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Abstract

We describe a model-based object tracking system
that updates the configuration parameters of an ob-

ject model based upon information gathered from a
sequence of monocular images. Realistic object and

imaging models are used to determine the expected

visibility of object features, and to determine the ex-
pected appearance of all visible features. We formulate
the tracking problem as one of parameter estimation
from partially observed data, and apply the Extended

Kalman Filtering (EKF) algorithm. The models are

also used to determine what point feature movement
reveals about the configuration parameters of the ob-
ject. This information is used by the EKF to update
estimates for parameters, and for the uncertainty in
the current estimates, based on observations of point
features in monocular images.

1 Introduction

In this paper we describe a model-based object

tracking system that updates the configuration param-

eters (state) of an object model based upon informa-
tion gathered from a sequence of monocular images of
a robotic arm. We formulate the tracking problem as
one of parameter estimation from partially observed

data, and apply the EKF algorithm to this problem.
The use of complex explicit kinematic models in

object tracking has increased in recent years [5] [7].

When tracking a known three dimensional object, the

use of an explicit object model enables an ongoing as-
sessment of the usefulness of each tracked feature in
computing each internal degree of freedom of an ob-

ject. Explicit models also allow feature measurements
to decrease the uncertainty in the estimation of in-
ternal degrees of freedom of an object. This reduced

uncertainty can then be used to aid in disambiguating
other measurements. Our work uses a robotic arm ex-
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ercising three internal degrees of freedom. This work
demonstrates that object tracking with explicit mod-
els of objects with complex geometry is feasible, even
for objects with many internal degrees of freedom.

Previous work has assumed a constant set of vis-
ible features [10], or the use of features with simple

primitives (edges or corners) [5]. Since we use realistic
object and imaging models to compute the expected
visibility of features, we can accommodate a set of fea-
tures distributed about the object such that several
will be visible in most configurations of the object, yet

concentrate our search efforts during feature tracking
on those features expected to be visible in the current

(estimated) configuration of the object. Since we use
object and imaging models to compute the expected
appearance of features, this work can track features
with more complex geometry, and therefore less ambi-

guit y, than lines or edges. For example one finger of
a gripper, or the edge of a gear linkage, could be used
as basic features to track. This is in contrast to track-
ing edges or corners, then building up these tracking
results into a complex feature afterwards.

The remainder of the paper is organized as follows.
In Section 2 we describe our system for using kinematic
and imaging models for object tracking. We begin in
Section 2.1 by introducing our formalization for the
tracking problem, and the notation used throughout
the paper. In Section 2.2 we describe in more detail
the methods used to calculate the expected feature
appearance and visibility. We review in Section 2.3
some methods for feature tracking, and describe in
Section 2.4 our method for extracting an estimate of
the measurement error as well as the most likely lo-
cation for a feature. All these pieces are consolidated
in Section 2.5, where we present the relevant equa-
tions from the Extended Kalman Filtering literature,
and describe our use of the filter. Finally, in Section 3
we present some experimental results for the case of a

three degree of freedom robotic arm.
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2 System Overview

In this section, we present an overview of the track-
ing system. First, we present our formalization of the
tracking problem. We next describe how our use of
object kinematic and appearance models enables us to
compute the expected appearance of each visible fea-
ture. We then describe the feature tracking process,
where a comparison of portions of the actual input im-
age to the expected feature appearance is made. We
describe how an estimate of the uncertainty involved
in the extraction of each feature is made. Finally, we
present the relevant equations from Extended Kalman
Filtering, and describe how our system uses this frame-
work to update estimates for all internal degrees of
freedom of an object.

2.1 Formalization and Notation

We wish to estimate the joint angles, Xk of a robotic
arm, which we shall call the state vector of the system,
at each time step k. In this paper, Xk 6 ~. We will be
modeling the Xk as a random vector and we associate a
covam”ance matrix, pk, with the state vector. We can-
not observe the joint angles directly, but we can define
a vector valued function hk mapping joint space into
observation space. We denote our observations by zk.
Any bias about likely motion in joint space is defined
in the system model fk, a vector valued function map-
ping the a-posteri state estimate at each time step into
the a-priori state estimate at the next time step.

Certain parameters will be conditioned on the num-
ber of observations made. We denote this with a
subscript. Thus we use the notation iklk_~ to rep-
resent the optimal estimate for the vector xk, given
zo. ..zl–l. Similarly, l’klk denotes the Covariance of
xk given zo. . . zk. We often use pk interchangeably
with pk 1k. This notation is standard in the Kalman
Filtering literature.

In summary, we assume a fairly standard nonlinear
system model,

Xk+l = f(xk) + G~(Xk)Wk (1)

zk = hk(Xk) +Vk, (2)

where fk and hk are vector valued functions with
ranges of dimension n and q respectively, and G; is
a matrix valued function of dimension n x p. We make
the usual (in Kalman Filtering literature) assumptions
with respect to the correlation of the noise (Wk and v~ )
and initial conditions (x.):

E(WkW:) = f&($/@ (VkV~) = Rk6kl
E(w~v~) = E(w~x:) = E(VkX:) = O.
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In terms of our tracking problem, hk(xk) contains
the image plane coordinates of each feature when the
arm is at configuration xk. The system function fk
could be used to implement a motion model. For ex-
ample constant velocity motion in joint space could be
assumed, if this type of motion was expected to be seen
often. In this case, kk would contain estimates for the
angular velocities of each angle as well as estimates for
the joint angles.

2.2 Expected Feat ure Appearance and
Visibility

Our work uses a realistic model for the robotic arm,
both in terms of kinematics and appearance. A per-
spective imaging model is used for the camera. At
each time step k in the tracking process, the optimal
state estimate given the observations from time O to
k – 1, &lk_~, is combined with these models (using the

OpenGL graphics language) to generate a synthetic

image of the scene. One such scene is shown in Fig-
ure 1. The system does not use texture mapping, but

simulates the effect of multiple overhead lights shining
on a relatively non-reflective surface. The background
is approximated by a constant-color surface, with the
same lighting model. For all surfaces, Gouraund shad-
ing is used to interpolate the color of interior of each

polygon based on lighting calculations done at the ver-
tices of the polygon. Multiple computations are based
on this image, as described below.
Figure 1: A Synthetic Image
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Since the object models, camera imaging models,
and assumed illumination of the scene are used to cre-
ate the feature templates, errors in these models will
effect the feature tracking to the extent that the fea-
ture templates are incorrect. The specific effect of er-
rors in these models, as well as the use of even more
sophisticated rendering techniques, is a topic for fur-
ther investigation.

For each feature, the forward kinematics of the robot
are used to compute the 3D location of that feature,
and its 2D projection onto the image plane. If the
2D projection is not contained in the portion of the
image plane actually observed, that feature is deemed
not visible. During the rendering process, the depth of
the closest object to the image plane at each pixel is
recorded in a special buffer termed the z-lmfler. This
is a well known method for 3D rendering in computer
graphics. For each feature, the depth recorded in the
z-buffer is compared against the computed depth for
that feature to determine if that feature is visible at
the given configuration. A feature is visible in a given
configuration if it’s depth is equal to that recorded in
the appropriate portion of the z-buffer.

For each feature that is expected to be visible by
the above criterion, we record its expected appearance
for use as a template to compare portions of the input
image against during the feature tracking phase of the
tracking. This is done by saving a region of the syn-
thetic image about the feature’s projection onto the
image plane. This enables us to use arbitrary points
on the surface of the object as features, and allows the
use of the same framework whether the feature is a
line, a spot, a corner, or the center of the letter P.

2.3 Feat ure Tracking

Feature detection can be accomplished by compar-
ing an image region against a template for the feature,
and using some metric, usually the Sum of Squared
Differences (SSD), to rate the similarity. A good re-
view of this technique is given in [3]. The main prob-
lem with the naive approach is that the simple tem-
plate is a static 2D entity, and the image patch in a
dynamic scene may undergo transformations that the
template can not model.

A slightly more complex algorithm that also works
in certain situations is to use an image patch from the
previous image, taken from the area around the last
computed position of the feature in that image, for
the template. The main difficulty of this approach is
feature skew, where the template slowly stops tracking

the feature of interest and creeps onto another feature.
The next step in sophistication is to have a template
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that can model more general transformations than the
simple template, such as affine distortion.

An even more sophisticated template might have a
3D registered texture as part of the template, and use
the predicted position of the object, along with com-
puter graphics techniques, to render the relevant por-
tion of the scene, complete with sophisticated texture
mapping techniques, and estimate the appearance of
a feature in the image for use as a template to match
against [4] [8].

In our work, we presently use a basic SSD similar-
ity measure, in conjunction with a template generated
from the synthetic image as described in Section 2.2.
In the current implementation, fixed size templates of
size 13 x 13 m-e generated. A fixed rectangular area
(size 25 x 25) of the image, centered about the pre-
dicted feature location, is compared with this tem-
plate.

2.4 Measurement Error

One advantage to SSD based feature detection is
that in addition to an extracted feature location, some
knowledge of the “goodness of fit” of that feature to
the surrounding image is returned, in the form of an
SSD surface [1]. The local shape of the SSD surface can
tell in which directions the template is a good match
with the local image content, and in which directions
the template differs greatly from the local image con-
tent [10].

If we interpret the feature location as a two di-
mensional random vector, the surface returned by an
SSD measurement can be normalized and treated as
a probability measure on the image plane position of
the feature, Since the matching properties of the SSD
measurement are only valid within some region of the
feature location in the image, this interpretation and
normalization needs to be a local one. Away from
the feature location, other features interfere with the
matching process, and the match score no longer re-
flects the spatial uncertainty for the given feature.

The mode, or most probable value, of the random
vector is located at the peak of the SSD surface. We
take this as the feature location measurement, z~. As-
suming a symmetric unimodal random vector (for the
purposes of the EKF, the random vector is assumed to
be Gaussian), contours of equal probability surround
the mode.

It has been noted [12] that the covariance matrix
of a random vector determines the shape and orienta-
tion of these contours (in the noiseless case, they are

ellipsoids) of constant probability. Kosaka and Kak
[6] provide an in-depth discussion on the equivalence
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between a covariance matrix and the related error el-
lipsoids. The orientation of the semi-major axes of the
error ellipsoids determine the eigenvectors of the co-
variance matrix. The lengths of the semi-major axes
determine the eigenvalues of the covariance matrix.

The variance of u (a:), the variance of v (o; ), and
the covariance between u and v (pUVuu~. ) can be es-
timated directly from the (scaled) SSD surface [11],
yieldlng the desired covariance matrix,

& =
[

0; Puuuuuv

PtAvuufJw 1u: ‘ (3)

which contains complete information about the orien-
tation and shape of the error ellipsoids.

To date, researchers have used the local shape of the
SSD surface only as a confidence measure, and those
researchers have only looked at the curvature along the
image plane axes [1] or the image plane axes and 45°
lines in the image plane [10]. More importantly, the
curvature estimates are used only as a computation
of the certainty of the match between the template
and the local image structure, not as an uncertainty
measurement on the location of the match.

Retaining only uncertainty measurements along im-
age plane axes is equivalent to recording UUand UV.
Thus, the implicit assumption made by these re-
searchers is that the contours of equal probability have
their semi-major axes aligned with an image plane axis
or a 45° line in the image plane. By computing the co-
variance as well as the variances, we retain information
about the orientation of the ellipsoids of constant prob-
ability, aa well as their intersection with the u and v
axes. Therefore, we gain the ability to maintain infor-
mation about directions of good spatial discrimination
even if that direction of that discrimination doesn’t
happen to be aligned with the (u, v) image plane axes.

2.5 Extended Kalman Filtering

Extended Kalman Filtering is an extension of the
classic Kalman Filtering algorithm to the nonlinear
case. Kalman Filtering computes the optimal linear
least squares solution to observations of a linear sys-
tem corrupted by white Gaussian noise [2]. The follow-
ing equations can be derived from the linear Kalman
Filter by linearizing the system function fk and the ob-
servation function hk about the optimal state estimate

Xklk_ ~. This set of equations, collectively defining are-
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cursive estimation algorithm, is generally collectively
called the Extended Kaiman Fiiter

pk,k–~=
[aik-’lpk-’k-’ [$%wl’

+Gk-l(xk-l)Qk-lG:-l (xk-1) (4)

iklk–1 = fk_l(i&l)

ik[~ = ik[k–1 +Kk(zk – h(~klk-1)), (6)

with initial conditions Po,o = Var(xo), and X. =
E(xo).

As described above, our system uses realistic object
and imaging models to define hk. The system Jaco-
bian, ~, is computed algebraically. As we currently

use a constant position motion model (all movement
is modeled as random ;;i~; ~ injected into the state
vector), fk = 1, and ~ — O. CUrreIItlY, Qk iS a

constant diagonal matrix, and the computation of Rk
is described above.

3 Tracking Results

In this section, we will present some tracking results
for the case of a three degree of freedom arm being ob-
served by a 2D sensor. In order to concentrate on the
effect that the object kinematics have on the tracking
algorithm, no motion model is used. In all cases, the
512 x 485 input image is subsampled by a factor of
three before tracking. Joint speeds are restricted so
that features do not escape the fixed search areas.

Joints O, 1, and 2 are the first three joints of
a Unimation PUMA robotic arm, as assigned by
the standard Denevit-Hartenberg parameters. In the
first experiment, the arm moves from a parking po-
sition down towards the table, as if picking up a
block from the table. The arm then moves up away
from the table, swings right (from the point of view
of the camera), and moves down toward the table
again. All three joints move significantly, in con-
stant velocity motion in joint space. Note that this
fact is not exploited at the current time. The ac-
tual joint angles commanded, and the estimation of
the joint angles by our filter, are shown in Fig-
ure 2. The error in the tracking is shown in Figure 3.
0
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Figure 2: Exercising three degrees of freedom. Top:
X. and i., Middle: xl and 22, Bottom: X2 and tz

Figure 3: Tracking Error. Top: Z. – ~., Middle: xl –
21, Bottom: X2 —22

There are 11 features more or less evenly distributed
about the arm. Only a subset of these are visible at
any given time. We described in Section 2.2 how we
determine the expected visibility of a feature. For the
same experiment described above, Figure 4 illustrates
the visibility of features throughout the experiment.
The visibility of feature O is depicted on the top row,
feature 11 on the bottom. Each time step is a column
of Figure 4. Thus, a dark rectangle in a column in-
dicates that a feature is visible at a particular time
step, and a light rectangle indicates that a feature is
not visible at that time step.

One feature of the system is the characterization and
use of the uncertainties in the kinematic and imaging
chain, as modeled by our object and imaging models.
See [9] for an in-depth discussion on this. Figure 5

illustrates the uncertainty present in the system dur-
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Figure 4: Feature Visibility

ing the experiment described above. The variance of
the estimate for each joint angle is shown. The time
scale is the same as in Figure 2. Note particularly the
behavior around time step 230-240. In this region,
the arm is approximately parallel to the image plane.
Also in this region, there is an increase in uncertainty
for Z., and a decrease in the uncertainty for the es-
timates for m and zz. Given the known kinematic
models, this result corresponds to the well known fact
that for a perspective imaging model, changes in depth
are not easily observable, while changes in the two spa-
tial dimensions parallel to the image plane are easily
observable.

1

Figure 5: Uncertainty in the tracking system. Top:
F’[O,O], Middle: P[l, 1], Bottom: P[2, 2]

This change in uncertainty can be predicted by look-
ing at the behavior of the system Jacobian in these
regions. In this region, the system Jacobian, ~,
becomes ill-conditioned with respect to X., and well-
conditioned with respect to xl and X2. That is, mea-
surements from the features do not change with in-
cremental changes in Z., and are therefore effectively
ignored when updating Z. in (6). Measurements from
the features do, however, change significantly with
changes in xl or X2, and are therefore used when up-
dating ZI and X2 in (6). Observing (4) and (5), we
see that for state elements with low update weights

ahin ~, the time update increases the uncertainty in
the system (corresponding to an increase in the uncer-

tainty of our estimates as time advances), but we get



nocorresponding decrease in the uncertainty from the
measurement update.

This selective weighting of image data is a feature
of our tracking system. By analyzing the kinematic
models, we can evaluate feature extraction results in
the proper context, instead of assigning the same va-
lidity to all extractions, regardless of their usefulness
in tracking the parameters of interest (the joint an-
gles, in this case). This selective weighting of features
can be seen in Figure 6, where we illustrate the aver-
age feature weighting factor for each state element, as
a function of time. In this figure, a value of O indi-
cates complete disregard of the measurement update
computed by the feature extraction measurement, and
figures away from zero indicate different levels of con-
fidence in the updates. In the region mentioned above,
note that the weight assigned to the updates for xl and
X2 increase, and the weight assigned to the update for
X. decreases toward zero, as described above.

:z~

::-1-”

:Z:loo -- . -- . -- --O =-e moe

Figure 6: Update Weights (Average over all features).
Top: so, Middle: xl, Bottom: X2

4 Conclusions

We have described how to characterize the uncer-
tainty in data observations in terms of both the per-
ceptibility of feature motion and the quality of fea-
ture extraction. We have incorporated these charac-
terizations into an EKF formalism, and presented pre-
liminary results for the case of 3D tracking. We are
currently extending our results to a variety of more
complicated problems, addressing such issues as oc-
clusion, higher dimensional systems, tracking more
complicated (possibly non-rigid) objects, and tracking
objects with certain unknown kinematic parameters,
such as link lengths.
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