker has been developed that utilizes
the summary map for input. This tracker defines a
track scoring function of

TS(k) = TS(k — 1)

+ In(PaVe/ (Prav/1S]))

—In(2m) +d*/2 (3)
where d = y’Sy is the normalized distance between
the observation and the prediction, Py, Py, are the a-
priori probabilities of detection and false alarms, and
V. is the volume of the tracking space. This is a stan-
dard scoring function for an detection-only sensor [2].
Many standard definitions exist for this distance met-
ric. For point targets, euclidean or range-azimuth dis-
tance could be used. Blackman and Popoli discuss
several distance metrics and their implications in [2].
This function serves to decrease the score according
to the expected temporal degradation of the estimate
over a time step, and to increase it according to the
quality of the new measurements. In addition, we de-
fine a track confirmation threshold and a track dele-
tion function that are roughly equivalent to a M/N
rule of 4/5! and a T)p deletion threshold of 52. Again,

The M/N track confirmation/deletion rule states that a
track is confirmed after M successive observations in the last
N steps.

2The Tp deletion threshold states that a track is deleted
after Tp consecutive time steps without a paired observation.
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this is a standard formulation for modern radar track-
ing systems.

At each step, we generate a set of returns by thresh-
olding the confidences on the occupied cells of the
summary map. These returns are clustered accord-
ing to some spatial heuristics. The resulting obser-
vations are used to create an observation to track
(OTT) assignment matrix, as described in [2]. The
OTT is an Ny x Ny 4+ No matrix, where Np is the
number of existing tracks and Ngo is the number of
observations. The first Nt rows of the matrix asso-
ciate each observation with each track. If observation
O; satisfies an ellipsoidal data gate generated from
track T, OTT (4, j) is set to the margin by which the
gate was satisfied. Otherwise, OTT'(7, j) is set to —1.
The final Np rows of the OTT consider the creation
of new tracks for each observation. For these rows,
OTT (i, Np+i) is set to 0 and the remaining entries to
—1. Finally, each column of the OTT is considered to
determine the optimal track assignment for the corre-
sponding observation (i.e. the highest OTT entry in
that column — for an existing or new track). Any
track without an observation assigned gets a track
score reduction.

Finally, track maintenance is performed. New
tracks are added to the active track list. Tracks
which satisfy the track deletion function are re-
moved. Tracks with scores above the track confirma-
tion threshold are labeled as confirmed. All confirmed
tracks are mapped on the tracker output map, and
processing ceases until the next set of sensor observa-
tions.

The object tracker is not particularly sophisticated
at this time, the main purpose being to provide ro-
bustness to target dropout. The foliage filtering mech-
anism and range-from-stereo sensors are both fairly
conservative in their detection of obstacles. This leads
to target dropout, where a target will be missed on a
few frames between several strong returns. The object
tracker will presume persistence of the target at con-
stant velocity, while decreasing the track score with
each time step without a paired observation, until the
target reappears or the track deletion function takes
effect. The foliage detector in particular has a large
occurrence of false alarms (i.e. foliage returns that
are classified as non-foliage) in a given frame, but the
spatial and temporal distribution of these returns is
random. This leads to a large number of tracks that
are created but never confirmed. These tracks are
deleted after a small number of time steps.

The object tracker sensor is useful to track tem-
porally and spatially persistent objects in the sum-
mary map. This is true whether the summary map is
comprised of data from a single lidar sensor or from
the entire suite of sensors and signal processing al-
gorithms described above. Indeed, this is the intent



of the summary map and the framework surrounding
it: downstream processes need not concern themselves
with the origin of data.

3 Experimental Results

This project involves the use of two physical sen-
sors and several modular algorithms to generate a sin-
gle spatial representation of obstacles and free-space
surrounding a mobile robot. The two physical sensors
are a stereo pair of cameras and a single-axis laser
range finder. The particular hardware used in these
experiments were 2 SONY EVI-370 color CCD cam-
eras and a SICK LMS-200 lidar. The “robot” used
was JPL’s IPN-cart, a two-wheeled non-powered cart
with the cameras and lidar attached, and carrying on-
board power supplies and computing.

The remainder of this section presents a snapshot of
the system in action. Recall that each map contains
an occupancy grid and a confidence grid: both are
necessary to understand the interpretation of the map.
In the scene illustrated, the full complement of sensors
and signal processing modules is functional.

In this experiment, the robot is stationary in front
of a rock, while a person is moving in from the lower
right to the upper center of the map (directly in front
of the robot, just to the right of the rock). In the
time slice shown, the person is right of center near
the bottom of the half-plane shown?.

Figure 3 presents the raw lidar information while
Figure 4 shows the lidar returns that survive filter-
ing by the foliage detector. In this case, the foliage
screener works very well, and the only three point-
clusters that survive belong to the rock and the legs
of the person. Figure 5 shows the stereo-derived range
map, which shows the rock and some background fo-
liage or ground, but does not pick up the person (the
person is significantly away from the optical axis of
the camera pair, a well-known failure mode for stereo-
derived range [6]. Figures 6 and 7 show the summary
data and confidence maps, respectively.

There are several things worth noting about the
summary maps. These data illustrate the effect of fus-
ing the data from several sensors with different mea-
surement densities and extents. The confidence map
clearly shows that confidence in data become zero at
the limit of the sensor map from which these data
are derived. In this case, the the lidar, foliage, and
stereo sensors are all set to 10mm/cell resolution with
a 2 meter limit, but the tracking sensor is set to a
20mm/cell resolution with a 4 meter limit. Therefore,
the summary map has a greater extent than several
of the component maps. It is cropped here for display
purposes.

3The maps are actually symmetric about the robot, but as
the set of sensors described in this paper are all forward-looking,
only the front half-plane is displayed.
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Referring again to Figure 7, there are four distinct
confidence levels shown: (1) in several regions there
is very low confidence in the data. These regions
are typically regions behind obstacles, primarily lidar-
blocking foliage in this case or regions outside the
range of all of the sensors. (2) There are some data
for which there are low but nonzero confidence.
These data, the light grey regions located about 30-40
degrees from the horizontal, correspond to summary
data from the previous frame that have not been re-
inforced in the current data. (3) There are also data
that appear in multiple sensors, but with conflicting
results. These appear as darker grey in the figure.
Typically, these correspond to regions that the lidar
asserts as obstacles but the foliage detector screens
out (and therefore asserts as free space). These are
marked as free in the data map, but with some-
what lower confidence than the next category. (4)
The regions marked dark grey, a thin wedge at about
100 degrees and a larger wedge at 80-95 degrees, in-
dicate data reinforced by multiple sensors. That is,
several sensors agree on the occupancy status of the
cells. These data have high confidence. This il-
lustrates how the summarizer combines information
from various sensors (including its previous map), us-
ing the rule base to weight the information to arrive
at a reasonable composite that has better information
than any of the component sensors.

Figure 8 illustrates the state of the object tracker.
In this case, there are four point clusters that sur-
vive the thresholding. Two correspond to the rock
and the person’s legs as described above. The other
two correspond to foliage behind and to the left and
right of the rock, primarily introduced by the stereo
range sensors. The dotted boxes correspond to the
current observations (point clusters). The solid boxes
correspond to current tracks. The apparent size of the
vegetation behind and to the right of the rock leads
to two independent tracks being created for this ob-
ject, of different sizes. The observation for the person
will update this track upward (away from the robot),
and the rock track will remain stationary. All of this
tracking is done from the summary map.

4 Conclusions

We have presented the architecture and some ex-
ample results of a system that combines spatial occu-
pancy information and associated confidences into a
summary map. This makes it possible to design al-
gorithms that work from this summary map and are
relatively robust to sensor dropout and misbehavior,
and can combine the reliable information from mul-
tiple sensors without building these capabilities into
each and every module of the system.

Future improvements to this system might include
increasing the sophistication of the object tracking



Figure 3: Lidar Sensor Map

Figure 4: Non-Foliage Sensor Map

module to reduce the number of created but uncon-
firmed tracks. Also of interest would be better charac-
terizing the various sensors self-estimate of their data
reliability, and integrating this into a mobile robot
platform such as JPL’s URBIE urban mobile robot.

This system shows promise as a flexible sensor fu-
sion framework for mobile robotics. Advantages to
this system over existing systems include the ability
to encapsulate sensors, so that downstream algorithms
don’t need to know the details of the sensor suite on
the robot, and for the system to automatically ad-
just for conditions where a single sensor fails or per-
forms poorly but other sensors are functioning prop-
erly, such as in open fields where the range of lidar
data is quite limited or in grassy areas where stereo
range has well-known problems.
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Figure 5: Stereo-Derived Range Sensor Map

Figure 6: Summary Data
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