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Abstract

Manipulation systems for planetary exploration operate under severe restrictions.
They need to integrate vision and manipulation to achieve the reliability, safety, and
predictability required of expensive systems operating on remote planets. They also
must operate on very modest hardware that is shared with many other systems,
and must operate without human intervention.

Typically such systems employ calibrated stereo cameras and calibrated manipu-
lators to achieve precision of the order of one centimeter with respect to instrument
placement activities. This paper presents three complementary approaches to vision
guided manipulation designed to robustly achieve high precision in manipulation.
These approaches are described and compared, both in simulation and on hardware.

In-situ estimation and adaptation of the manipulator and/or camera models in
these methods account for changes in the system configuration, thus ensuring con-
sistent precision for the life of the mission. All three methods provide severalfold
increases in accuracy of manipulator positioning over the standard flight approach.
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1 Introduction

Vision guided manipulation (VGM) systems designed for planetary explo-
ration must address several concerns not necessarily shared by terrestrial sys-
tems. Some of these are concerned with the safety of the rover, leading to
requirements such as ground (Earth-based) analysis of imagery from Hazard
Avoidance Cameras (hazcams) before any manipulation [1]. Some concerns
are environmental: the Martian surface, for example, sees daily thermal cy-
cling from -100 to +50oC, with significant amounts of small fine-grained dust.
All components must be radiation-hardened, which severely restricts proces-
sor speed, memory capacity, and camera frame rate. Finally, any operational
VGM system must be able to perform in these conditions with limited user
interaction and without maintenance for the life of the mission. As such, the
reliable performance of complex, high precision manipulation operations re-
quires a hand-eye coordination strategy that accommodates these constraints.

This paper describes and compares three approaches to VGM that satisfy these
constraints. Supporting evidence for the efficacy of these systems includes
both simulation studies and implementation on a manipulator that has the
kinematic and visual structure of the Mars Exploration Rover (MER) vehicles.

1.1 History of Remote, Space-Based Manipulation Systems

Manipulation systems for planetary exploration have evolved over the past
30 years from the early use of a telescoping sampling device on the Viking
Landers in the 1970s to a single degree-of-freedom mechanism that was used
to deploy the Alpha Proton X-Ray Spectrometer (APXS) from the Sojourner
rover during the Mars Pathfinder mission in 1997. In an effort to increase
the dexterity and available work volume for the placement of multiple science
instruments, the Mars Polar Lander mission carried a four degree-of-freedom
robot arm to be used for soil trenching and digging as well as placement of
the Robotic Arm Camera (RAC) [2].

Currently, the Mars Exploration Rover (MER) vehicles carry a five degree-
of-freedom robot arm (known as the Instrument Deployment Device, or IDD)
that is used to place three in-situ instruments (the APXS, a Mössbauer spec-
trometer, and a microscopic imager) as well as place and hold a Rock Abrasion
Tool (RAT) in order to abrade the weathered surface of a rock [1].

Both the most recent lander, Phoenix (2007), and the upcoming Mars Sci-
ence Laboratory rover (MSL, launch in 2011) carry robot arms, and will
utilize them to do in-situ science of increasing complexity. Pheonix utilized
the robotic arm to scrape samples from the Martian surface and transport
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them to the on-board Thermal and Evolved Gas Analyzer system and to the
Microscopy, Electrochemistry and Conductivity Analyzer instruments for de-
tailed chemical and geological analysis [3]. MSL will study Martian soil and
rocks in unprecedented detail, utilizing the robot arm to carry samples from
the surface to on-board test chambers for chemical analysis [4].

With the increasing demand for a higher level of science return in future sur-
face missions, lander and rover-mounted robotic arms must exhibit a higher
level of performance over current capabilities. As the capabilities and dexterity
of each instrument deployment approach have evolved and improved over the
last 30 years, the requirements associated with instrument placement precision
have also increased. As a recent example, the MER mission IDD requirements
set includes a precision placement requirement of 1 cm in position and 10 de-
grees in orientation with respect to a science target when the IDD is deployed
from a stationary rover base [1].

1.2 Flight State-of-the-Art: Stereo Triangulation / Calibration

The current state-of-the-art in manipulation for planetary exploration relies
solely on the use of a well-calibrated system to achieve the required precision
with respect to instrument placement activities [1]. Typically the manipulation
process is separated into two independent steps: the determination of the
target range using a stereo camera pair and the subsequent control of the
manipulator to the measured 3D location. This process involves two separate
calibrations. The first calibration step determines the intrinsic and extrinsic
parameters of a camera model relating the mapping between the 2D image
plane of each of the stereo cameras and a physical 3D “world” coordinate
frame. The second step involves kinematic calibration that is concerned with
the determination of an accurate relationship between the manipulator joint
angles and the 3D location of points on the manipulator’s end-effector by way
of the manipulator kinematic model. This step is necessary due to differences
between the geometric model of the manipulator and the actual dimensions as
a result of manufacturing tolerances and deformations of various kinds such
as link flexure under load. Included in this step is the transformation from the
manipulator 3D base frame to the 3D “world” frame.

Briefly, the manipulation process works as follows [5]: Each camera model is
generated by identifying known 3D locations on a calibration fixture. Details
about the standard camera calibration process can be found in [6][7]. Using
these models, the 3D range to an identified target then can be determined via
stereo correlation and triangulation. From this 3D range information the joint
rotations that position the manipulator at the desired location in 3D space
are determined using the arm’s inverse kinematics. In this way the vision and

3



Fig. 1. The Field Integrated Design & Operations (FIDO) rover performs manipula-
tor operations during a field trial designed to closely emulate Mars mission operation
scenarios in Martian-like terrain.

manipulation steps are separated.

The difficulty associated with the standard approach is that sources of error
tend to accumulate, ultimately reducing positioning precision, due to separa-
tion of the stereo vision and manipulator location processes. Sources of error
in the manipulator location process include kinematic uncertainties in manip-
ulator link lengths and reference frame transformations, unmodeled flexure of
the manipulator links and base, and joint position uncertainties due to sensor
resolution and backlash in the drive train. Additional errors involve imprecise
stereo calibration and ranging accuracy. For example, with a baseline of 10 cm
and a nominal target range of one meter, error analysis predicts that range
accuracy errors alone can be as much as 6 mm [8].

Terrestrial operations such as the Field Integrated Design and Operations
(FIDO) rover field trials (field tests designed to closely simulate Mars mission
operation scenarios with a fully-instrumented rover in Martian-like terrain as
shown in Fig. 1) have demonstrated the ability of such techniques to yield
precision levels on the order of 1 cm [9]. However, on planetary missions,
degradations in positioning precision may result from a decline in calibration
fidelity due to changes in the system configuration as a result of environmental
factors such as vibration during launch and landing, extreme thermal cycling,
and inclement weather conditions. Indeed, Robinson et. al. [10] describe such
a case of system degradation in the Mars Exploration Rover vehicles.
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While the nominal level of precision is sufficient for current operations, future
mission directives call for tasks of significantly increased complexity requiring
millimeter level precision. In particular, the MSL Mars exploration mission
proposes [4] a long-term, long-range rover with soil/rock sampling and pre-
cision placement of samples into a contained science laboratory for in-situ
processing and analysis as a precursor to a planned Mars sample return.

1.3 Visual Servoing

In terrestrial robotics, the field of visual control of robot manipulators is domi-
nated by visual servoing. Generally speaking, visual servoing specifies a desired
configuration of the camera/manipulator system and places image measure-
ments in a control loop to iteratively drive the error between the specified and
measured configuration to zero over time.

A seminal review of Visual Servoing is given by Hashimoto [11], and a very
accessible tutorial is given by Hutchinson et. al. [12]. The recent Springer
Handbook of Robotics [13] includes a chapter describing the assumptions and
methods behind visual servoing.

While the camera is often placed at the end-effector of the robot (termed
the “eye-in-hand” configuration), fixed cameras are also used. The error term
can be specified in image coordinates or in Cartesian coordinates. Finally,
architectures exist for including the error term directly in the control loop,
and yielding low-level control to the joint controllers.

The primary difference between the algorithms described in this paper and the
various visual servoing architectures is the operational requirement that a hu-
man verify the proposed motions before the manipulator can be commanded.
This requirement is discussed more in Section 3.1, and infers an increased
emphasis on both precision in one control cycle and on fast convergence of
iterative algorithms. Due to the emphasis of the space program on safety and
verifiability, any algorithm that does not permit human verification of planned
movements is unlikely to be deployed.

Under this requirement, each iteration of the control loop consumes one sol
(planetary day) of rover time 1 , and any iterative solution to VGM must pro-
vide significant benefits in accuracy with a single manipulator command.

1 The delay is due to image downlink, science team review, and manipulation com-
mand uplink, not computation - none of the three algorithms described herein are
computationally intensive for the rover.
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2 Improved Vision Guided Manipulation

Each of the three VGM approaches described below attempts to model and
reduce differences between the position of a given point on the end-effector of
a manipulator as measured by the manipulator and its associated kinematic
model and the position of that same point as measured by a pair of stereo
cameras and their associated camera models.

They do this by modifying the nominal data flow in three different places.
Figure 2 shows a block diagram of vision guided manipulation, and serves as
a road map to how these algorithms modify the process.

A science target is selected manually (on Earth) by scientists, in a stereo range
map. The 3D location of the target Ptgt cannot be directly accessed. Instead,
the target is designated in the hazcam imagery as the two pixel positions
(u, v in the right and left image) to which the target projects. This vector 2 is
designated as uvdes.

These pixels are triangulated utilizing Tranform T1 into the Camera Coor-
dinate System (Camera CS) as Pdes. Each of these techniques has been im-
plemented utilizing both the eighteen-parameter CAHVOR model, a pin-hole
camera model with radial distortion [6], and the twenty-one parameter re-
finement called CAHVORE, which adds a moving entrance pupil [7]. While a
detailed explanation of this camera model is outside the scope of this paper,
a quick summary of the parameters follows: C is the 3-D position of the focal
center of the camera, A is the camera pointing vector, and H is the vector
sum of H, the sensor-plane horizontal vector, and the scalar multiplication of
the image-coordinate u with the camera pointing vector, A. Similarly, V is the
vector sum of V, the sensor-plane vertical vector and the scalar multiplication
of the image-coordinate v with the camera pointing vector, A, O is the optical
axis, R is a 3-D vector representing the radial distortion, and E consists of
polynomial coefficients that model the movement of the entrance pupil. The
particular camera model used is not crucial to the techniques, but these have
a long history of use at the Jet Propulsion Laboratory (JPL) and have well-
understood performance characteristics and calibration and modeling tools
associated with them. Without loss of generality, this paper exclusively refers
to CAHVORE models below.

Transformation T2 is used to map this point to the Arm Coordinate System
(Arm CS). This is a workspace transformation: normally a simple translation

2 In some cases, the fiducial is spatially separate from the science target (i.e. 10cm
normal to the rock at this location). The impact of this separation is not studied
in this work. So here an ideal manipulation would have the fiducial located exactly
where the science target is designated.
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Fig. 2. Block Diagram of Vision Guided Manipulation.

modeling the mounting points of the camera and arm on the rover.

Inverse kinematics (Transformation T3) yield a desired joint configuration
qdes. The Arm Control System then drives the arm to a new configuration
qact, which places the fiducial at a new place in the workspace Pact.

If all models were perfect, Pact would be identical to Ptgt. This new fiducial
location can be observed in hazcam imagery at uvobs, ideally identical to uvdes.

The image data are processed to extract the location of some reliable point
on the manipulator that is referred to as a fiducial. While in the laboratory a
simple fiducial such as shown in Figure 3 is used, any portion of the manipu-
lator that can be reliably extracted from image data in uncontrolled lighting,
such as the Mössbauer Contact Plate used in [14], can be used. Robustness to
errors in feature localization were not studied in this work.
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Fig. 3. Fiducial Marker Mounted on Manipulator. A fiducial marker mounted on
the end-effector of the manipulator facilitates fast and reliable image processing.

2.1 HIPS

The Hybrid Image-Plane/Stereo Manipulation (HIPS) technique, proposed by
Baumgartner et el. [15] and refined by Robinson et el. [10], generates camera
models based on visual sensing of fiducial marker(s) on the manipulator’s end-
effector and the subsequent use of these models to position the manipulator
at a target location specified in the image-plane of each camera of the stereo
pair.

HIPS is most similar to an alternative technique for hand-eye coordination
known as Camera-Space Manipulation (CSM) [16]. Both HIPS and CSM move
the manipulator through a set of predetermined joint configurations and ob-
serve the image-plane locations of a distal fiducial. However, in the CSM
approach the inverse problem is solved directly using a least-squares mini-
mization to determine the joint rotations that will locate the end-effector at
the desired pose in the image-plane of each participant camera. Ravela et. al.
[17] similarly estimate a weak perspective affine transform between an object
model and the observed object as the object is moved.
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2.1.1 Static HIPS

For each camera the CAHVORE parameters are initially estimated using a
predetermined set of typically twenty to fifty manipulator poses. This “pre-
planned trajectory” constitutes a broad sample of both the image-space of
the vision sensor and the joint-space of the manipulator. At each pose a set of
images from the camera pair and the manipulator joint angles are recorded.

The 2D image space location of the fiducial in each image is extracted through
image processing. The 3D work space location of the fiducial is computed
using the nominal forward kinematics of the robot. This set of 5D vectors
(3D position and 2D image plane location) are used to compute a new set of
CAHVORE parameters.

These camera models are referred to as “Static HIPS Models.” They are used
in place of the nominal camera models in Transformation T1 in Figure 2 when
triangulating the designated target position in imagery (uvdes) to arrive at a
camera-space position for the target (Pdes). The remainder of the data flow
remains the same.

2.1.2 On-Line HIPS

The aforementioned approach to manipulator control addresses the systematic
errors that are present in the standard flight approach. These include separate
camera calibrations, transformations between various frames, and manipulator
kinematic errors such as link lengths and joint offsets.

However, stochastic errors that occur due to finite image-plane cue detection,
camera modeling errors, and inaccurate knowledge of joint angles arising from
sensor resolution, orientation-dependent droop, joint backlash, etc., are not
necessarily accounted for in this approach.

One solution to this problem, proposed by Robinson [10] et. al., is to divide the
trajectory to the target, or “transition” trajectory, into a series of intermediate
steps. At each intermediate goal the camera models are updated by use of data
from newly acquired images of the end-effector. This generates new HIPS
camera models that are locally more precise than the “Static HIPS Models.”

By use of the updated camera models, the target range is recomputed as be-
fore and then used to refine the necessary manipulator joint angles to position
the end-effector at the target. As distance between the end-effector and the
target decreases, the computed coordinates of the end-effector and target be-
come affected by increasingly similar errors, so that the difference between
their coordinates become increasingly small. Therefore precise placement of
the manipulator’s end-effector is achieved.
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2.2 EPEC

End-Effector Position Error Correction (EPEC) is a simple and a computa-
tionally efficient algorithm that has been developed and implemented for VGM
by Bajraachayra et. al. [14]. The EPEC algorithm locates and triangulates the
position of a single fiducial on the end-effector and servos the end-effector to
a position designated in a stereo image pair. In doing so, the EPEC algo-
rithm maintains an error correction vector between the fiducial’s position as
predicted by the forward kinematics of the arm and as found by the stereo
camera pair. It then uses this error vector to compensate for kinematic position
inaccuracy.

If the fiducial is occluded or imaging is no longer available, a previously calcu-
lated error vector can be used locally to reduce positioning error in the final
placement. The algorithm requires that the stereo cameras be calibrated well
enough to triangulate the position of a point found in the two cameras and
that the arm be calibrated well enough to do roughly accurate small Carte-
sian motions. Weakly calibrated cameras would be sufficient since metric re-
construction is not necessary, however convergence will be significantly faster
with more information. The transformation between the stereo camera frame
and the arm base frame must be approximately known in order to facilitate
predicting the fiducial position.

2.2.1 Static EPEC

Static EPEC analyzes all available end-effector locations to generate a table
of correction vectors. These correction vectors, CV , are simply the difference
between the kinematic prediction of the end-effector, Pkin, and the visually
detected position of the end-effector, Pvis, and are indexed by the visually
detected fiducial location. Thus, for a target visually designated in the camera
images Pvis tgt, the command sent to the manipulator Pkin tgt, is:

CV (Pvis) = Pkin − Pvis, ∀(kin, vis) ∈ training set

Pkin tgt = Pvis tgt + CV (Pvis tgt)

The EPEC correction is used in Transformation T2 in Figure 2, to transform a
desired target location from the camera coordinate system to the manipulator
coordinate system.

The EPEC table is the aggregation of the EPEC correction vectors. To use
the EPEC table for VGM, a novel target is selected in the image planes, and
nominal camera models are used to triangulate this target to a 3D location.
The correction vector closest to the detected target location is located and
added to the command vector before it is passed to inverse kinematics and
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finally to the manipulator.

DiCicco et. al. have shown [18] that the ability of EPEC to correct for visual-
kinematic mismatches is directly proportional to the workspace distance from
the nearest correction vector. In addition to the use of the Correction Vectors
for positioning, they also offer a valuable insight to the overall health of the
rover’s vision-manipulation system. Nickels et. el [19] describe their use in this
light.

2.2.2 On-Line EPEC

Due to the direct correlation of EPECs precision and the distance to the
nearest correction vector location, it is best to acquire samples as close in
space to the desired target location. If the fiducial is visible near the target
location, the most recent correction vector is taken instead of performing a
table lookup as above. The original formulation of EPEC [20] exclusively uses
the most recent correction factor, with no additional memory in the form of
a lookup table.

If this process is repeated until convergence is achieved, the result would
be termed a “position-based visual servo control” (PBVS) structure [12][13].
However, it is important to note that EPEC has been developed with the
constraints of planetary robotics in mind, which leads to an emphasis on the
amount of correction in the first iteration of the PBVS loop.

2.3 DHTune

DHTune is an algorithm originally developed at Johnson Space Center [21]
to aid in calibrating Robonaut’s seven degree-of-freedom arm to assist with
autonomous tasks requiring improved hand-eye coordination.

DHTune operates in a manner similar to HIPS, in that the manipulator is
driven through a set of predefined joint angles and a fiducial is observed at
each pose and the realized joint angles are recorded. The fiducial locations as
computed by the kinematics and as computed by the camera system differ by
some amount.

Where the algorithms differ is that while HIPS computes new camera mod-
els (Transformation T1 in Figure 2) that minimize this difference, DHTune
modifies the nominal kinematic parameters (Transformation T3 in Figure 2)
to minimize this difference. If the joint angle offsets are the only parameters
included in the optimization, DHTune is similar to Skarr’s CSM method [16].
However, typically the twist and offset of some of the links are also included
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in the optimization.

The use of the DHTuned kinematics mirrors that of HIPS closely. A target
is designated in the image planes and nominal camera models are used to
triangulate the 2D points to a 3D location. The modified kinematics are used
to compute the inverse kinematics to move from this 3D location to a joint
vector that is used to command the robot. This usage would, in the taxonomy
utilized in this paper, be referred to as static DHTune.

A re-weighting scheme such as online HIPS (described in Section 2.1.2) would
be expected to yield similar results, but this extension has not been performed
or evaluated. Thus, online DHTune is not compared with the other algorithms
below.

2.4 A Common Framework for the Approaches

When considering the data flow shown in Figure 2, the differences between
the VGM algorithms can be summarized as follows. The baseline algorithm
uses nominal camera and arm models, each optimally calibrated within their
own systems. The system-level accuracy of the manipulator/camera system is
characterized by the workspace residual ||Ptgt − Pact||.

The HIPS manipulation technique generates new camera models to be used
in place of the nominal camera models in the uvdes → Pdes transformation
(T1) to minimize this residual. Nominal arm models are used. The EPEC
technique adds a workspace offset to Pdesc to get Pdesm (T2) before the in-
verse kinematics to minimize this residual. Nominal camera and arm models
are used. Finally, the DHTune technique replaces the nominal arm model in
the Pdesm → qdes transformation (T3) with an new arm model computed to
minimize the residual, while retaining the nominal camera models.

3 Experimental Comparisons

One objective of this study was to consider, on as even a basis as possible, the
relative strengths and costs of the various methods for VGM. The amount of
training data needed and the efficacy of both static and online versions are
considered.

While quantitative comparisons of the computational complexity of each algo-
rithm were not performed, they are all fast-converging or off-board computa-
tions that are well within operational requirements for space-relevant hardware
[10] [14] [21].
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Fig. 4. The Five Degree of Freedom Modular manipulator

To this end, HIPS, EPEC, and DHTune were implemented and tested on
a planetary manipulator mock-up at JPL. This five degree of freedom arm,
shown in Figure 4, is one of the manipulators in JPLs Modular Robotic Test-
bed, where robotic arms of various kinematic configurations can be quickly and
easily constructed from AMTEC PowerCubes and steel piping. This system
has the approximate kinematic structure and camera locations of the Mars
Exploration Rover (MER) vehicle [5],[8]. The camera configuration has two
cameras with an 10 cm baseline pointing 30 degrees down. They have 2.8 mm
lenses and a 640x480 CCD with 4.65µm pixel size. At a target range of one
meter, with careful calibration this configuration corresponds to 1 pixel being
approximately 1 mm in lateral error and a 0.3 pixel error in stereo disparity
matching error being 10 mm in range error.

3.1 Experimental Comparison of Static Algorithms

There are many reasons why the static type of VGM algorithm is useful for
planetary robotics. First and foremost, the use of the low-level joint controllers
and flight software to move the arm ensures that standard fault protection
checks, such as collision with the rover, joint limits, etc., are performed before
the motion is carried out. For example, Baumgartner et. al. [5] describe the
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flight software for the Instrument Deployment Device (IDD), including fault
protection checks, for the MER vehicles. The offboard nature of the corrections
allows the current science target flow to be maintained, as described in [1]:

When not in use during surface operations, the IDD is stowed in a posi-
tion similar to the launch position. Stereo images obtained using the front
hazcams show the IDD work volume and any science targets that may be
present in it. Hazcam images are used on the ground to identify target
surfaces within the work volume, and to determine their position and ori-
entation relative to the rover. This position and orientation information is
then used to generate command sequences that direct the IDD to position
payload elements against target surfaces.

In addition, there is no potential for erroneous fiducial detection results or
other dynamic phenomena to cause unexpected motions of the IDD. Given
the harsh and uncontrolled lighting conditions, such as those shown in Figure
5, developing feature extraction algorithms that are robust is a challenge. With
static VGM, rover planners can evaluate each potential move for safety and
efficacy before uplinking the commands.

However, this type of control has some clear drawbacks, also described in [1]:

This commanding approach is simple and robust, but it imposes impor-
tant restrictions. No closed-loop positioning using Hazcam images onboard
is performed, and no deployment of the IDD without analysis of Hazcam
images on the ground is permitted.

This implies that the “one-step correction” methods such as the three consid-
ered below may be the best that can be reliably achieved within reasonable
constraints on rover safety.

3.1.1 Data Collection

A set of 100 target points, arranged in a 3D grid in the overlapping portions
of the stereo image space and the arm workspace, was chosen. The arm was
commanded to these targets, and for each target, five joint angles qact and two
2D image plane locations of the detected fiducial (four locations) uvact were
recorded. The nominal kinematic model and nominal camera models were also
recorded.

These 100 data points are randomly split into two sets: 49 points for testing,
and 50 points for training. One point was at an extremum of the workspace and
was excluded. The 50 training points are randomly sub-sampled into additional
training sets of 25, 10, 5, and 1 data points.
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(a) Hazcam Images (b) Zoomed-In on “Fiducial”

Fig. 5. Automatic feature extraction is a challenge for Planetary Robotics. This
figure shows Two Sets of Images from the Spirit Mars Exploration Rover. In (a),
the left Hazard Avoidance Camera Image is shown, and in (b), the area around
the Mössbauer Contact Plate is shown. The blue crosses (in the web version of this
article) represent the kinematic prediction of the Contact Plate, and the black or
white crosses represent the output of a fiducial detector.

3.1.2 Evaluation of Algorithms

In this study, each algorithm was given the training data (1, 5, 10, 25, or 50
points) and the nominal models as described in Section 3.1.1. This enabled
each algorithm to create an appropriate model of the arm/camera system to be
used in the right side of Figure 2. For HIPS, this is a new set of camera models
to be used in the uvdes → Pdesc transformation (T1). For EPEC, this is a table
of workspace correction vectors, to modify the Camera to Arm Transform
(T2). For DHTune, this is a new arm model to be used in the Pdesm → qdes

transform (T3).
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The VGM algorithms are then given the 49 recorded uvact from the test data
as described in Section 3.1.1 as targets, and used the new models to generate
a new joint command, qvgm. The recorded arm commands, qact, known to have
produced exactly the given target locations, were not available to the VGM
algorithms.

Since it is difficult to compare two joint configurations directly, the nominal
forward kinematics are used to project the two configurations into the manip-
ulator coordinate system, where the workspace residual ||FwdKins(qvgm) −
FwdKins(qact)|| is used to evaluate how well the VGM mapping generalizes to
new configurations. This residual is referred to as the Workspace Residual be-
low. The average absolute distance between the projections of FwdKins(qvgm)
and FwdKins(qact) on the image planes is called the Camera Residual.

3.1.3 Results - Static Algorithms

All three VGM models yielded several-fold improvement over the flight-standard
approach. As mentioned above, the VGM algorithms were given recorded tar-
get locations and the resulting joint vectors were compared to the recorded
ones. All data are summarized in Figure 6, and results for the best case of 50
training points are given in Table 1.

The fiducial detector used in these experiments, described in [14], returns the
location of the fiducial to the nearest tenth of a pixel. As mentioned above, 1
pixel at a range of 1m in these cameras yields around 1.3 mm of error.

3.2 On-Line

While the static algorithms test how precise a single joint command can be
made, the online versions look at utilizing dynamic feedback from the cameras
for improvement. Online versions of HIPS and EPEC have been developed,
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Table 1
Results for 50 training points - Static

Approach Residual Residual

Mean (mm) Std Dev (mm)

Flight Standard 15.26 2.55

HIPS 0.41 0.31

EPEC 2.27 1.11

DHTune 3.39 3.20

and are tested below. Because DHTune and HIPS operate similarly, and there
are well-established and highly optimized methods for computing CAHVORE
camera models, an online version of DHTune has not been pursued.

3.2.1 Mean Residual after Convergence

To test the online versions of the HIPS and EPEC algorithms, four represen-
tative targets are chosen from the 50 test points above. According to existent
“best practices,” the two approaches utilize slightly different methods of ac-
quiring new samples to refine the arm/camera mapping.

For the HIPS approach, the workspace between a home “standoff” position
and the target is segmented to provide additional visual/kinematic samples to
the algorithm, and new camera models are generated as described above. As
explained in Section 2.1.2, the computed 3D coordinates of the end-effector
and target become more nearly affected by the same errors, so the differences
between their coordinates become smaller. Therefore, the residual tracked is
the root sum of squares distance between the predicted fiducial location and
the detected fiducial location.

For the EPEC approach, the nearest correction vector to the specified target
is utilized, and the arm commanded to move to this location. A new correction
vector is generated at this location, and a (hopefully smaller) corrective move
is issued. The residuals between the goal position and the detected position
are recorded.

The online versions of both algorithms improve upon the static versions by
another order of magnitude. As shown in Figure 7, the EPEC workspace resid-
ual improves from a mean for the four targets of 4.59 mm to a mean of 0.23
mm. For HIPS, the final workspace residual improves from a mean of 0.77
mm to a mean of 0.06 mm. Step 1 illustrates the starting point for the on-line
versions, the input from the “static” approach described above, Step 2 is the
first on-line corrected position of the manipulator.
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Fig. 7. Residuals vs Iteration for Online VGM for four representative targets. The
50 point training set was used for these runs.

It should be noted that the trajectory generator for this arm has occasional
errors of up to 0.3 degrees, leading to workspace control errors of up to 1.7 mm,
depending on the configuration. This can be clearly seen, for example, in the
increased residuals in step 4 of one run in the EPEC data of Figure 7. This
particularly affects small workspace moves, possibly limiting the workspace
convergence of the EPEC algorithm. However, the mean level of convergence
is at the limit of the fiducial detection so this effect cannot be evaluated.

Since the original targets for this data set were specified in the workspace,
the residuals used for the EPEC algorithm are limited in convergence by the
fidelity of the nominal camera models, which are used to project these targets
to the image plane. In particular, unmodeled misalignments of the optical
axes could never be corrected, and the computed image-plane targets could
never be achieved. This is a modeling error, not an error in control, but it
does reflect in the residuals above. Therefore, only convergence toward the
target locations in the horizontal directions, which can always be achieved, is
reflected in the residuals shown in Figures 7 and 8.
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Fig. 8. Residuals vs Iteration for Online VGM for various training sets. The number
in the legend indicates the size of the training set used to initialize the online
algorithm.

3.2.2 Impact of Static Training Set Size

To investigate the impact of the size of the static training set on convergence
of the algorithms, the test described in Section 3.2.1 was repeated for each
training set. Figure 8 illustrates the results from a representative run. If mul-
tiple online samples are available, both EPEC and HIPS converge to their
final residual, down to the limit of the fiducial detection, with little variation
due to initial training set size. Only the starting residual is affected.

4 Conclusions

This paper described several approaches to the control of manipulators using
estimation, stereo correlation and triangulation for space exploration applica-
tions. HIPS generates new camera models to minimize the 3D residual between
the arm and camera systems, while DHTune generates a new arm model to
do the same job. In contrast, EPEC adds a workspace correction vector to the
visual results to arrive at a new arm command.
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The three algorithms all have very low online cost since they simply modify
existing model parameters (HIPS/DHTune) or add a offset (EPEC), and are
applicable to any situation where a rover’s computational constraints are high
and positional improvement in one itration is an important metric.

The results of comparison of the “static” versions of these algorithms (where
only one arm command is allowed) with differing training set sizes were pre-
sented, with DHTune improving the mean residual for a test set of 50 poses
from 15.25 mm for the Flight Standard approach to 2.27 mm, EPEC improv-
ing the residual to 2.27 mm, and HIPS improving the residual to 0.41 mm, all
for 50 training points. For this situation, if at least ten arm/camera samples
can be acquired, HIPS provides the best correction factor for vision guided
manipulation, approximately an order of magnitude over the flight-standard
approach.

The results of online versions of two of the algorithms were presented, which
drive the image-plane residual to sub-millimeter accuracy (the limit of the
fiducial detector used) in one to two iterations. Each algorithm can work
in concert with any of the “static” algorithms, and require only one extra
arm/camera sample and arm command per iteration. Results were presented
with several representative targets as well as different starting positions. In
these circumstances, EPEC reduced the residuals to an average of 0.23mm, and
HIPS to an average of 0.06mm, over the four targets. Since both algorithms
converge well under the resolution limit of the fiducial detector used, EPEC’s
computational simplicity becomes more attractive in this situation.

In conclusion, if at least ten arm/camera samples can be acquired, HIPS will
provide the best correction factor for vision guided manipulation, approxi-
mately an order of magnitude over the flight-standard approach. HIPS was
developed to provide this type of correction [15], and these experiments ap-
pear to validate its utility here. If on-line corrections are feasible, either HIPS
or EPEC can drive the positioning error to the limit of a 0.1 pixel fiducial
detector in one or two additional iterations. While HIPS was modified [10]
to utilize online correction factors, EPEC was originally designed [14] as an
online correction algorithm.

5 Future Work

The final result of VGM is to position an instrument on a planetary surface,
not to position a fiducial in a specified position. To investigate the impact
of the VGM algorithms on the positioning of instruments remote from the
fiducial, the next step in this study will be to include the orientation of the
manipulator in the study.
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It may also make sense to collect correction vectors at a given location over
time as the rover performs its duties, then apply some combination of them
to correct future moves in this kinematic-visual location. The optimal combi-
nation of vectors has yet to be investigated, however.

In addition, it would be useful to the design of the Mars Science Laboratory
manipulator arm if these results could be repeated on an arm with kinematics
relevant to that arm, which will likely be longer and more flexible than the
MER IDD. This makes vision guided manipulation a much more attractive
notion for future missions.
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