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Abstract

Performance estimation for feature tracking is a

critical issue, <ffeature tracking results are to be used

intelligently. In this paper, we de~ive quantitative

measures for thespatial accuracy of a particular fea-
ture tracker. This method uses the results from the

sum-of-squared-differences correlation measure com-
monly used for feature tracking to estimate the accu-

racy (in the image plane) of the feature tracking result.
In this way, feature tracking results can he analyzed
and exploited to a greater extent without placing un-

due confidence in inaccurate results or throwing out
accurate results. We argue that this interpretation of

results is more flexible and useful than simply using

a confidence measure on, tracking results to accept or

reject features, For example, an extended Kalmanfil-

tering framework can assimilate these tracking results

directly to monitor the uncertainty in the estimation
process for the state of an articulated object.

1 Introduction

Estimating the effectiveness of feature tracking in-
formation is a very important topic in image process-
ing today. In correspondence-based object tracking

the results from several feature trackers, each tracking

salient points or edges of an object, are combined to
track a (possibly articulated) object [1]. Point track-
ing for the purpose of computing image flow requires a

metric for the confidence in a motion estimate, so that
estimates from regions of high confidence can be used
to improve estimates in regions of low confidence [2].
Feature tracking confidence measures have also been
used in a visual servo control to increase the robust-
ness of the servo control [3].

We characterize the accuracy of a feature tracking
result by the accuracy of the location computed by the
feature tracking. This characterization leads to the
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evaluation of the confidence of a feature tracking result
for a more general purpose than that of accepting or

rejecting the feature for use in tracking. We analyze
the uncertainty in the tracking process, so that we can
keep track of the uncertainty in the estimation process
being driven by the feature tracking.

We begin with a review of stan{lw-d feature tracking
methods. Following this, we describe our goals with
respect to characterizing the spatial discrimination of
features. Then we present a Gaussian approximation

and describe how sufficient, statistics can be used to
characterize this approximation. Finally, we present
some results from our implemented tracking system.

2 Correlation and feature templates

In correlation-based feature tracking, a feature tem-

plate is used to detect a feature in an image. A feature
template contains some representation of the feature
and is compared against portions of an image to locate
that feature in the image. This comparison utilizes a
similarity metric to rate the similarity of the template

and the image patch. The image region found to be
the most similar to the template is usually taken to

be the location of the feature.
The following sections discuss three areas crucial

to correlation based tracking: the content of this tem-
plate, the definition and use of a specific similarity
metric for tracking, and the definition of confidence
measures on the tracking results.

2.1 Template content

The content of the template is an important choice

in feature tracking. If the template faithfully repro-
duces the actual appearance of the feature in the im-
age, tracking will work well. However, if a template is
oversimplified or does not match the appearance of a
feature in the image due to unmodeled effects, feature

tracking will perform poorly.
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.4 template can be generated from a canonical view

of the feature, and template matching done in a search
window centered about the predicted position of the
image. Brunelli and Poggio give a good review of this

technique in the context of facial feat m-e tracking [4].
The main problem with this straightforward approach

is that the simple template is a 2D entity, and the
image patch may undergo transformations that the

template cannot model, such as rotation.

.4 more complex algorithm that also works in cer-

tain situations is to use an image patch from the pre-
vious image, taken from the area around the last com-

puted position of the feature in that image, for the
template. Hager [5] uses this approach for visual ser-
voing. Hager and Belhumeur [6] have also used pre-
vious tracking information to warp this image patch
before use as a feature template, which increases the
flexibility of this approach.

If object and scene modeling are part of the track-
ing framework, it is possible to create templates from
this information. Lopez et al. [7] have a 3D regis-
tered texture of a face as part, of their object model.

Computer graphics techniques are used to render the
relevant portion of the scene complete with sophisti-
cated texture mapping to estimate the appearance of
a feature in the image. This image patch is then used
as a template in the feature tracking portion of the
system. Our work uses 3D models for complex articu-
lated objects, also in a graphics-based framework [8],

to generate feature templates.

2.2 The SSD similarity metric

In correlation-based tracking, a similarity metric is
used to compare the feature template described above
to areas of the image to locate the feature in the image,

The standard sum-of-squared-differences (SSD)
metric for grayscale images is defined as:

SSD(U, V) = ~ [T(?n, n) - 1(U +rn,7J+n)]2 , (1)
m,n EN

where T is the template image and 1 is the input

image. The location (u, v) represents some location

in the input image whose content is being compared
to the content of the template. Papanikolopoulos [3]

uses the SSD measure to generate tracking results that

are then used for robotic visual servoing experiments.
Anandan [2] and Singh and Allen [9] use this SSD
metric for the computation of image flow.

Often, this measure is not computed for the en-
tire input image, but only for some search window in
the input image. Primarily for computational reasons,
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this restriction also serves as a focus of attention for

the feature tracking algorithm. Singh and Nlen [9]
define a fixed size square search window surrounding

the previous location of the feature. Kosaka and Kak

[10] consider at length the shape and location of the
search window. They model the scene and compute a

spatial probability density function for the location of
each feature, then search the image area corresponding

to 85’% of the probability mass. We use a constant-
velocity model for an articulated object to predict 3D
positions for relevant points on the object, Imaging
models are then used to project these locations to

points on the image plane. A fixed size rectangular

search window centered at these locations is estab-
lished in the input image, See [8] for more details,

3 Confidence, uncertainty estimation,
and spatial uncertainty

Ithas been noted [2] that popular similarity mea-
sures often lead to some unreliable matches, partic-
ularly in image regions with little textural informa-
tion. For this reason, it is often helpful to compute

a confidence on the match found, as well as a loca-
tion. This confidence measure typically gives infor-
mation regarding the reliability of the match score.

This scalar score often is used to estimate the relia-
bility of the feature, i.e. for use in later tracking op-
erations or to propagate image flow information from
one portion of an image to another. Below, we will
describe a matrix-valued covariance matrix that con-
tains information both about the overall confidence in
a feature measurement, and information about how
accurate the measurement is in all directions.

Anandan [2] used the SSD matching scores of a tem-
plate with a 5 x 5 image region to develop a match

confidence measure based on the variation of the SSD
values over the set of candidate matches. Anandan
argued that if the variation of the SSD measure along
a particular line in the search area surrounding the
best match is small, then the component of the dis-
placement along the direction of that line cannot be

uniquely determined. Conversely, if there is signifi-
cant variation along a given line in the search area,
the displacement along this line is more likely correct.

Singh and Allen define a response distribution based
on the SSD metric (1) as

7ZDC(U, v) = exp(–kSSD(u, v)), (2)

where k is used as a normalization factor. The normal-
ization factor k was chosen in [9] so that the maximum

response was 0.95. Singh and Allen then argue that



each point in the search area is a candidate for the

“true match. ” However, a point with a small response
is less likely to be the true match than a point with a

high response. Thus, the response distribution could
be interpreted as a probability distribution on the true
match location the response at a point depicting the

likelihood of the corresponding match being the true
match. This interpretation of the response distribu-

tion allows the use of estimation-theoretic techniques.

(Jnder the assumption of additive zero mean inde-
pendent errors, a covariance matrix is associated with
each location estimate:

‘rn=[&’?1 (3)

% = ~ 7?D(IL,zI)(u - UnJ2/TP (4)
U.VEN

~ = ~ I?D(u,v)(v - Vm)2/TP (5)

p~> = ~ WD(u,v)(u - Um)(v - ‘v,n)/TP (6)

TP = ~ ~~(U, V) (7)

U, I,EN

where u ~ and Vm are the estimated locations, in the

u and v directions, of the feature. The reciprocals
of the eigenvalues of the covariance matrix are used
as confidence measures associated with the estimate,
along the directions given by the corresponding eigen-
vectors. To our knowledge, Singh and Allen are the
first researchers treat the location of the best match as

a random vector, and the (normalized) SSD surface is
used to compute the spatial certainty of the estimate
of this vector [9]. These confidence measures are used
in the propagation of high confidence measurements
for local image flow to regions with lower confidence

measurements, such as caused by large homogeneous
regions.

Our work develops a different normalization pro-
cedure for ‘RD that is useful for the evaluation of iso-
latedfeature measurements from template images. .4s

described in Section 4.2, we compute one covariance
matrix and one location for each feature, and use this
information in a model-based object tracking frame-
work. We do not reject any tracking information, but

weight each measurement on the basis of this covari-
ance matrix, using as much information as possible
from the feature tracking.

As the SSD measure is used to compare the tem-
plate to areas of the image near the area generating
the minimum SSD score, some measure of the spatial
3232
discrimination power of the template can be generated

[2]. Spatial discrimination is defined as the ability to
detect feature motion along a given direction in the

image. This concept is quite similar to the confidence

measures discussed in Section 3 that estimate the reli-
ability of the location estimate. However, we interpret

the confidences as spatial uncertainties in the returned
location.

While conclusions about the efficacy of a given tenl-
plate for feature localization can be drawn from the
fully computed SSDS, it is expensive both computa-
tionally and from a computer memory standpoint to
maintain the complete surface for this purpose, In the

next section, we derive a approximation for 7?D that
is more useful.

4 A practical approximation for 71D

In order to maintain and use relevant information
about the shape of the response distribution, ~ve in-
troduce a mathematical approxirnation to the distri-
bution given in (2). By suppressing the off-peak re-
sponse of the feature tracking result, this response dis-
tribution function converts the SSDS into an approxi-
mately Gaussian distribution that, contains the feature

tracking information we wish to maintain. Since many
ob,ject tracking systems (including all Kalman filter-
based systems) assume measurements are random vec-
tors with Gaussian probability density functions, we
explicitly model and approximate this densit}-.

4.1 Uncertain feature measurements

The measurement vector zk is interpreted as an un-
certain location in the (u, v) plane, and modeled as a
2D Gaussian random vector. It is illustrative to ana-
lyze the behavior of the density function for this vec-

tor with respect to the spatial certainty of the feature
tracking result as R~, the covariance matrix for the
vector, changes. For example, if R~ = 021, where U2

is the variance of the vector, the location is equally
certain in each direction. The ellipses of equal prob-

ability on the density surface are circles. If au # OU,
where ~~ and o: are the variances in the u and u di-

rections, the location is more certain in one &-ection

(given by the minor axis of the ellipses of equal proba-
bility) than in the other direction (given by the major

axis). As the length of the major axis approaches in-
finity, complete uncertainty on the location along this
dimension is asserted. It is well known that the mean

and covariance are sufficient statistics for a Gaussian
random variable. Therefore, if this Gaussian density

surface is sufficient to model the tracking behavior,



SSD Surface

Response Distribution Density Function

Figure 1: Approximation of response distribution by
density function.

it is no surprise that the mean and covariance suffice
to maintain this information. In the next section we
explain how we estimate these quantities.

4.2 Parameter estimation from the SSDS

This section describes a process for analyzing the

SSDS to arrive at estimates for the mean and variance
of a Gaussian random vector. The density function of
this vector acts as an approximation to the response
distribution ‘RD (see (2)) for the purpose of tracking
features.

Our computation of the normalization factor k in
(2) differs from that of Singh and Allen [9]. We chose
k such that

~ Km(u,v) % 1. (8)
U,UEN

This has the effect of suppressing the off-peak response
of the feature detector, when compared with Singh and
Allen’s normalization. Since we are using correlation
between synthetic templates and images, the off-peak
response in our situation is more significant than for

Singh and Allen. As shown in Figure 1, our normal-
ization makes the response distribution approximate

a Gaussian density function with the desired charac-
teristics with respect to feature tracking.

The mode, or most probable value, of a random
vector is located at the peak of the density function.
We take the location of the minimum of the SSDS as
our value for the mode of the vector,

Zk = argminU,vSSD(u, v). (9)
323
The variance of u (o:), the variance of v (o: ), and

the covariance between u and v (p UvoUaV) can be es-
timated directly from the response distribution using

Equations (2) and (3)-(7), yielding the desired covari-

ance matrix,

[

~
R~= “ P.-u 1Puziz. 0; ‘

(lo)

which, as described above, contains complete informa-

tion about the orientation and shape of the error el-
lipsoids. Figure 1 illustrates this process for a vertical
edge feature.

Of course, as we are only maintaining the mean and
variance of the random vector, and not the complete

SSDS, this is only an approximation to the complete
information about local image structure given by the
SSD. However, it does give an indication of both the
absolute quality of the match and, in cases where edge
features exist, the direction of the edge.

5 Results

5.1 Gripper feature

The feature illustrated in this section is the end-
effector of a robot. Figure 2 shows the search re-
gion, tracking result, and measurement uncertainty
estimates for two different cases. Note that since the
SSD measure involves the image area surrounding a
pixel, a border around the search region must be re-
tained for each search region.

The results of feature tracking in normal circum-
stances are shown in Figure 2(a). The cross indicates
the location of the minimum point of the SSD surface.
The complete SSDS and the Gaussian approximation
to this surface are shown in Figure 2(b)-(c), both in-
dicating equal accuracy of the tracking result in all
directions. Note the effect in (b) and (c) of our nor-
malization procedure. Even though there is significant
off-peak response, the relative certainty in the peak re-
sponse with respect to the lower responses indicated

a single proper match. This fact is evident from the
final result shown in (c).

In (d)-(f), we present an illustration of the use-
fulness of the on-line estimation of template efficacy.

This feature has the same template as in the previous
case. However, a person has stepped between the cam-

era and the feature, occluding the feature. The fea-
ture template thus does not match any portion of the
search window well, as shown in (e). This mismatch
causes larger values for the variances for this measure-
ment, and (f) indicates high uncertainty of the feature

location in all directions.
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A 2D measurement, represented by the cross in Fig-

ure 2(a) and (d), and a 2 x 2 covariance measurement

are the output of the feature tracking, and are used
directly in the EKF framework described in [8].

❑ m
(a) Search image (d) Search image

(b) SSDS (e) SSDS

‘g?,,
4$$?$

L ,, I‘b&*/ ‘&/’;:}$’%’;,,
.,,7** -, ,, .,,
,’, ~>,{

-——---- .<

(c) GRV density (f) GRV density

Figure2: Tracking results for gripper feature (a)-(c)
normal (d)-(f) externally occluded

5.2 Edge feature

This case illustrates the usefulness of the measure-
ment uncertainty estimation for tracking features with
poor spatial discrimination in one direction. An edge
feature can be tracked well only in the direction or-
thogonal to the edge. This feature arises from a point

on the edge of the robotic arm. Thus, the orientation
of the edge in the feature depends on the configura-
tion of the robot. As the configuration of the robot
changes, the direction of the edge projected onto the
image plane will change. In Figure 3 (a), the edge
is in a diagonal orientation. The full SSDS shown in

(b) has a ridge along this direction, indicating good
match scores along the ridge. After normalization,
the density function shown in (c) exhibits the same
ridge, while suppressing the off-peak match scores on
both sides of the ridge. Similarly, the edge in (d) is in
a vertical orientation, so the ridges in (e) and (f) are
in the vertical direction.

By maintaining this information, the system can
exploit the feature tracking information to a greater
3234
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extent: the result is neither endowed with inappropri-

ate confidence due to the good accuracy in the dircc:-
tion orthogonal to the edge nor unduly devalued due

to the poor accuracy in the direction along the edge.

❑ m
(a) Search image (d) Search image

(b) SSDS (e) SSDS

(c) GRV density (f) GRV density

Figure 3: Tracking results for edge feature.

5.3 Degenerate point feature

In this section, we illustrate another aspect of the
usefulness of on-line estimation of template efficacy.
Since our object-tracking system works under widely
varying configurations of the object, the appearance
of features may change significantly during tracking.
.4 single feature acceptance or rejectance decision will

not suffice in this case. Figure 4 shows tracking results
for a feature that undergoes such a change in appear-

ance, a point of intersection of a black line on the edge
of the robotic arm with the rear edge of the arm.

This feature is a point of high texture in both di-
rections when the arm is approximately parallel to the
image plane, as shown in (a), and acts like a point
feature. This feature location can be found with high

accuracy in all directions, shown in (c).
However, this feature acts like an edge feature in

other configurations, such as the configuration shown
in (d), where the arm is pointing roughly toward the

camera. In this configuration, the feature appears as
a vertical edge feature. The location of the feature in
this case can be found with high accuracy in only the
horizontal direction, as seen in (e) and (f).



Again, the maintenance of the covariance matrix

instead of a single confidence measure makes this sub-
optimal tracking result not only tolerable, but useful.

❑ m
(a) Search image (d) Search image

(b) SSDS (c) SSDS

(c) GRV density (f) GRV density

Figure 4: Tracking results for a point feature (a)-(c)
nondegenerate and (d)-(f) degenerate (acting as edge
feature)

6 Conclusions

The method presented uses the SSDS, a common

intermediate result in correlation-based feature track-
ing, to compute quantitative estimates for the spatial
accuracy of the feature tracking result. This estimate
consists of a covariance matrix for a Gaussian ran-
dom vector. .4nalysis of this matrix yields information
about the directions (if any) in which the template is

discriminating the feature from the image background,
and provides a quantitative measure of confidence in
each direction.

The feature tracking results, combined with this
matrix, yields a composite measure that is useful when

analyzing the tracking results. An example of the use
of this matrix in model-based object tracking can be
found in [8]. .4nalysis of the results can detect tem-
plates that do not discriminate effectively in any direc-
tion. By associating spatial confidence measures with
feature tracking results, those results can be more fully

exploited: the fact that some directions may have high
confidence does not lead us to accept the entire mea-
surement, and the fact that some directions may have
3235
low confidence does not lead us to disregard useful

data.
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