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ABSTRACT

The goal of this research is to develop a computer program that will track a complex,
articulated object. We assume that we know the appearance and kinematic structure of the
object to be tracked, leading to what is typically termed a model-based object tracker. This
tracker observes a monocular grayscale image of the scene and combines information gathered
from this image with knowledge of the previous configuration of the object to estimate the
configuration of the object at the time the picture was taken. Each degree of freedom in the
model has an uncertainty associated with it, indicating the confidence in the current estimate
for that degree of freedom. The uncertainty estimates are updated after each observation.

Unique aspects of this work include on-line model-based generation of complex features
for use as templates, the characterization of uncertainties in point feature motion for use in
assimilating feature tracking results, the use of the sum-of-squared-differences (SSD) image
correlation measure as a measurement of the observation error in feature tracking, and the use

of complex articulated object models in tracking.
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CHAPTER 1

INTRODUCTION

The human interface to computer systems is becoming increasingly multimodal. Not long
ago, the introduction of the graphical user interface and the mouse in addition to the traditional
keyboard was heralded as a great step forward. But now the HCI (human-computer interface)
shows promise for evolving from a keyboard and mouse to more natural forms of input, such
as speech, gestures, and facial expressions.

To accept gestures or facial expressions as input, the computer must first be able to track,
or trace, the movements of the hands [1] or face [2] of the user. This requirement is one of the
motivations for research in the broader computer vision area of object tracking. In computer
vision, object tracking is the problem of following the movements of a particular object. This
is a special case of the more general problems of object recognition and pose estimation: an
additional constraint is placed on the problem that the object identity and pose in the previous
image in a sequence is known, and the problem is to solve for them in the current image. The
time between the acquisition of images in a sequence is assumed to be small enough that certain
assumptions about consistency of the scene are valid, thus providing additional constraints on
the problem. Object recognition is the task of identifying one of a number of previously seen
objects from an image or sequence of images. Pose estimation is the problem of solving for the
position and orientation of an object in an image or image sequence. Since the pose of an object
affects the appearance of that object, the problem of pose estimation is often intertwined with

that of object recognition.



Note that object tracking as we have described it above is somewhat different from the
definition used by many robotics and computer vision researchers. In robotics, or visual servoing
in particular, tracking is taken to mean following the movement of an object with a robotic
arm, keeping a constant (or at least well-defined) transform between the end effector of the
arm and the object [3], [4]. The position, and possibly orientation, of the arm are the goal,
and redundancy in the specification of the configuration of the arm is acceptable. Tracking is
sometimes taken to mean following the centroid or outline of one or many objects [5], [6], [7].
Here, we take the more restrictive definition of tracking, the updating of the pose and internal
parameters of the object model.

A typical object tracking scenario is shown in Figure 1.1. The camera is observing the
moving robot. From the image of the robot alone, the problem is to estimate all the joint
parameters of the robot. This is a useful experimental setup because we have absolute joint
angle information for the robot available for comparison with the joint angle estimates generated
by the system, thus facilitating quantitative evaluation of system performance.

We assume that the geometric relationships among the camera, object, and base coordinate
frames are known, and only the internal degrees of freedom of the object are to be estimated.
We additionally assume that the initial configuration of the object is known. Often the type of
motion allowed in tracking is constrained [8], [9]. Sometimes this constraint is on the relative
motion of the camera and the object, as in our case [3], and sometimes the constraint is on the
internal motion of the object, for example by assuming rigid objects [10].

We assume that the shape and appearance of the object being tracked are known. This
assumption, also not an uncommon one [11], allows us to generate templates for the predicted
appearance of features of interest in a given configuration. An alternative to this assumption
is to use features gathered on-line [12], which may help to ensure the quality of the features
tracked, since feature templates exactly match previous feature appearance. However, this
method destroys any a priori information about the geometric relationship of the individual

features to the object.
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Figure 1.1 Example tracking scenario.

Table 1.1 Notational conventions.

P;,R; Capital boldface letters matrices
zi, X,  Lowercase boldface letters vectors
Up, Up Lowercase letters scalars

Xp,Zr ~ symbols with circumflex above them estimates of quantity under circumflex

Throughout this thesis, a consistent notational convention will be used. This convention
is given in Table 1.1. Notation specific to the system under study will be presented in the
appropriate section.

There is a large body of work on object tracking. In Chapter 2, we review the most relevant
portions of the literature.

In Chapter 3, we review the derivation of the Kalman filter (KF), and its nonlinear coun-
terpart, the extended Kalman filter (EKF). We also present an algebraically equivalent filter

more suited to our particular tracking scenario.



In Chapter 4, we describe our tracking system. This system updates the internal parameters
of an object model from monocular grayscale images of that object. The system accounts for
both self-occlusion and external occlusion of features and weights feature observations according
to their expected value in disambiguating the state, as well as the amount of spatial uncertainty
present in the feature observation.

In Chapter 5, we illustrate the theory for feature tracking developed in Chapter 4 by pre-
senting results for several features. These results will be used by the system to estimate object
motion.

In Chapter 6, we develop equations for the theory described in Chapter 4 for several in-
creasingly complex tracking situations. Each situation illustrates a particular portion of the
overall tracking system.

In Chapter 7, we illustrate the effectiveness of the tracking system in several situations.
Again, each situation illustrates a particular feature of the tracking system.

Finally, in Chapter 8, we offer some conclusions that can be drawn from this research, and

investigate possible future work that can be done with the framework presented in this thesis.



CHAPTER 2

LITERATURE REVIEW

There are two main approaches to object tracking [13]. The first derives an optical flow
field, or a dense motion field, for the sequence, then analyzes the structure of the flow field to
infer structure, motion, or both for the objects in the image. This approach to object tracking
is described in Section 2.1. The second approach is based on the correspondence of discrete
features on an object in one image with those features in a subsequent image. This approach
typically searches for the locations of features in an image by template matching or through
other search techniques, and then infers object motion from these correspondences. We will
discuss this approach in three separate steps. The prediction of the location of features in the
image plane is discussed in Section 2.4, the search in an image for a feature is discussed in
Section 2.5, and the use of the results from this search for the purpose of object tracking is

reviewed in Sections 2.6 and 2.7.

2.1 Tracking via Image Flow

Image flow, or optical flow, assigns to each point in the image plane a two-dimensional (2D)
velocity vector that is the projection of the apparent three-dimensional (3D) velocity of a scene
point onto the image plane [14]. This flow field is then analyzed to recover information about
the dynamic scene and, in the case of object tracking, to make inferences about the motion of

3D objects in the scene.



It is well known that true velocity can be recovered with local measurements only in areas
with sufficient local intensity variation [15]. Thus, computation of image flow usually occurs
in two steps: using the image intensity distribution in small neighborhoods with sufficient
variation to compute local information about velocity, then propagating this information into
neighboring areas of the image to recover the full image flow.

There are three major approaches to recovering image flow from local information: correla-
tion, intensity gradients, and spatiotemporal energy. Liu et al. [16] compared the performance
of many of the following algorithms. Correlation searches the area surrounding each pixel in an
image for a pixel in the next image with similar local neighborhood structure. The pixel in the
new image with the most similar local neighborhood structure is taken to be the new location
of the pixel. A typical example of the use of correlation in computing image flow can be found
in Singh [17]. Gradient-based methods compute velocity from first-order derivatives of image
intensity, or from filtered versions of the image. Horn and Schunk [18] are usually credited with
pioneering this approach. The spatiotemporal energy approach makes some assumptions about
the smoothness of the flow field in space and time, and uses 3D (space-time) Gabor filters to
estimate the power spectrum of a moving pattern. Adelson and Bergen [19] presented several
spatiotemporal energy models for the perception of image flow. Heeger [20] introduced the use
of spatiotemporal filters in computing image flow. Fleet and Jepson [21] used the phase-space
response of similar filters to compute optic flow. Weber and Malik [22] refined this approach,
and gave a systematic analysis of the error sources in this approach.

There are two standard constraints used in the propagation of initial velocity field estimates
to areas of insufficient local texture: smoothness of motion field and the analysis of interframe
structure the motion field. The smoothness of motion field constraint assumes that the flow
field is a continuous vector field [23]. An approach that uses the structure of the flow field
might, for example, segment the optic flow map according to object identities and propagate
velocity estimates anisotropically based on this segmentation map. A review of this research

can be found in [9].



After the optical flow field is computed, the structure of the field can be analyzed to arrive
at tracking results. Adiv [24] analyzed flow fields to arrive at 3D motion estimates for several

moving objects.

2.2 Tracking via Feature Correspondence

An alternative to computing the motion of each pixel in each frame of a sequence is to
only find correspondences between significant points in successive frames [25]. These significant
points are called features. A feature can be any easily observable characteristic of the object
being tracked. Commonly, edges, corners, and areas of high visual contrast are used as features
in tracking research [10], [26], [27], although any measurable relationship in an image could be
used [28].

There are two main advantages to correspondence-based feature tracking over the image-
flow approach described above. Since the velocity of only a few points in the image is measured,
the computational burden is reduced significantly. Also, the ability is gained to choose salient
features such that the probability of proper feature velocity measurements is increased. This
can be done by assessing the local image structure and choosing feature points with strong
invariant properties. An invariant property is any property that does not vary with respect
to changes in nuisance parameters. A nuisance parameter is any parameter not of interest in
the current situation. Shi and Tomasi [29] and Papanikolopoulos [12] independently proposed

confidence measures to use for the purpose of feature selection.

2.3 Region Tracking

A common special case of feature tracking as described above occurs when the features
to be tracked are regions in an image. A region is often defined as a maximal homogeneous
image patch, by some definition of homogeneity. Bregler and Malik [30] used region tracking to

analyze the movements of humans in image sequences, for the purpose of recovering the joint



angles of the humans. The tracking of a region is analogous in many ways to the tracking of

the contour surrounding the region. Contour tracking is described below.

2.4 Feature Location Prediction

Since features are often assumed to be spatiotemporally dense, keeping track of a feature’s
position and velocity over time can lead to better prediction of a feature location in the next
image in a sequence. Many models can be assumed for the dynamic behavior of a feature, with
the standard tradeoff between predictive power and complexity.

We will denote the position of a feature in an image taken at time k to be z,. The predicted
position of a feature at time k is denoted z;. Both z; and z; are 2D vectors in our case.

The simplest case is to impose no dynamic model, and rely entirely on the search step to
locate the appropriate features in the image. In this case, the predicted location of a feature in

the next image is the same as the tracked location in the last image, or

Zy1 = 2.

If the motion of a feature is unpredictable, or if the interframe movement of a feature is expected
to be very small, this is often a reasonable solution to the prediction problem. Singh and Allen
[14] for example use a constant position dynamic model in their computation of image flow.

If the motion of a feature is predictable, a more complicated dynamic model can be bene-
ficial. For example, the velocity of a feature in the image plane v can be estimated and used
to help predict the location of the feature in the next image. If the assumption is made that

features move in the image plane with constant velocity, then

Zpi1 = 2 + Avy,

where A is the time between subsequent images. The constant velocity motion model is used
by Clark and Zisserman [31] to assess collision probabilities for independent moving objects,

and by Wilson [3] to estimate the relative position and orientation of a rigid object. This



particle motion concept can be carried further, estimating the acceleration of a feature in the
image plane aj; as well as the velocity. Then a constant acceleration model for motion could be

assumed, taking
Zi+1 = 2 + Avg + AQak.

Deriche and Faugeras [32] use a constant acceleration dynamic model for tracking line segments
in an image sequence.

The dynamic model can be used to predict motion in 3D as well as motion in the image
plane. Bradshaw et al. [33] use constant speed, constant velocity, and constant direction 3D
dynamic models to estimate the motion of objects. A good overview of the use of dynamic
models in object tracking can also be found in [33].

If the relationship between features is known, for example as part of an active contour object
model [34] or part of a 3D object model [26], the configuration and motion of the encompassing
object model can be used as a basis for feature location prediction. Section 2.6 describes the

use of feature tracking results to update object models in this fashion.

2.5 Feature Search

Whatever model is used for the prediction of feature locations in an image, once locations
for each feature in the image have been predicted, there needs to be some process for locating
the features in the image. There are a variety of techniques used for this location, ranging from
very simple techniques such as mounting LEDs on the vertices of a polyhedral object to very
complex search techniques requiring specialized parallel hardware. We refer to this process as

feature search because the image plane is being searched for the features of interest.

2.5.1 Simplify the search

The simplest solution to the search problem, often taken by researchers whose primary

interest lies in other areas, is to simplify the corresponding computer vision problem. Rizzi



and Koditschek used first moments of a blob to track a white ping-pong ball against a black
backdrop [35]. Ishii et al. mounted LEDs on a manipulator likewise to reduce the problem of

search to a simple one [36].

2.5.2 Line features

Lines and edges are popular choices for features to track, due to their robustness to illumi-
nation variance and ease of extraction from the image.

Stephens [37] presents a local Hough-like transform to find edges in an image, and compares
this to the local transform of his object model to find the image region with the most similar
line structure.

Line extraction is less sensitive to noise than point extraction, and line correspondence is
usually an easier problem to solve than point correspondence. Therefore, many researchers use
edge-detected images as input, and the search problem becomes one of matching line segments
in an image to line segments in the next image.

Bray [38] tracks edgelets using a flow algorithm, then uses the results to update a rigid
polyhedral object model in 3D. Edgelets are short line segments in input images. Unlike many
tracking research, Bray presented an initialization method for the tracking, using a model-based
search based on edge matching.

Deriche and Faugeras [32] compared two representations for line segments and performed
an uncertainty analysis on the parameters of each. They used a Kalman-filtering-based scheme
to track line segments with each representation.

Gennery [10] uses edge-detected images in a modified Kalman filter framework to track
known 3D rigid objects. At each step, a weighted least-squares method is used to match edges
in the object model to edgelets in the input images.

Lowe [26] uses least-squares techniques to fit a model line segment to many smaller edge

segments in the image. The overconstrained nature of the problem (there are many more edge-
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segments from the object in an image than are necessary to determine the pose of an object)
makes this type of search robust to noise.

Kosaka and Kak [39] use a one-dimensional (1D) search in the area predicted by their
environmental model to track lines corresponding to the intersection of floors and walls, or

doorways, in a hallway.

2.5.3 Correlation and feature templates

A feature template may also be used to detect a feature in an image. A feature template
contains some representation of the feature and is compared against portions of an image to
locate that feature in the image. In this case, a similarity metric is used to rate the similarity
of the template and the image patch. The image region found to be the most similar to the
template is usually taken to be the location of the feature.

The following sections discuss previous approaches taken in three areas crucial to correlation
based tracking: the content of the template, the definition and use of a similarity metric for

tracking, and the definition of confidence measures on the tracking results.

2.5.3.1 Template content

In this situation, the content of the template is an important choice. A straightforward
solution is to have some canonical view of the feature and to do template matching in a search
window centered about the predicted position of the image. Brunelli and Poggio give a good
review of this technique in the context of facial feature tracking [40]. The main problem with
this approach is that the simple template is a 2D entity, and the image patch may undergo
transformations that the template cannot model, such as rotation.

A more complex algorithm that also works in certain situations is to use an image patch
from the previous image, taken from the area around the last computed position of the feature
in that image, for the template. Hager [27] uses this approach for visual servoing. The main

difficulty with this approach is feature skew. Feature skew occurs when the computed position
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of the feature is slightly incorrect. This causes the next image region to be slightly offset and
the next computed position of the feature is more incorrect. Slowly, the computed position
migrates off the feature of interest, and the template contains image structure adjacent to the
feature of interest.

If object and scene modeling are part of the tracking framework, it is possible to create
templates from this information. Li et al. [41] use the tracked parameters of the CANDIDE
head model to compute the expected appearance of facial features. Tang [42] and Lopez et al.
[11] have a 3D registered texture of a face as part of their object model. Computer graphics
techniques are used to render the relevant portion of the scene complete with sophisticated
texture mapping to estimate the appearance of a feature in the image. This image patch is

then used as a template in the feature tracking portion of the system.

2.5.3.2 Similarity metrics

A similarity metric is used to compare the feature template described above to some area
of an image. Section 2.5.3.3 describes the use of these similarity metrics for tracking. In this
section, we describe some similarity metrics from the literature.

Burt et al. [43] give a good review and compare the computational cost of five local correla-
tion measures in one dimension, concluding that the computationally simpler measures such as
direct correlation perform nearly as well as the more complex measures on band-pass filtered
images. Definitions for these correlation measures can also be found in [44]. The measures

considered by Burt et al. include:

e Direct correlation:

Cp=Y_ T(m)I(i+m),

meN

where N is the local neighborhood, T' is the feature template, I is the image under
consideration, T'(7) is the value of the template at location 4, and I(7) is the value of the

image at location 3.
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Mean normalized correlation:

O = Y (@(m) = T)(I( +m) - T(3)),

meN

where T is the mean value of T"

and M is the number of elements in the neighborhood N.

Variance normalized correlation:

Y (T(m) =T)(I( +m) —1(0))

meN
CV = I

VVary(i)\/Varr(i)

where the variance Varr is given by

Vary(i) = Z (T'(m) — T(i))Qa

meN

and the variance Vary is given by

Varr(i) = Y (I(m) — I(i))>.

meN

Laplacian filtered correlation:

CL= Z Ly(m)Li(i + m),

meN
where
2
Lr(i) = ) w(m)T(m),
m=—2
2
Li()) = Y w(m)I(m),
m=—2
and

w(—2) = w(2) = —0.05, w(—1) = w(1) = —0.25, and w(0) = 0.6.
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e Binary correlation:

Cp = Z Br(m)By(i 4+ m),
meN

where Br and By are binary images obtained by thresholding L7 and L; at zero.

Some 1D examples are given, illustrating the benefits and drawbacks of each measure on con-
trived images.

Papanikolopoulos [12] uses tracking results for robotic visual servoing experiments. He uses
the standard sum-of-squared-differences (SSD) metric for grayscale images:

SSD(T(i,5), I(x,y)) = Y [T(i+m,j+n)—I(z+muy+n). (2.1)
m,neEN
Singh and Allen [14] use this SSD metric for the computation of image flow.

Anandan [15] uses the SSD metric with a 5 x 5 neighborhood to compute optical flow. He
computes the Gaussian-weighted sum of the squared differences between the values of corre-
sponding pixels in the template and candidate image window. That is, if 7'(i, j) represents the
value of the pixel at location (4, j) in the template, and I(z,y) represents the value of the pixel

at location (z,y) in the image,

m?n?

1
SSD ana(T(3,5), I(z,y)) = exp(— VTG +m,j+n)—I(z+m,y+n).
A j y m%;N oo j y

Papanikolopoulos also extends the SSD measure for use in color images, and uses the tracking
results for robotic visual servoing experiments. The intensity at a pixel in a color image can
be represented by a 3D vector composed of the red, blue, and green components of the color of

the pixel. The vector valued function I(x,y) at the pixel (z,y) of the image I is described by

I(z,y) = (I%(x,9),1%(z,y), I (z,y))7,

where I%(z,vy), I9(x,y), and IP(x,y) are the intensities of the red, green, and blue components

of the intensity of the pixel (z,y). Papanikolopoulos defines the SSD metric for color images as

SSDP&IJQ(T(iaj)’I(Iay)) = Z ||T(’L + maj + ’)’),) - I(q" +m,y + ’I’L)||2,
m,neN
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where T is the vector valued intensity for the template image, defined similarly to I above. The

magnitude ||I(z,y)|| is defined as

T, )| = [(TR(,9))? + (% (2,9)) + (1B (5,))%]"*.

Brunelli and Messelodi [45] compare three similarity metrics to the standard correlation
coefficient. Their metrics are based on the L; and Ls norms. They interpret the SSD metric

as a Fuclidean distance between two vectors:

n
d(x,y) =Y _(xi —vi)?,
=1
where x = z1,...,2, and y = y1, ..., Yy, represent the patterns to be compared. Since images

are often normalized to zero mean and unit variance, the distance between the normalized

vectors x’ and y’ can be expressed by

dg(xlayl) = 2”(1 - pwy);

where pgy is the correlation coefficient of the original data. The value of p;, then represents a
similarity metric between the two images. Brunelli and Messelodi propose several statistically
motivated estimators for pg,.

A commonly used estimator of p is the Pearson coefficient, based on the correlation of the

(normalized) sample of x and y. This reduces in the case of image correlation to

Z TiYi

r(an) = . .
2o (2o

The normalization performed above is sensitive to gross outliers, due the properties of the

Euclidean norm used. Such erroneous data frequently occur in real world images, for example,
due to transmission errors, specularities, and salt and pepper noise. Brunelli and Messelodi

propose to use a distance metric more robust to this type of noise, the L; norm

n
di(x,y) =Y |zi — il
im1
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and define two similarity metrics based on this norm:

> |k — vl
-1t
PNEARR

7

1 |zi — yil
I(x,y')=— (1 -t ).
= a2
These metrics are transformed into estimators of p and compared to r(x,y) above.

These metrics are then compared with a statistically robust estimator for the correlation:

 Varg(X +Y) = Vary(X =Y)
N Varth(X + Y) + Varth(X — Y)’

where Var, (X) is the tanh-estimator for the variance of the random variable X, due to Hampel
[46]. The tanh-estimator is an example of the class of M-estimators introduced by Huber [47]
that generalize the maximum likelihood estimator. See [48] for more explanation of the class
of M-estimators in robust statistics.

These correlation estimators are chosen for their distributional robustness. The distribu-
tional robustness of an estimator is defined as insensitivity to deviations in the assumed statis-
tical models for the data. In this case, a study was made of the behavior of these metrics in
autocorrelation with injected noise. Autocorrelation is the correlation of data with itself. In the
noiseless case, autocorrelation gives a maximal value for any similarity metric. The degradation
of the estimators as noise is injected reveals the robustness of the estimators. The behavior of
these metrics in the context of face recognition and textbook cover recognition is also studied
in [45].

Brunelli and Poggio [49] compare two dissimilarity metrics to their matched spatial filtering

approach: Image Subtraction:

Dri= ) |T(m,n)—I(z+m,y+n),
m,nenN

and normalized cross correlation:

> T(m,n)I(z +m,y+n)
m,neN

Z (I(z +m,y+n))?

m,neN

Crr =
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See, for example, [44] for a discussion of the use of matched filters for feature extraction.

Each of the metrics defined in this section attempts to rate the similarity of an image patch
I to a template image T'. Since object motion in images may introduce distortions of 7', some
metrics attempt to reduce the sensitivity of the similarity metric to certain types of distortions.
For example, if I and T are identical except for a change in the mean value, mean normalized
correlation will still rate the comparison as a good match.

Recently, researchers have been looking at ways to make similarity metric invariant to more
complex distortions. Hager et al. [50] presents a local correlation metric with provisions to
account for affine distortion and changes in local scene illumination, by combining information
from several templates. Each template represents the same 3D feature, under different illu-
mination conditions. The matching measure used for the individual templates is invariant to
affine distortions of the feature. The match scores from these templates are combined to arrive
at a final similarity metric.

Slater and Healey [51] use ideas from physics-based vision to develop a model for illumination
and geometric invariant recognition of local image structure. They use a finite dimensional linear
model for surface spectral reflectance to store local spatial structure information in matrix form.
Illumination changes then correspond to linear transformations in this matrix, and surface
rotations correspond to circular shifts of the matrices. This enables recognition of local image
structure that is invariant to illumination and rotation.

Birchfield and Tomasi [52] propose a dissimilarity measure intended to be insensitive to
image sampling. They use linearly interpolated intensity functions surrounding the pixels to

develop the measure, which is then used in stereo matching.

2.5.3.3 Feature location with similarity metrics

By using one of the similarity metrics described in Section 2.5.3.2, a template image is

compared to different areas of the input image. Typically, the center of the area of the input
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image having the highest similarity score (or equivalently, the lowest dissimilarity score) is taken
to be the location of the feature described by the template in the input image.

A search window is typically established in the input image. In this search window, the
area, surrounding each pixel is compared with the template. The process of predicting feature
locations described in Section 2.4 often plays a role in selecting the location and size of the
search window. Singh and Allen [14] define a fixed size square search window surrounding the
previous location of the feature.

Kosaka and Kak [39] consider at length the shape and location of the search window. They
model the scene and compute a spatial probability density function for the location of each
feature. This function determines the most likely location in the image for each feature to
appear. They then search the image area corresponding to 85% of the probability mass.

Rizzi and Koditschek tracked a white ping-pong ball against a black backdrop [35], for
the purpose of juggling the ping-pong ball. They use tracking information about the ball and

knowledge of free-falling bodies to compute a search window for the ball.

2.5.3.4 Confidence measures

It has been noted [15] that these similarity measures often lead to some unreliable matches,
particularly in image regions with little textural information. For this reason, it is often helpful
to compute a confidence on the match found, as well as a location. This confidence measure
gives information, regarding the reliability and robustness of the match score.

Anandan [53] is generally credited with the first use of a confidence measure on the displace-
ments generated by correlation measures in 1987. He defined the SSD surface (SSDS) over the
space of displacements, with its height as the SSD value corresponding to each displacement.
Matthies et al. [54] note that the shape of the SSDS is maintained even under significant noise
corruption and that the curvature of the surface seems to be proportional to the quality of
the best match in the search region. Anandan used this fact and computed the curvature of

the SSDS along the four main axes at the SSDS minimum. The SSDS was considered to be
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centered at the point of the best match, and the index (0,0) corresponded to the displacement

that gave the best match. Anandan defined the four normalized directional second derivatives

as follows:

. _ S5D(0,~1) —255D(0,0) + SSD(0, 1)
07 §8D(0,—1) + 258D(0,0) + SSD(0, 1)

ey — 38D(1,=1) = 255D(0,0) + S5D(-1,1)

SSD(1,—1) +28SD(0,0) + SSD(—1,1)
_ §5D(—1,0) —255D(0,0) + SSD(1,0)
0 =55D(—1,0) + 255D(0,0) + SSD(L,0)

_ §8D(—1,—1) — 255D(0,0) + SSD(1,1)

135 = 9SD(—1,—1) + 255D(0,0) + SSD(1,1)"

Anandan defined the confidence measure on the match as

conf = min(co, ca5,Co0,C135)-

Papanikolopoulos [12] notes that this confidence measure is ill-conditioned, due to the re-
liance on the computation of discrete second-order derivatives, and he proposes well-conditioned
confidence measures on the match. He extended a 1D method of fitting parabolas to the SSD
scores in the directions of the four main axes by a least-squares method developed by Matthies
et al. [54], and defined ay, a5, agy, and a135 as the second-order parameters (curvature) of these

parabolas. Papanikolopoulos’s confidence measure is then
CONFA= min(ao, Q45,5 090, a135).
He also defined two confidence measures that capture the statistical properties of the SSDS,

CONFB = min(so, S454 890, 3135)

1 - o2
s2 = T Y SSD(,j)* — MySSD,
1,J €Ny
CONFC = min(ro, 45,790, T135)
1 -
=31 O (88DG:5) = SSDpny)

where s and 1 values as given are the sample standard deviations in the directions of the four

main axes, and the neighborhood N is of size M. The neighborhoods Nj are chosen along
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the principal axis given by k. The symbol SSDj, denotes the mean value the SSD scores for a
neighborhood. These three confidence measures are then used for automatic feature selection.

Anandan [15] used the SSD matching scores of a template with a 5x5 image region to develop
a match confidence measure. This measure is based on the variation of the SSD values over
the set of candidate matches. Anandan argued that if the variation of the SSD measure along
a particular line in the search area surrounding the best match is small, then the component of
the displacement along the direction of that line cannot be uniquely determined. Conversely,
if there is significant variation along a line in the search area, the displacement along this line
is more likely correct.

He found the curvatures along the principal azes of the surface at the point of the best match,
and used this in the confidence measure. The principal axes are defined as the directions along

which the curvature of the surface is extremal. The confidence measures were defined as

c _ Cmaz
mas kl + k25mm + k3Cmaw
_ Crin
Cmin =

kl + kZSmin + k3cmin’

where k1, k2, and k3 are normalization parameters, Sy, is the SSD score corresponding to the
best match, C), 4, is the maximal surface curvature, and C,,,;, is the minimal surface curvature.

The justification for the form of the confidence measure is as follows:

e The confidence measure should be proportional to the corresponding curvature, since the

reliability of the displacement should be proportional to the curvature of the SSDS.

e Since a large value for S,;, indicates an unreliable match due to occlusion, noise, or image

distortion, the confidence is inversely proportional to Syin.

e The presence of the term containing ks is useful to restrict the range of the confidence

measure to (0,1/ks).
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e The normalization factor ki is used to maintain a finite value for the confidence measure
when Sy, tends to zero, as it will for a perfect match between a template and an image

patch.

e The normalization factor ko allows the adjustment of the relative importance assigned to

the factors described above.

Anandan’s confidence measures are used in a hierarchical framework to compute dense displace-
ment fields for image sequences.
Singh and Allen [14] define a response distribution based on the SSD metric Equation (2.1)

as

RD.(u,v) = exp(—kSSD(u,v)), (2.2)

where £ is used as a normalization factor. The normalization factor k was chosen in this work so
that the maximum response was 0.95. Singh and Allen argue for a probabilistic interpretation
of the response surface. Each point in the search area is a candidate for the “true match.”
However, a point with a small response is less likely to be the true match than a point with a
high response. Thus, the response distribution could be interpreted as a probability distribution
on the true match location — the response at a point depicting the likelihood of the corresponding
match being the true match. This interpretation of the response distribution allows the use
of estimation-theoretic techniques. These techniques are used to compute the image flow at a
point and to associate a confidence value with this flow.

Instead of taking the minimum SSD score as most likely location of the match, Singh and

Allen [14] obtain an estimate of the location of the best match by using a weighted least-squares
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approach:

Z RD(u,v)u

u,vEN
U, —

B Z RD(u,v)

u,vEN

Z RD(u,v)v

_ uwweEN

o= Z RD(u,v) ’

u,veEN

and, under the assumption of additive zero mean independent errors, associate a covariance

matrix with this estimate:

Z RD (1, ) (t — tyy,)?

Z RD(u,v)(u — tp) (v — vm)

u,vEN u,vEN
Z RD(u,v) Z RD(u,v)
P. — u,VEN u,VEN
" Z RD(u,v)(u — ) (v — Vpy) Z RD(u,v)(v — vm)?
u,vEN u,vEN
Z RD(u,v) Z RD(u,v)
u,VEN u,VEN

The reciprocals of the eigenvalues of the covariance matrix are used as confidence measures

associated with the estimate, along the directions given by the corresponding eigenvectors. To

our knowledge, this is the first instance where the location of the best match is treated as a

random vector, and the (normalized) SSD surface is used to compute the spatial certainty of

the estimate of this vector. These confidence measures are used in the propagation of high

confidence measurements for image flow to regions with lower confidence measurements, such

as caused by large homogeneous regions.

It is also possible to model the tracking results with a probability distribution and to use

methods from robust statistics to reject tracking results that are not modeled well by this

distribution. Tommasini et al. [55] use this approach to make point-tracking results more

robust to occlusion.
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2.6 Object Tracking

Object tracking can be defined as updating the configuration, in the image plane or in three
space, of an object model. An object model can be a simple 2D shape model, or can contain
more complex information about the object, such as the appearance of portions of the object
or the locations on the object of interesting features.

Feature tracking, as defined above, is commonly used to aid in object tracking. However,
object tracking as we have defined it requires some additional interpretation in addition to
feature tracking. There must be some object model whose configuration is being tracked. In
the degenerate case, the object is a particle, and the choices for object models are as described
above.

More commonly, 3D rigid motion is extracted by analyzing the tracking results of these
point features. This is a well-established area of research. An overview of this research can be
found in [56].

Gennery [10] tracks rigid polyhedral objects. His object model includes a wire frame of
the object and constant reflectivity coefficients for each face of the object. His dynamic model
includes the position, velocity, and acceleration of the object. Bray [38] also tracks polyhedral
objects, utilizing a similar object model. Lowe [26] tracks objects with internal degrees of
freedom, for example, a box with one degree of freedom (a hinged lid). The object model is a
wire frame model, with parameters for the position and orientation of the base and an extra
parameter for the angle between the box body and lid. Not all object models must have a
geometric interpretation, however. Stephens [37] tracks rigid polyhedral objects using a local
Hough transform, so his object model is a point in the six-dimensional Hough space.

All these systems have the unifying characteristic that there is an underlying object model,
and results from the tracking of features are used to update the object parameters. One
advantage to this extra modeling is the ability to treat features as items of secondary interest,
and track the object in spite of the occlusion of some features. Therefore, if an individual

feature tracker fails but other trackers succeed in localizing their features, the object will still
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Figure 2.1 The use of object models.

be tracked. Hashimoto et al. [57] have shown that increasing the number of redundant features
increases the robustness of visual servoing.

By assuming some relationship between the locations of the features, such as the features
belonging to a rigid object in the plane, or the features acting as control points on a 2D
contour, the position and configuration of that object is estimated, leading to predictions about
the feature point locations, rather than predicting the locations separately. Figure 2.1 shows
this idea, for the case of an object model consisting of four corners. If feature tracking alone is
used (no object model assumed), mis-tracking of the corner features results in a warped tracked
object. If the relationship of the corners to each other are used to constrain the tracking results,
the object can be tracked in spite of one corner feature being mis-tracked.

Note that the object model and dynamic models discussed above can be used in almost any
combination. In some situations, it is possible and often reasonable, for example, to have a
complicated object model, but not to include any dynamic model at all [11]. In certain other
situations, it is reasonable to include a more complex dynamic model for the object, but to

consider the object to be a particle (i.e., no object model) [35].
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2.7 Kalman Filtering in Feature and Object Tracking

The late 1950s were a time of great innovation in control theory. First, the mazimum prin-
ciple, a set of necessary conditions for the optimality of an open loop control policy, was devel-
oped. Second, dynamic programming, the systematic use of intermediate partial programming
results to solve larger problems, was popularized. This laid the groundwork for an influen-
tial development, Kalman filtering. Kalman [58] provided a breakthrough in the extension of
Wiener filtering, with its assumptions of stationarity, to nonstationary processes with state-
space descriptions. Kalman filtering provided a mathematical theory for recursive estimation
and predication of an unknown time function on the basis of another, observed one [59].

Kalman filtering was immediately appealing to the control community for a number of
reasons. A solution to the linear system was obtained in a convenient recursive form requiring
the off-line solution of a Ricatti (differential) equation [60]. This allowed system analysts to
formulate their problems in state space, as well as the classical spectral factorization approach
required by Wiener filtering. The Kalman filtering approach also provided an algorithm suitable
for almost immediate implementation on a digital computer. In the community as a whole, the
use of state models was taking off. This resulted in the creation of a separate field of study
investigating the construction of these models, that Kalman termed realization theory.

Both the continuous time version [61] (the Kalman-Bucy filter) and the discrete time version
[68] (the Kalman filter) found immediate applications. The beginning of the space age with
the launching of Sputnik in 1957 introduced many applications for this theory. Engineers at
NASA, the Draper Laboratories of MIT, and elsewhere began using the Kalman-Bucy filter in
control applications [62].

By the 1980s, Kalman filtering was beginning to be used in system analysis. Hallam [63]
uses a standard Kalman filter to track several sonar targets. This tracking is used in the context
of underwater robotic navigation and is used to determine the observer motion. This is a slight
extension of the historical use of the Kalman filter’s use in radar tracking applications [64] in

that radar tracking has no observer motion to extract.
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Ayache and Faugeras [65] utilize the least-squares optimality of Kalman filtering (see Chap-
ter 3) to estimate the orientation of a 2D model based on the location and orientation of multiple
line segments belonging to that model.

Coelho and Nunes [66] present an example of the use of the EKF to calibrate the joint angles
of a PUMA (Programmable Universal Machine for Assembly) robotic arm. In this application,
the 3D position of the end-effector base is taken as an input, and the true joint angles of the first
three joints of the arm are desired. The forward kinematics of the arm are modeled in the filter.
The initial (assumed) position of the end-effector base is assumed to be “sufficiently close” to
the actual position, so that the linearizations inherent in the EKF are reasonably accurate.
The filter is shown to converge to the “true” joint angles, given the actual 3D position of the
end-effector base. This is one of the earlier examples of the use of the EKF to model and
functionally invert, in a local area, the forward kinematics of a robotic arm. Note that for a
nonlinear system such as a robotic arm this inversion is only possible in the local area around
a given state.

By the late 1980s the influence of the Kalman filter had spread, and it was being applied
in increasingly complex situations. One of the earliest reports of the use of a least squares
spatiotemporal filter for the visual tracking of known 3D objects is by Gennery in 1982 [67].
Gennery does not use the standard Kalman filter, but derives a similar approach based on
direct analysis of the covariance of the observed data.

At this point in the development of object tracking algorithms, there were two main ap-
proaches, depending on the measurement data used [13]. One is based on the optical flow field,
and is describe in Section 2.1. The other is based on the correspondence of discrete features
such as lines, points, and contours [68], [69]. Nagel gives a review of some applications of
correspondence-based techniques in use in 1983 in [56]. To this point, work on image sequences
typically used two or three frames of noisy images. By summarizing tracking history in a finite
dimensional state vector, researchers were able to use longer image sequences for tracking. This

avoids the nonrobustness and lack of numerical stability inherent in two and three view monoc-
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ular image based algorithms [13]. The Kalman filter began to be used as a systems framework
for these tracking algorithims.

Although many researchers are using an established framework based in systems theory,
there is still work going on in direct modeling and analysis. Lowe [26] typifies more recent work
in this area, focusing on the analysis of uncertainty and the propagation of error through the
forward kinematics of an object, and the projection of the image of an object onto a 2D sensor.
Huttenlocher et al. [70] decompose the motion of 3D nonrigid objects into two components:
a 2D shape change and a 2D motion of the object image in the sensor plane and analyze
each component separately, enabling the use of distance metrics appropriate to the specific
component. Gee and Cippolla [71] approach the tracking problem as one of pose estimation on
a minimal subset of the observed data and use robust regression based on Bayesian inference
to select the best subset of the data to use for the pose estimate.

In the late 1980s, researchers began directly using Kalman filtering to estimate object state
by modeling the system structure. Faugeras et al. [72] propose the use of the Kalman filter for
integrating noisy stereo measurements to analyze the 3D structure, but give no experimental
results. In [73], Broida and Chellappa employ a Kalman filter to estimate the 2D rotation and
1D translation of an object from a sequence of simulated 1D images. Matthies and Shafer [74]
describe the use of several landmark points to estimate the location of a mobile robot using
Kalman filtering.

Dickmanns and Graefe [75] presented a seminal work describing the relationship of the
modeled world (object state) to the real world and measured world (feature measurements)
and describing the use of the framework in guiding autonomous vehicles [76]. Since then, this
dynamic machine vision approach has been used in many situations, and the use of Kalman
filtering to implicitly invert the complex photogrammatic equations relating image plane feature
measurements to objects in the world has increased [3]. Wu et al. [77], use a small number
of point correspondences to track the motion of a rigid object moving with one degree of

translational motion and one degree of rotational freedom, about an unknown axis of rotation.
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Andersen et al. [78] exploit the dynamic modeling capacity of the Kalman filter to estimate the
state of a ball bearing rolling on a wooden board. The board is part of a labyrinth game and
is mounted on gimbals. The object of the game is to move the ball through a maze without
falling into holes in the board. Allen et al. [4] and Lee et al. [79] use different state formulations
in Kalman filters to track a toy train moving on an oval track with an end-effector mounted
camera. Allen et al. parameterize the motion of the train in a local coordinate system to
better achieve the whiteness assumptions made by the EKF (see Section 3.2 for details on these
assumptions). Lee et al. use a relative coordinate system with respect to the camera, including
the linear and rotational velocities of the target, the surface normal vector of the target, the
angle between the surface normal and visual direction, and the tilt of the surface tangent plane
in the object state. Wilson et al. [3] report the use of extended Kalman filtering to estimate
the relative POSE (position and orientation) of a rigid work piece with respect to the camera,
for the purpose of specifying a desired POSE and moving the camera appropriately. Up to five
corner or hole features are used to determine the POSE of the work piece.

In addition to its use as an algorithm for incorporating feature measurements into a state
estimate, many researchers have benefited from the use of the Kalman filter as a purely spa-
tiotemporal filter. In this way, spurious measurements and noisy data can be handled in a
numerically robust manner. The filtered measurements can then be used in an analysis of the
scene to generate more robust estimates for object states. Matthies et al. [54] estimate the
depth of each pixel in an image via an optical flow approach, using a Kalman filters to smooth
changes in the depth map at each pixel. This results in a dense depth estimate over the image.
Singh and Allen [14] estimate the depth field in an image in a similar manner, but make more
sophisticated use of confidence measurements on the depth field to propagate depth estimates
from regions of high certainty to regions with uncertain estimates. Wunsch and Hirzinger [80]
propose an efficient model-based pose estimation method, then use a Kalman filter to smooth
the pose estimates. Metaxas and Terzopoulos [81] pose the tracking problem as one of physics

based synthesis, and use the continuous Kalman-Bucy filter to synthesize and smooth the non-

28



rigid shape of an object deforming and moving under external applied forces and imposed
constraints. Blake et al. [82] use a Kalman filtering framework to help in the tracking of an
active contour. Matteuci et al. [5] track the bounding rectangle of a vehicle moving along an
assumed ground plane, then filter the 2D motion estimates using a simple dynamic model for
the vehicle. Stark and Fuchs [83] use an active contour model with a Kalman filter to track the
2D silhouette of an object in an image sequence, then use points on the contour to infer the 3D

pose of a known object.
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CHAPTER 3

KALMAN FILTERING

There are many ways to estimate an unknown quantity from available data. One class
of estimators, known as stochastic estimators, models the deviation of the measurements of
a process from the actual output of that process as random variables. Often, the underlying
process is modeled as a random process, but that is not necessary.

In this chapter, we derive the classical Kalman filter equations for a vector valued unknown
quantity. We then derive the extended Kalman filter by linearizing the system dynamics about
the current state estimate. The reader familiar with extended Kalman filtering may wish to
refer to Equations (3.25)-(3.31) for the notation used in this thesis. In Chapter 6, we will use
the extended Kalman filter derived in this chapter.

Possibly the simplest way to estimate an unknown vector valued x from observed vector
data z is mean-square estimation, where the estimate X is chosen to minimize the expected value
of the Euclidean norm squared of the error E[(x — )7 (x — x)]. This can easily be extended to
estimate functions of the quantity x. The Kalman filter implements a recursive least squares
fit to the data, given some assumptions about the system.

Our derivation will proceed as follows. First, we will decompose a general linear system into
stochastic and deterministic subsystems. Then, we will find a least squares estimate for the
state of the system at time k (Xj;_1) in terms of the observed data at time k (zx). Next we

will use this result to find a least squares estimate for the state of the system at time k (% ;) in

terms of all the observed data (zo,...,2;,j < k). We will then derive a recursive formulation of
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the same computation. We combine the recursive solutions for the stochastic subsystem with
the well-known solution for the deterministic subsystem to arrive at the classical Kalman filter
equations. These equations are used to extend the estimation theory to the nonlinear case,
resulting in the extended Kalman filter (EKF). Finally, an algebraically equivalent form of the

EKF is derived that has some computational advantages in our application.

3.1 Basic Kalman Filtering

3.1.1 System definition

We describe a linear plant with noise, like the one shown in Figure 3.1(a) by a discrete time

state model of the following form:

Xpt1 = Ap X + B up + G wy
N e
nx1 nxn nxl nxm mx1 nxp pxl

(3.1)
zr = Hp x; + D up + v
N~ S N
gx1 gxn nxl1 gxm mx1 px1

Both the process noise, wy, and measurement noise, vy, are assumed to be sequences of zero-
mean Gaussian white noise such that Var(wy) = Qi and Var(vy) = Ry, are positive definite
matrices, and E(wv] ) = 0 for all k and [. See Table 3.1 for the matrix dimensions.

In a physical system, the state can be any set of relevant parameters. Formally, relevant
parameters are defined as those parameters needed to uniquely determine the output of a
system, given the input to the system. For example, in a robotic arm, the state might be
the configuration of the robot. A configuration of an object is a set of numbers that give a
specification of the position of every point on the object. Configuration space is defined to be

the space of all possible configurations of a object.

3.1.2 Decomposition of the system

2

We can decompose this linear system into two disjoint systems,” one composed of the

deterministic elements of Equation (3.1) (see Figure 3.1(c)) and one composed of the stochastic

!The variance of a vector is simply the covariance matrix of the vector with itself (Var(v) = Cov(v,v)).
2This derivation follows closely that of [84].
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Figure 3.1 Plant and measurement models.

elements (see Figure 3.1(b)). Then Equation (3.1) is the direct sum of these two subsystems.
This has the advantage that the deterministic part has a well-known solution, simplifying the
derivation below. We will combine the solution derived below with the deterministic solution

to arrive in Section 3.1.5 at the Kalman filter.

As shown in Figure 3.1, the general system given in Equation (3.1) can be decomposed into

the sum of a purely stochastic system

s s
X1 = Akxk + kak

z;, = Hyxj + v,
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Table 3.1 Notation used in this section.

Symbol Definition Dimension Notes

Xk state (at the kth time instant) nx1 n>1

A system matrices nxn

B control input matrices n X m 1<m<n
ug deterministic control input m X1

Gy system noise matrices X P 1<p<n
Wy, white process noise px1

Qx covariance for wy, P Xp

Zj measurement gx1 1<qg<n
H; measurement matrices gxXn

Vi white measurement noise gx1

Ry covariance for vy qgXxgq

Z measurement history kg x 1

Ck,j measurement /system matrix history jgxn i<k

€ noise propagation matrices jgx1

D,k transition matrices nXn

ek, noise matrices gx1

Wik weighting matrix kq X kq

X = Xp;  state estimate at time k given data z ...z n X1

Xp|k—1 state estimate at time k given data zg ...z 1 nx1

and a purely deterministic system

d d

Zz = Hkxz + Dkuk,

(3.3)

where x; = x; + x¢, and z; = z{ + z¢. Note that the transformation matrices Hy and Ay

appear in both the stochastic and deterministic subsystem. A reduction in the number of states

is possible, but we will assume none is done to simplify the presentation, so each of x;, xj,

and x¢ are n x 1 vectors. Similarly, each of zy, z;, and z¢ are ¢ x 1 vectors. To simplify the

notation, we will omit the superscripts unless there is a possibility of confusion between the

stochastic and deterministic systems.

3.1.3 Solution for stochastic system

In this section, we derive a least square estimate for the state of the stochastic system given

in Equation (3.2) at time k, Xy, first in terms of only the data at time k, z, then in terms of

all the observed data zg,...,z;,j < k.
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3.1.3.1 No history

The solution for a linear system in terms of the output of that system is well known from
linear systems theory. This solution will be combined with Proposition 2 (below) to derive a
least squares estimate for our particular linear system. The reader familiar with weighted least

squares may wish to skip this proposition.
Proposition 1 (optimal least squares for a linear system): Given the observation equa-
tion of a linear system where the observations zy are corrupted by a zero mean white noise
sequence Vi,
z, = Hyxp + vy,

the optimal estimate (in the least squares sense) of Xy using the data zy is:

%, = (Hi R, 'Hy) 'HL R} 'z, (3.4)
where Ry, is the variance of vi, Var(vy).

Proof: It is well known (see [84]) that for an over determined set of linear equations,

b = Ax, the least-squares solution is given by:
%= (ATWA)"!ATWD,

where W is a weighting matrix among the terms in x. W may be set to I if equal weighting
among the terms in x is desired. If we substitute Hy for A and z; — vy for b in Equation (3.4),

we arrive at
X = (H{Wka)_ngwk(Zk — Vk).

Since v, is a zero-mean white noise sequence, it does not affect the mean of the estimator
and therefore drops out when we solve for an unbiased estimator® for x;. The intuitive choice
for Wy, to weight the residuals in inverse proportion to the variance of the errors (Wy =
Var(vy)~1), can be shown [84] to achieve the minimum variance error, giving us the desired

result. O

3 An unbiased estimator is one for which E(x — %) = 0.
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3.1.3.2 Solution with observation history

We would like to find an estimate Xj, of x; that incorporates all the observations zg, z1, . . . , Zg.
To this end, we introduce the vectors z; = [z ... zk]T and obtain X, from the vector z;. We
then manipulate Equation (3.2) into a form to which we can apply the well-known linear least
squares solution.

For the purposes of this derivation, we will assume all system matrices A; to be nonsingular,
although the Kalman filter equations can be derived without making this assumption (see [84]).
With this assumption, we can achieve the result shown in Proposition 2. In addition to the
usefulness of the proposition for solving the system equations in a least squares manner, it is
intuitively pleasing, as a separation of the nominal system operation (expressed below as Cj, jx},)

from the noise that has entered the system and been “fed through” the system dynamics (€j_;).

Proposition 2: The output equation from Equation (3.2) can be written as follows, for j < k:

z; = Ck,jxk + €k 4, (3.5)
Ho®g €k,0

where Cy j = : and € ;= | : |. The transition matrices ®; are defined as follows:
H;®k €k,j

f

Aj1Aj2 - AppiAy ifj>k
ik =41 ifj=k (3.6)

&L
\ kv]

if j <k,

and

k
eri=vi—H; > ®,Gi1wi
=041
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Proof: Substituting the definitions of Cy ; and € ; into Equation (3.5), the equality to

prove becomes

Hoxo + vo Hy® vo — Hp Zle Dy, Gi_1w;_1
= : Xp +

H;x; +v; H;j®;k vi—H Y0 25Gia Wi

and we see that it is sufficient to show that
k
H;x; +v;=H;®,x; +v; — H; Z ®,iGi 1w, 1, (3.7)
i=j+1
for j < k. Subtracting v; from both sides of Equation (3.7) and observing that Equation (3.7)
is true for all x,x;, and w; (thus we can drop the H;), we can simplify Equation (3.7) to obtain
k
Xj = CI'j,kxk - Z q)j,iGiflwifl.
i=j+1

Now we left-multiply by @;,i = By ;. O

Proposition 3 (least squares estimate for x;): The linear, unbiased, minimum variance

least-squares estimate of xi using the data zo,...,2;j, which we will denote as Xy|;, is
A T AT _
Xk j = (ChyjWh,jChyj) ™ CiyWi,j2;- (3.8)
Proof: This follows directly from the combination of Equation (3.5) with the previous
result Equation (3.4). O

3.1.4 Recursive solution for stochastic system

Unfortunately, z; as derived in the previous section contains all the observations from time
0. This storage requirement can become onerous in long-running applications. In this section
we will derive a recursive form of Equation (3.8), which gives X, in terms of the previously

computed quantities Xj;_1 and Xj_1x_1.
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3.1.4.1 Observation update
In this section, we wish to relate X, the state estimate given all the data z,...,zg, to
the previously computed estimate X1, given only the data zo, ..., zg—1. This relationship is

commonly referred to as the observation update.

The first step is to manipulate the expression for the weighting matrix above to obtain the
classical Kalman gain, which will quickly lead to the desired observation update equation. First,

we observe that due to the statistical independence of v; and w;, the expression for W,;i_l

can be expanded:

-1 —
Wk,kfl = Var(ek,k,l)
€r.0
= Var
| €k,k—1

Var

Var

Ry

k
vo—Ho) ;o @0,iGi1wi1

| Vi—1 — Hp—1@p—1 kG 1Wg—1

Vo H, Zle Dy Gi_1wWi_1
+ Var
| Vi—1 Hi 1®Pr-1,6Gr-1Wk—1
0 H, Zfﬂ Dy, Gi_1W;_1
+ Var
Ry Hy_1®1_11Gr—1Wi—1
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We will also find recursive forms for the matrix W,;,lc and the matrix Cy, ; useful:

(1—1)ax(i—1)q

~N =
-1
Vo= |
W, . =Var(e ;) = , 3.9
k.j k»j 0 Rj_l (3.9)
Jjaxjq
~~
axq
Cryjt| } Gi—Daxn
Crj=1| " : (3.10)
quxn H, } gxn

We now expand Equation (3.8) in terms of these recursive forms:

2 _ T 1 ~T _
Xgj = (C,jWk,iCr,j) ™ CijWk,iZ;
J J
—1
Wk,j—l 0 Ck,j—l

] Wgji-1 0 Zj_

0 R |z

[C{,j_l Hj

T T
|:Ck,j—1 Hj :| J

0  R;j'| H;
= (Cf;-1 Wiy 1Ch; 1 + H/R;'H,) - (CE Wiy 171 + HIR}'2,)

which can be rearranged to give

(C{,j—lwkﬂ'—lck,j—l + HJTR]-_IHj) Xg|j = (Cijwk,j—lzj—l + H]TR]-_lz]-> : (3.11)
Substituting j = k in Equation (3.11) gives

(Chh1Wie—1Crypp—1 + HY Ry "Hy)Xy ), = Cf 11 Wi p—1Zp—1 + H{ R, 2.

Substituting j = k — 1 into Equation (3.8) and adding H,{Rllekik‘k,l to both sides yields

(Chi_1Wip—1Crp—1 + H R, "Hy)Xyp1 = Cf Wik 171 + H{ Ry K1

Subtracting these two results yields

(CFr 1Wik—1Crp—1 + H{ Ry Hy) (R — %pp—1) = H{ Ry (2 — HiRp 1)
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Now, if we take the standard definition for the Kalman gain
K = (Chr 1 Wip—1Cri—1 + HL R, 'Hy) "H{R, (3.12)
we arrive at
Xk = Xpjo—1 + Kp(zp — HpXpp_1), (3.13)

the classic Kalman “prediction-correction” update equation. This equation expresses Xy,
the estimate of the state at time k given data observations zg ...z, recursively in terms of
quantities known at time k: Xj;_1, the state estimate given data observations z ...zg 1, Ky,
the Kalman gain at time k, and the current observation z;. With this recursive formulation, the
entire observation history is summarized in these few matrices, and the memory requirements

for Kalman filtering become feasible.

3.1.4.2 Time update

In order to use the update in Equation (3.13), we need an expression for X ;_; as a function
of X_1x—1- We note from the definition of € ;1 that €1 = €x—1k-1 — Cpr-1Gr-1Wk—1,

giving us

le,ifl = Var(ék,k,l)
= Var(€—1k-1— Crr-1Gr—1Wk—1)
=Var(@, 15 1)+ Var(Crr 1Gr 1wy 1)
— T ~T
= Wk:—l,k:—l + Ck,k_le_lva/r(Wk_l)Gk_lck,k_l

—1 T T T
=W, 1511 Crp-1Ph-1,5Gr-1Qe-1Gi 1P 14Chp1-

Some manipulation yields

1
Wik—1= Wit k-1 — Wi 5-1Cr1 k—1Pr—16Gr-1(Q,_; +

T T T —1~T T T
G 1Pk 1 4Ch1 -1 Wr-1,6-1Ck-15-1Pk-16Gk-1)" Gi_1Pk_1 4 Cr1 41 Wk-1,6-1-

39



By Equation (3.6) we have Cy ;1 = Ci_1 5—1Px_1, giving us
T T T _
Cit 1 Wep-1=®% 1, {I-C{ 1, 1 Wi_15-1Ck_1,5-1P5-16Gr-1(Q} 1, +
G 1®h 1 4 Ch1 g 1 W1k 1Ck—1 4 1®p 1 6Gro1) T GE_ 1 ®h 1} Choy o1 Wkt k1

Therefore,

T T 1T
(Chk—1Wkk—1Crk—1)Prk—1(Ch1 k1 Wr-1,6-1Cr—146-1)" Ci_1 41 Wk—1,5-1

Left-multiplying by (C’-,f’kflwk,k_lck,k_l)*l and substituting Equation (3.8) for j = k—1 and
j =k, this yields

Dpok—1Xp—1k—1 = Xg|k—15
which reduces to

Xplk—1 = Ap—1Xp_1)k—1,

by the definition of the transition matrix.

3.1.4.3 Kalman gain and covariance updates

Our final matrix to obtain a recursive solution for is Ky, the Kalman gain matrix. From
Equations (3.12), (3.9), and (3.10) we have
K, = (CiyWiiCrp) 'HL Ry
Defining Py, ; = (c{’jwk,jck,j)—l and applying Equations (3.9) and (3.10), we can see that
P, = (CLyWiiChi)
Wik 0 Crr—1
0 R, H,
= Cf -1 Wi e-1Crp—1 + H{ R, 'Hy,

-1 T -1
=Py tHy Ry Hy.
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Using some facts from linear algebra (see [85]) about inversion of block matrices, it can be

shown that
Pri=Prr 1 — Prr 1Hf (HyPr i 1HE + Ry) 'HyPr 1.
These substitutions can be made in Equation (3.12), giving us
Ky, = Py p 1 HE (Hy Py 1 H} +Ry) 1,
giving us a simpler form for Py z,
Prpr=(I—-KiH)Ppp_1.
Furthermore, we can show that
Pri-1=Ap 1Pr_1p-1AL_| + Gr_1Qr_1G]_;.
It can be seen that the Py x_1 matrix is nothing but the covariance matrix of the error,

Prr—1 = Var(xy — Xgx-1)

Pk = Var(xg — X))

In particular, note that Po o = Var(xo).

41



3.1.4.4 Summary

Finally, summarizing the various equations we have derived in this section, we have the

classic Kalman filtering process for the linear stochastic system with state-space description:

f

\

Py = Var(xf)

Pri1= Ay 1Pr1p_1AT | + Gx_1Qr1GL

Ky, = Py y_1HI (HyPr 1 HE + Ry) !
Ppr=(I—-KyHg)Prr_1

’A‘(s)|0 = E(x})

)Aclsc|lc—1 = Ak—lch—Hk—l

Xip = Xppo1 T Ke(zg —HeXp )

k=1,2,....

3.1.5 Combining deterministic and stochastic solutions

(3.14)

It can be shown [86] that the recursive solution for the deterministic solution to the system

given in Equation (3.3) is given by

,

d —
Xklk—1 = Br 1ug

d _ d
Xk = Xk|k—1

k=1,2,...

\
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After unifying notation, it is easy to superimpose Equations (3.14) and (3.15) to arrive at

the classic Kalman filtering process:

f

Py = Var(xp)

Prr1=Ap 1Pr 1, 1AL | + G, 1Qr1GL |

Ky =Pry HL (HPy, H] + R;)™!

Prr=(I-KiH)Pgi_1

. (3.16)
Xojo = E(x0)

Xplk—1 = Ap—1Xp_1)k—1 + Br_1up—1

Xp|k = Xgp—1 + Ki(zk — Drug — HepXpp_1)

k=1,2,....

\

3.2 Extended Kalman Filter

Often, the systems we are interested in are not linear, and therefore, the derivation above
does not capture their dynamics exactly. Exact update equations can be derived (see [87]),
but they are intractable. Fortunately, the robustness of the standard Kalman filter is often
enough to compensate for nonlinearities in the system. However, sometimes a more precise
approximation to the nonlinear system dynamics is needed. In the extended Kalman filter
(EKF), we take the first term of a Taylor series expansion of the nonlinear parts of the system
about the current estimate of that term.

In this section, we consider nonlinear models of the form

xp+1 = £(xx) + G, (k) Wi (3.17)

zg, = hy(xx) + Vi, (3.18)

where f; and hy are vector valued functions with ranges of dimension n and g respectively, and

% is a matrix valued function of dimension n x p (see Table 3.2 for a notational summary). We
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Table 3.2 Notation used in this section.

Symbol Definition Dimension Notes
Xk state (at the kth time instant) nxl1 n>1
1y system function nxl1
A system noise function nxp 1<p<n
Wy, white process noise pxl
Z measurement gx1 1<qg<n
hy measurement function gx1
Vi white measurement noise gx1
Ry covariance matrix for vy qxq
Ay partial of system function nxn
Gy system noise matrices nXp
Q. covariance matrix for wy, pPXp
H, partial of measurement matrices gxn
Yk derived measurement gx1
uy derived control input px1
X = Xg|;,  state estimate at time k given data zg ...z nxl1
Xplk—1 state estimate at time k given data zg...zx 1 n x1

make the usual assumptions with respect to the correlation of the noise and initial conditions:
E(wpw]) = Qidp
E(viv]) = Ryl
E(wivl) = E(wipxl) = E(vixg) = 0.
In this filter, we approximate the system using a linear model. We chose the initial estimate
X9 = E(x¢) and predicted position %;g = fo(%o) to be consistent with this linear model. We

formulate linear approximations for X = X for each k using the (linearly approximated)

predictions
X1k = T (Xk) (3.19)
and the linear state space description

Xp+1 = ApXg + up + Gpwy
Yi = Hgxg + vi (3.20)
where Ay, ug, Gi, yi, and Hy are to be determined on-line as follows. Consider the updates

at time j, so that x;;_; has already been determined via Equation (3.19). Now consider the
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linear Taylor approximation of f; at X;;_; and of hy at Xy, _1:

ofy,

£ (Xk) = £ (%) + a—xk(ik)
. . ohy .
b (Re) ~ Bi(Xe) + 5 (%),
where %(ik) and g%’;(fck) are the Jacobians of f and h, respectively, evaluated at x;. That
is,
o %(xk) Ol (x)
R x| = : - : 3.21
Bt o (3.21)
%’LT’I{”(Xk) %’;’# (xk)
and
S—Q(xk) e (k)
of (x2)
—(x —
Bxk k
B () o Y

We now make the following approximations based on this expansion

oy
= oxp

ohy .
k= B—Xk(xk)

Ay (%)

H
u, =~ fk(xk) — Ak)A(k (322)
Gy, = G (%)
Yk & 2 — hyp(Xgp—1) + HgXpppo1- (3.23)
The nonlinear model in Equations (3.17) and (3.18) is approximated by the linear model in
Equation (3.2) with the appropriate substitutions. Note that the approximations have to be

updated at every iteration, and that the linearization is only assumed to be locally valid (lead-

ing to the subtraction of the predicted values in Equations (3.22) and (3.23)). Using these
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approximations and the results from Section 3.1, we arrive at the EKF update equation:

Xpje = Xplk—1 + Ki(yr — HpXgp-1)
= Xpp—1 + Ki((zr — hp(Xgp—1) + HgXgp—1) — HpXpp_q

= Xpjp—1 + Ki(zp — hi(Xgjp—1)- (3.24)

Combining Equation (3.24) with the previously derived standard Kalman filter, we arrive at

the following set of equations, generally collectively called the extended Kalman filter (EKF):

Poo = Var(xp) (3.25)
%o = E(xo) (3.26)
Prr_1= [gz__ll (ﬁkl)] Pr o1k 1 [gil:_ll (f(kﬂ]T + Gp_1(Rr-1)Qr-1Gf_1 (K1)  (3.27)
Kp ot = Fi1 (Re_1) (3.28)
-1
Ki =Prr1 [g—:::(fikk—l)r “g—:::(ikk—l)] Pyt [g—:::(fikk—l)r + Ry (3.29)
P = [I - K [g—z:(imk—l)” Pr-1 (3.30)
Xpjk = Xgjp—1 + Ki(zp — hg(Xpp—1)) (3.31)

3.3 Alternate Form of Extended Kalman Filter

The Kalman filter equations given above can be algebraically manipulated into a variety
of forms. In this section, we will follow a derivation from [88] of an equivalent form of the
EKF with several numerical advantages in our situation. First, we introduce some notation to

simplify the forthcoming derivation:

ohy
H = 8—)(:(3%\19—1)-
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Recall the covariance update Equation (3.30) and Kalman gain Equation (3.29), repeated

here for convenience:
-1

ohy, T1rony . ohy, . T
Ky =Pri 1 [B—XZ(ka—l)] HB—XZ(ka—l)] Py -1 [a—x:(ka—l)] + Ry

oh
Prr = [I - Ky [8 I]:(ch|k 1)” Prr 1

If Equation (3.29) is substituted into Equation (3.30), we have
Prr=[1-KiH]Pys_1

= [I- Py H (HPy ) H' + R)'H| Py 1

=Prj1— Prpo H (HPy,_ H” + R) "HP ;.
Proposition 4: If the inverses of Py g, Py r_1, and R exist, Py can be written as:

P, =Prr 1) +HR'H. (3.32)
Proof:
I=Py ;P ' = [Pypo1 — Pry_1H (HP)_H” + R) 'HPyj_q] [(Pri—1) '+ H R 'H]
=P 1(Prs1) "t +Prr H'R'H
— P H (HPy , HT + R) "HPj 1 (Pp 1) *

— Pk,k_lHT(HPk,k_lHT +R)'HP;,— H'R'H

=1-PyyH' [-R™' + (HP;;,_H' + R)™! + (HP;;_H' + R)"'HP;, ;H'R'|H
=1-P;, H [-R™' + (HP;;_H +R)"'(I+HP,,_H' R )| H

=1-P;; H' [-R™' + (HP;; H" + R)"'(HP;;, H' + R)R™'|H

=1-PyH [-R R H

=1

O
We now wish to eliminate Py, ; from the equation for the Kalman gain Kj. Beginning from

Equation (3.29), we have

K, = Pk,k_lHT(HPk’k_lHT + f{,)i1
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We next insert Pk,kP;;i and R™!R. into the equation, which does not alter the gain:
_ _ -1
Kj, = (PpsPy1)Prs 1H (RT'R) [HP;, H' +R]
-1
= (PrsPpp)Pre 1H' R [HP (H'R™'+1] .
Finally, we substitute Equation (3.32) into this equation:
Ki =Pry [(Prs 1) + H'R™H| Py H'R™! [HP;, (H'R™ 1]
=Py, [1+H'R 'HP; | H'R ' [HP;, HTR ! +1]
= [P HTR ! 4 Py ,HTR 'HP;, H R '] [HP;, ;H'R ' +1]
-1
=Py ;H R [I+HPy; H'R'|[HP;;, H'R™ +1]
=P H R
Summarizing, we have
P, = (Pre1) ' +H R 'H
Ky =P, :H R,

or, reinserting the previous notation and repeating the other EKF equations for convenience,

Py = Var(xo)

%o = E(xo)

P11 = [862;11 (ik—l)] Pr_1k-1 [g%ll(ik—l)r + G—1(%-1)Qr—1G_1 (Rk—1)
Xpk—1 = fo—1(Xg—1)

P =P+ [g—)}:’;(ikk_l)]TRkl [g—zlg(ﬁmk—ﬂ] (3.33)
Ky =P [g—:lg(fikls—ﬂ] TRI;I (3.34)

Xpk = Xgk—1 + Ki(zr — hi(Xppp—1))

This alternate form has some advantages and disadvantages over the form presented in

Section 3.2. Each step requires the computation of two n X n matrix inversions, instead of the
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one ¢ X ¢ inversion required by Equation (3.29). If the order of the state vector becomes large,
this could lead to computational problems. However, this form has several advantages for our
situation, where n is smaller than ¢q. In Chapter 7, n = 3 or n = 6 and g = 44, so we get a
computational advantage. More importantly, this form of the Kalman filter is not sensitive to
poor conditioning of the matrix HPk,kHT + R, as often happens in our case. See Section 4.5.2
for discussion on the reasons why this occurs. Another advantage of this form is the ability to

express infinite uncertainty in the initial covariance estimate (Pg o = 00).

3.4 An Intuitive Look at the Kalman Filtering Equations

In order to understand how a Kalman filter works, it is helpful to observe a simple example.
This section presents a slightly modified version of Maybeck’s example of calculating a position
with a Kalman filter from [89]. We wish to estimate the 1D bearing of a ship at sea. At time
t1, a measurement of the bearing is taken. This measurement is denoted z;. Due to human
error and inaccuracies in the measuring device, this measurement is not precise. Assume that
the precision can be determined to have a standard deviation of o,,. Given this information,
a conditional probability function for the bearing of the ship at time #; can be established. A
plot of the conditional probability density function (cpdf) fu(s,)2(1)(]21) as a function of z is
shown in Figure 3.2. This plot illustrates the probability of being in any one direction, based
upon the single measurement.

Based on this cpdf, the best estimate at time ¢; for the bearing is
(t) = =1
and the variance of the error in the estimate is
oa(t1) = o3,

Note that # is both the mode (peak) and the median (value with half of the probability weight

to each side) of the cpdf, as well as the mean (center of mass).
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Figure 3.2 Conditional density of bearing based on measured value z;.

At time 9, assume that a trained navigator takes an independent measurement of the ship’s
bearing, at a time ¢3. Further assume that fo = t1, so that the true bearing of the ship has
not changed at all. This observation, like the first, has a measurement value z2 and a standard
deviation o,,. Because the expert has a higher skill and is more proficient with the equipment,
assume that the uncertainty in the second measurement is lower than the uncertainty in the
first. Figure 3.3 presents the cpdf for the bearing based on 2o alone. Note the narrow peak
relative to Figure 3.2, indicating the relative certainty in the bearing based on this measurement.

At this point, there are two independent measurements of the bearing of the ship, with
differing values and densities. The question is how to combine the data in some “optimal”

fashion. It can be shown [89] that, based on the assumptions made, the cpdf for the bearing at

time to ~ t1, z(t2), given both z; and zo, is a Gaussian density with mean p and variance o2,
with
2 2
o o
p=— 22 521+ —5 L 522 (3.35)
021 + 0-22 021 + 022
1/0% =1/02 +1/02, (3.36)

as shown in Figure 3.4. Note that, from Equation (3.36), o is less that either o,, or o,,, which
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Figure 3.3 Conditional density of bearing based on measured value zs.

is to say that the uncertainty in the estimate of the bearing has been decreased by combining
the two pieces of information.

Given this cpdf, the best estimate for the ship’s bearing is
Z(t2) = (3.37)
with an associated error variance
o2(te) = o°. (3.38)

It is the mode and mean of the cpdf. Since it is based on a conditional pdf, it can also
be referred to as the conditional mean. Some thought (see [89]) reveals that p is maximum
likelihood estimate (MLE), the weighted least squares estimate, and the linear estimate whose
variance is less than that of any other linear unbiased estimate. In other words, this is the
“optimal” estimate for the bearing under almost any reasonable definition of optimality.

The form of x4 given in Equation (3.35) is intuitively pleasing. If the measurements z; and
zy were of equal quality, 0,, = 0,,, the optimal estimate of the bearing is simply the average of

the two measurements, as would be expected. The uncertainty in the new estimate is exactly
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half of the uncertainty in each measurement. If the measurements are of unequal quality, say
04 > 04, then Equation (3.35) dictates “weighting” zo more heavily than z;. In the extreme
case, measurement z; is much more uncertain than measurement zy, 0,, > 0,,, and the best

combined estimate is approximately z2, 4 = zo. Then

2

z2 2

2 2 92
2 + O

o
= O

. 2
sigma” = \

5"

Note that even in this case, the variance of the estimate is less than the variance of either
measurement: even poor quality data provide some information and thus increase the precision

of the filter output.
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In order to better show the equivalence of this presentation with the Kalman filter presented

earlier in this chapter, we can rewrite Equation (3.37) as

E(ta) = p (3.39)
2 0_2
= 222+ Lo 3.40
R (340
2 2
ag g
=(l-m5)at 55 (3.41)
Uzl + z2 21 22
2
:Zl+¢ 20— 21 3.42
e CEE (3.2

or in the form actually used in the Kalman filter implementations (noting that z(¢1) = 21),

j:(tg) = .%(tl) + K(tz)[ZQ — iﬁ(tl)] (343)
K(ty) = UQ"T (3.44)

These equations show that the optimal estimate at time to, Z(t2), is equal to the best prediction
of its value before measurement z9 is taken, Z(t1), plus a correction term of an optimal weighting
value times the difference between z, and the best prediction of its value just before z5 is taken,
Z(t1). This “predictor-corrector” structure should be familiar from Equations (3.13) and (3.31).
Based on all previous information, a prediction of the desired variables and the measurement (a
function of those variables) is made. Then when the next measurement is taken, the difference

between it and its predicted value is used to “correct” the predication of the desired variables.
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Using the K(t2) form given in Equation (3.44), Equation (3.36) can be rewritten as

02(ty) = o (3.45)
1
S (3.46)
1/0?1 + 1/0?2
2 9
= _juln_ (3.47)
Oz + 02,
2
022 2
= Tn 2 3.48
Ugl +O'22 1 ( )
2
o
=l1-—"2_ ]2 3.49
( 021 + ai) “ (3.49)
—[1- K(b)o?, (3.50)
= 0%(t)) — K(t2)o?(t1) (3.51)

recalling that 02(t1) = 0, and 02(t2) = 0. Note that since we have assumed that the cpdf is
Gaussian, the values of Z(t2) and o3 (t2) embody all information in fy(s,)12(t:),2(t) (%121, 22). In
other words, by propagating these two variables, the conditional density of the bearing at time
to, given z; and zs, is completely specified.

This example illustrates the power of the Kalman filtering algorithm. It uses information
about the uncertainty of the current estimate for a variable and information about the uncer-
tainty of a measurement to arrive at the best combination of these quantities to use as a new
estimate for the variable. This example does not include all the features of the Kalman filter,
however. The dynamics of the problem, or the movement of the state that occurs when ¢y % t1,
are not considered here. Maybeck [89] continues this example to include a dynamic model for
the system and shows the continued parallel between the Kalman filtering equations and the

“intuitive” answer arrived at by considering the Gaussian cpdfs directly.

3.5 Robustness and Limitations of Kalman Filtering

The extended Kalman filter (EKF) is a very robust and flexible algorithm. This fact is

evidenced by the wide use of the EKF, although many of the assumptions involved in the

54



derivation of the filter are violated in most common situations. However, Kalman filter design
is not always a straightforward process. The noise covariance matrices () and R are often known
only to within an order of magnitude. The process and observation noise processes, being real,
cannot be white. In spite of all these violations of the theoretical assumptions, the EKF gives
reasonable results in a wide array of applications, including many applications very similar to
ours. Bierman [90] outlines some practical problems involved with Kalman filter design.

Least squares techniques in general, and Kalman filtering in particular, have some well-
known limitations when applied to parameter estimation. The assumptions made by these
techniques exclude gross errors (outliers), systematic errors and correlations in observations,
and assume exact models [91]. Each of these assumptions is often violated to a certain extent
in any given observation; these violations may prevent least-squares techniques from yielding
acceptable results. Estimators have been developed to reduce or eliminate problems stemming
from these types of errors [92], but the flexibility and overall robustness of the EKF, particularly
when combined with a simple outlier reduction test (see [91]), led us to use the EKF in favor

of the more numerically robust methods [92].
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CHAPTER 4

A MODEL-BASED OBJECT TRACKING SYSTEM

In this chapter, a system for model-based object tracking is described. This system updates
the internal parameters of an object model from monocular grayscale images of that object.
The system accounts for both self-occlusion and external occlusion of features, and weights
feature observations according to their predicted usefulness in disambiguating the state, as well
as the amount of spatial uncertainty present in the feature observation.

We begin by presenting the tracking algorithm used in the system. Then we examine several
components used in the tracking algorithm: feature tracking and measurement uncertainty
estimation, assimilation of feature tracking results, and finally provisions for self-occlusion and

external occlusion of features.

4.1 Algorithm

In this section, we present an overview of our algorithm for object tracking. Figure 4.1

shows the pseudocode for this algorithm, and Figure 4.2 illustrates the process pictorially.

4.2 Feature Tracking

In this section, we describe the portion of the algorithm involved in generating the feature
tracking results described above. First, a description of the models used and assumptions made

will be presented. Then, a description of the generation of synthetic scenes will be presented.
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For each time step k
1. Capture new image I of scene
2. For each feature f

(a) Use object geometric model M and estimated configuration %Xj,_; to create ex-
pected appearance template T' of feature f in image. The appearance model will
also determine the visibility of f in the image.

(b) Use object geometric model and estimated object motion to compute expected loca-
tion h(%y,_;) of feature f in image.

(c) Compute SSD error measure Equation (2.1) between template 7' and image patch
surrounding h(Xgz_1)-

(d) Take minimum SSD score as measured feature value z;.

e) Estimate variance and covariance R ¢ of measurement by evaluating the scaled SSDS
f y g
in local area surrounding zy.

3. Combine feature measurements z;, f = 0..numfeatures and covariances Ry, f =
0..numfeatures with current state estimate Xj;_; and covariances Py (via EKF
framework as described in Chapter 3) to arrive at optimal updated state estimate Xg |k
and updated covariance Py ;.

Figure 4.1 TRACK-OBJECT, an algorithm for object tracking.

57




3D World Joint Angles
State Update

L
| 6091

Optimal
Filtering 6,

A

Camera Models & Graphics

Feature

Tracking &\H

Input Image Graphics Image

Figure 4.2 Tracking system overview.

58



The use of this scene for generating feature appearance templates will be discussed. Finally, the
a dissimilarity metric for comparing a feature appearance template to a portion of the input

image, and its use in feature tracking, will be presented.

4.2.1 Models used

In this thesis, five models will be used: the overall system model, the object geometric
model, the object appearance model, the imaging model, and the object dynamic model. In
this section, we will describe these models and discuss the assumptions that can be made for

each.

4.2.1.1 System model

We utilize a general nonlinear model in our tracking system. The use of the system model
in tracking was described in Chapter 3, and examples for some different situations will be
presented in Chapter 6. The other models we will describe relate to assumptions about object
geometry, appearance, and dynamics, as well as the the imaging system, and are realized by
instantiating functions in this system model. In this model, the state vector at time k+1, xg41,
is given by a vector valued function f; of the state vector at time k, xi, with additive noise.
Observations of the system are given by another vector valued function hy of the state vector
at time k, x, with additive noise. The equations for the nonlinear model used for the system

are of the form

Xip+1 = £(xg) + wg

zg, = hg(xg) + Vi
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See Table 3.2 for a notational summary. We make the usual (in the Kalman filtering literature)

assumptions with respect to the correlation of the noise and initial conditions:

E(wpwi) = Qi
E(viv]) = Ry

E(wyv]) = E(wyxg) = E(vexg) = 0.

4.2.1.2 Object geometric model

The object geometric model describes the size and shape of each link of the articulated
object under consideration and how the links move with respect to one another. This model is
a superset of the standard kinematic model used in robotics, which defines only the interrelation
of the coordinate systems of each link, but not the shapes of the links [93]. Thus, the object
geometric model will determine the position of all features in the world coordinate frame, given
the robot’s configuration parameters. The use of complex explicit geometric models in object
tracking has increased in recent years [94], [95], [96]. We assume that the object model is known

a priori, and that it does not change.

4.2.1.3 Object appearance model

The object appearance model describes the color, texture, and materials used on each link
described by the object geometric model. The combination of the object appearance model and
the object geometric model defines the position and appearance of every point on the object.
Specifically, this allows us to recover the 3D appearance of the area immediately surrounding
a feature, given the feature location and the object configuration [11]. The method used to do
this is described in Chapter 5.

In addition to direct modeling of object attributes, this model includes assumptions such as
ambient lighting and background color that are not strictly object features, but that will affect

the appearance of features.
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4.2.1.4 Imaging model

The imaging model mathematically describes the camera used to image the scene. This is a
superset of the perspective or orthogonal projection models, including any lens modeling (such
as vignetting, lens distortion, or focusing effects) for the camera [23]. We include the position
of the camera in the scene in this model. A fixed camera position could also be assumed, by
including the object position relative to the camera in the object geometric model. This model

is assumed to be known and constant.

4.2.1.5 Object dynamic model

The dynamic model describes the assumptions about motion through the filter’s state space.
In our case, x; contains the joint angles q and joint velocities q, so the object dynamic model
describes movement through the robot’s configuration space. For an in-depth description of
configuration space concepts, see [93] or [97]. Intuitively, the dynamic model fy(xy) is the best
estimate (from a modeling standpoint) of the next state of the system given the current state
X. The choice of these models was described in Section 2.4.

For instance, if we know that the robot is being controlled such that it maintains a constant

velocity in configuration space, we adopt a “constant velocity” dynamic model

fi(xk) = ar + Ay,

where A is the sampling interval. If we wish to avoid explicit modeling of motion, we can

assume a “constant position” dynamic model:

fk(xk) = Xg-

Note that since x;11 = f(xx) + Wy, this is not the same as assuming that the object never
moves, but rather that the motion is completely unpredictable. Specifically, deviations from
the motion model are assumed to be zero-mean, Gaussian, and white. If “no dynamic model”

were assumed, the implicit assumption would be what we have described as a constant position
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dynamic model. In this case, the state vector is simply the object configuration parameters,

Xk = Q-

If constant velocity is assumed, the velocity through configuration space needs to be estimated

as well, so

qk

Xk
qk
Motion models f could also be formulated to model constant workspace end-effector velocities

or a number of other feasible dynamic models.

4.2.1.6 Errors in models

Each of these models affects the robustness of the visual tracking process, and errors in each
model will degrade the performance in different ways. Errors in the appearance and imaging
models will affect the appearance of a feature template and will degrade the feature-tracking
portion of the algorithm in as much as the appearance of the features in the input images
no longer match the expected appearance. As long as the “correct” location of a feature is
most similar to the template, feature tracking will occur without errors. Since the correlation
measure does not account for changes in illumination [50], errors in the modeling of illumination
would change the object appearance, and would affect feature tracking in much the same way.

Errors in the object geometric model would affect the system differently. First, the forward
kinematics of the object describe the mapping between the object configuration space and the
workspace. Thus, errors in this mapping will initialize the feature trackers at incorrect positions
in the image, positions different from the actual locations of the features. Second, the forward
kinematics as well as the partial derivatives of this map are used to compute a linearization
of this nonlinear map for the purpose of assimilating feature tracking results into an updated
object state. Section 3.2 describes this process. The implication of an incorrect geometric model

on the process is that a minimum least squares fit to the object feature locations is computed,
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and the estimates of the object parameters would be incorrect in so far as the placement of the
features is incorrect with respect to the object due to the geometric errors. Luckily, since the
same geometric map is used for the forward projection of feature locations and the assimilation
of feature tracking results, small errors in the geometric map result in proper feature tracking
at the expense of accurate object configuration estimates. If feature location prediction and
object dynamic models were used to a greater extent, such that only the most likely feature
locations in the image were searched, errors in the geometric map might be more problematic.

Errors in the dynamic model will draw the state estimate off during the time projection
portion of the object-tracking system. This means that the predicted feature locations will
be incorrect to a certain extent. As long as the actual feature locations still fall within the
search regions, the only result is that the correction portion of the prediction-correction update
equation (see Section 3.2 for an explanation of the extended Kalman filter) will be larger. If
too many features fall outside the search region due to an incorrect dynamic model, the feature
trackers will not be able to bring the full state estimate close enough to the actual state, and

tracking will fail.

4.2.2 Scene rendering

Given an object geometric model, an object appearance model, an imaging model, and an
estimated configuration of the object, a synthetic scene can be generated. This scene represents
the system’s best estimate of the appearance of the scene, as imaged by the camera.

A 3D graphics object representing each link of the object is generated using OpenGL [98]
graphics primitives. These objects, for the case of the PUMA arm, are shown in Figure 4.3.
These models allow the user to view the links from any specified viewpoint.

OpenGL allows the use of homogeneous transformation matrices to move between the world
coordinate frame and subordinate model coordinate frames, much as homogeneous transforma-

tion matrices are used in robotics to move between the world coordinate frame and subordinate
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coordinate frames rigidly attached to the links of the robot [93]. The coordinate frames for
each of the six links for the PUMA are illustrated in Figure 4.4.

The object geometric model and configuration completely specify the relative locations of
the link coordinate frames with respect to the world coordinate frame. Thus, the 3D graphics
objects representing the links can be placed in the world coordinate frame of the graphics
scene, in the locations that they would occupy when the arm is in a particular configuration.
In order to determine the appearance of the scene, an imaging model such as described above
is assumed. With these models in place a synthetic scene such as that shown in Figure 4.5
can be generated. Note that the image produced by the program uses 24 bits of grayscale and
currently is produced at a resolution of 512 x 485. Therefore, the quality of the image in this

thesis does not reflect the quality of the synthetic scene actually used by the system.

4.2.3 Generating feature appearance templates

Feature points are specified by hand as 3D points in a link coordinate system. Given the
geometric model and an estimated configuration, the position of each feature point in the world
coordinate frame can be determined. Given the imaging model, the projection of each feature
point onto the image plane can be determined. We term this point in the image plane the
expected feature location.

If a feature point is visible in a given configuration, it can be expected that the area in
the input image surrounding that feature point will resemble the area in the synthetic image
surrounding the expected feature location. This is the principle upon which we base our method
for automatically generating templates for arbitrary complex features. A fixed rectangular area
of the synthetic image called the feature appearance template, centered on the expected feature
location, is saved for use during feature tracking. Some other choices for feature templates are
discussed in Section 2.5.3.1. This choice for template generation enables us to use arbitrary

points on the surface of the object as features, and allows the use of the same framework whether
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Figure 4.5 A synthetic image.

the feature is a line, a spot, a corner, or the center of the letter P. This process is repeated for
each visible feature.
A feature is defined as visible if the projection ray from the feature location to the optical

center of the camera does not intersect any portion of the object in the estimated configuration.

4.2.4 Use of SSD in feature tracking

In this section, we investigate the use of the SSD measure Equation (2.1) for feature ex-
traction. We will describe the information about a feature that can be extracted from the SSD
surface, and how to extract that information.

We define the SSD surface (SSDS) to be that surface generated by the SSD match score of
a template at each pixel in some region of the image. The full SSD surface (where the image
region under consideration is equal to the entire image) will be the same size as the image,
ignoring border effects. It is expected that if the template matches well with a subimage, the
SSD match score at that location will be low, and the SSD surface will exhibit a minimum

there.
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Figure 4.6 Use of similarity metric.

The SSD surface is used for feature detection in an image in the following way. Section 2.5.3.3

describes the general theory of the use of dissimilarity measures for feature tracking. The

template is initialized to the expected appearance of the feature of interest, as described in

Section 4.2.3. The SSD surface is computed in some neighborhood of the expected feature

location in the image as given by Equation (2.1) and the location of the lowest SSD match

score is returned as the most likely location of the feature. This process is pictorially illustrated

in Figure 4.6.

4.2.5 Spatial discrimination

As the SSD measure is used to compare the template to areas of the image near the mini-

mum, some measure of the spatial discrimination power of the template can be generated [15]

[12]. Spatial discrimination is defined as the ability to detect feature motion along a given

direction in the image. This concept is quite similar to the confidence measures discussed in

Section 2.5.3.4 that estimate the reliability of the location estimate, but we interpret the con-

fidences as spatial uncertainties in the returned location. For example, an edge feature, such
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Template SSDS for noiseless image

Figure 4.7 An edge feature.

as that shown in Figure 4.7, can detect feature movement only in the direction orthogonal to
the edge. In this example, horizontal movement of the edge in the image can be tracked, but
vertical movement cannot be tracked. This fact can be determined by examining the SSDS
shown in Figure 4.7. Note that the negative of the SSDS is shown for illustrative purposes.
The surface has a sharp minimum at the edge, in the direction perpendicular to the edge. In

the direction parallel to the edge, the match scores are approximately equal, forming a surface

with little curvature in those directions.

Figure 4.8 shows an SSDS that corresponds to a corner feature, and that has a sharp
minimum at the extremal point. This shows that, in contrast to the edge feature described
above, this surface has sharp curvature in all directions around the minimum, and provides

good localization in both dimensions. Indeed, for a point feature such as a corner the curvature

in each direction is approximately equal.

Figure 4.9 shows an SSDS that corresponds to a point belonging to a homogeneous area, and
that exhibits no sharp minima. In the ideal case, the SSDS is flat. In real images, multiple small
local minima, in all directions will exist. In all directions, the match scores are approximately

equal, forming a surface with little curvature in any direction. This surface does not discriminate

the spatial location of the template well in any direction.
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While conclusions about the efficacy of a given template for feature localization can be
drawn from the fully computed SSDS, it is expensive both computationally and from a computer
memory standpoint to maintain the complete surface for this purpose. In the next section, we
use a normalized version of the SSDS to compute the probability density function of a Gaussian
random vector, and illustrate that the vector retains approximately the same information about

spatial feature discrimination as the full SSDS.

4.2.6 Approximation for RD

In order to maintain and use relevant information about the shape of the response dis-
tribution, we introduce a mathematical approximation to the distribution given in Equation
(2.2). By suppressing the off-peak response of the feature tracking result, this response distri-
bution function converts the SSDS into an approximately Gaussian distribution that contains
the feature tracking information we wish to maintain in the Kalman filter.

We model the feature location as a 2D random vector and show that the mean and covariance
of this vector contain relevant information about the ability of the template in localizing a
feature. The extended Kalman filter described in Section 3.2 models measurements as Gaussian
random vectors. This approximation will allow us to explicitly recognize the assumptions
made in a Kalman filtering framework, by explicitly analyzing the density functions of the
measurements used in the filter.

In Section 4.2.6.1 we review the characteristics of Gaussian random vectors and illustrate
the behavior of the density functions of these vectors in several situations. In Section 4.2.6.2 we
describe a method for estimating the parameters for a Gaussian random vector given a feature

measurement as described above.
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Figure 4.10 Density function for a 2D Gaussian random vector.

4.2.6.1 Gaussian random vector

A 2D Gaussian random vector has a density function as shown in Figure 4.10. The equation

for this function is

1 1 TR-1
= ——— Xerp | —(x— R (x— ,
or e 5(x— ) (x — )

fx(x)

Var?(u) Cov(u,v
where x 2 [u v]”, p 2 [E(u) E(v)]”, and R 2 () ()

Cov(u,v) Var?(v)

It has been noted [89], [99] that the covariance matrix of a random vector determines the
shape and orientation of the contours (in the noiseless case, they are ellipsoids) of constant
probability. Kosaka and Kak [39] provide an in-depth discussion on the equivalence between
a covariance matrix and the related error ellipsoids. Figures 4.11, 4.12, 4.13, and 4.14 show
the covariance matrices, density functions, and contours of constant probability for several
different situations. The orientations of the semimajor axes of the error ellipsoids determine
the eigenvectors of the covariance matrix. The lengths of the semimajor axes determine the
eigenvalues of the covariance matrix.

If the measurement vector zj is interpreted as an uncertain location in the (u,v) plane,
it is illustrative to analyze the behavior of the density function as Ry changes. For example,

if R, = o2I, the location is equally certain in each direction, as shown in Figure 4.11. If
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Oy 7 0Oy, as in Figures 4.12, 4.13, and 4.14, the location is more certain in one direction (given
by the minor axis of the ellipse) than in the other direction (given by the major axis). As the
length of the major axis approaches infinity, complete uncertainty on the location along this
dimension is asserted. This uncertainty is the primary information needed to determine the
spatial discrimination power of the SSDS for a particular case. Thus, it is sufficient to maintain
the mean z; and covariance Ry from a measurement. In the next section we explain how to

estimate these quantities.

4.2.6.2 Parameter estimation from the SSDS

This section describes a process for analyzing the SSDS to arrive at estimates for the mean
and variance of a Gaussian random vector. The density function of this vector acts as an
approximation to the response distribution (Equation (2.2)) for the purpose of tracking features.

The mode, or most probable value, of a random vector is located at the peak of the density
function. We take the location of the minimum of the SSDS as our value for the mode of the

vector,
Zp = aTgMing ,SSD(u,v). (4.1)

The variance of u (02), the variance of v (), and the covariance between u and v (py, Ty 0y)
can be estimated directly from the response distribution using Equations (2.2) and (2.3), yield-

ing the desired covariance matrix,

2
Ou PuvOuOy
R, — , (4.2)
PuvOuOy 0'12;

which, as described above, contains complete information about the orientation and shape of
the error ellipsoids. Figure 4.15 illustrates this process. Our computation of the normalization

factor k in Equation (2.2) differs from [14]. We chose k such that

> RD(u,v) ~ 1. (4.3)

uWEN
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SSD Surface Response Distribution Density Function

Figure 4.15 Approximation of response distribution by density function.

This has the effect of suppressing the off-peak response of the feature detector, and making the
response distribution more closely approximate a Gaussian density function with the desired
characteristics.

By computing the covariance as well as the variances, we retain information about the
orientation of the ellipsoids of constant probability, as well as their intersection with the u and
v axes. Therefore, we gain the ability to maintain information about directions of good spatial
discrimination.

Of course, as we are only maintaining the mean and variance of the random vector, and
not the complete SSDS, this is only an approximation to the complete information about local
image structure given by the SSD. However, it does give some indication of both the absolute
quality of the match and, in cases where edge features exist, the direction of the edge. Perhaps
more importantly, we are explicitly recognizing the Gaussian assumptions made by the Kalman

filtering framework (see Chapter 3).

4.3 Some Comments on Feature Selection

One interesting question to ask is, what is the minimum number of features needed to infer
the joint angles of an articulated object? This is related to our problem of tracking the joint

angles of an articulated object, but does not make the common assumption used in tracking
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that the joint angles are in some local neighborhood of the previous joint angles. Without this
assumption, the determination of the joint angles from point feature information reduces to a
well-known research field known as pose estimation.

It has been shown that for the general case of estimating the position and orientation of a
rigid object under perspective projection, unique solutions exist for 4 coplanar, but not collinear,
points [100]. Thus, an upper limit on the minimum number of features required to compute
the position and orientation of each link of an articulated object is four per active link of the
object.

However, knowledge of the kinematics of the object could reduce this number. For example,
consider the case of the PUMA robotic arm. If the first three joints of the arm are free to move,
we refer to this configuration as having three degrees of freedom (3DOF). The estimation of
the positions and orientation of each link independently therefore requires knowledge of the
location in the image plane of 12 features.

We will show that consideration of the kinematic structure of the arm will reduce the
minimum number of features to three. Haralick and Shapiro show [101] that the image plane
locations of three collinear points under perspective projection are sufficient to recover the 3D
parameters of the line containing those points. Therefore, if those points are located collinearly
in known locations on link 3 of the PUMA (see Figure 4.16), this would be sufficient to recover
the pose of link 3. The determination of the pose of link 3 also determines unique poses for
links 1 and 2 of the arm. Joint angles qg, q1, and g2 can be computed directly from these poses.
With careful selection of features, three feature points can be used to infer the values of joint
angles qo, g1, and go.

As will be seen in Chapter 7, many more than four features are used for the case of a 3DOF
PUMA robotic arm. Reasons for this include a more general formulation for the analysis of the
kinematics (see Chapter 3), compensation for the possibility of occlusion, or missing features
(see Section 4.5), the possibility of feature measurements that do not yield accurate feature

locations in all directions (see Chapter 5), and the possibility of a singularity in the observation
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Figure 4.17 Reduced system model.

function (the line containing the three points could intersect the optic center of the camera,
yielding identical feature locations for the points).

Chapter 3 discussed estimation of the state of a nonlinear system from noisy observations of
that system. As Section 4.1 explains, we use this system model in our object tracking system.
System theory defines observability as the ability to estimate the state of a system from the
knowledge of the input to the system, models of the system dynamics, and the output of the
system. Note that the noise assumed in our system model Equation (3.1) is not tolerated in

basic system theory, and will be neglected for the remainder of this section.
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Under the assumption of no control input and no additive noise, the system is of the form
given in Figure 4.17. Then it can be seen (see [102]) that the determination of the observability

of the system reduces to a test of the linear independence of the columns of the image Jacobian,

ohy

oy This observation allows some comments on the location of features in our system.

First, each joint angle to be estimated must affect at least one element of the measurement
vector. That is, at least one feature point must move with each joint angle of interest. Note
that this does not imply that a feature point must be present on each link of the arm, although
this is a common case. As shown above, determination of the position and orientation of the
arm are sufficient to infer all three joint angles in the 3DOF case.

Second, the effects of singularities in the image Jacobian can be determined. The observation
function hg(xy) (see Section 7.4) models the mapping from the joint angles of the robot to
feature points in the image. The matrix derivative of this function, g—z’;, is referred to as the
image Jacobian [103]. The observation function is the composition of the forward kinematics
of the robot, the point locations on the robot that project to the feature points, and the
projection equations. The image Jacobian is therefore the composition of the arm Jacobian
and the projection Jacobian. Due to this, singularities in either the arm Jacobian or the
projection Jacobian cause singularities in the image Jacobian.

In physical terms, singularities in the arm Jacobian occur in configurations where incre-
mental motion in a joint angle leads to no incremental motion in the workspace location of a
point on the robot. Singularities in the projection Jacobian occur when incremental motion
of a point in the workspace leads to no incremental motion in the image feature. In either of
these cases, movement of the relevant feature reveals no useful information about motion of the
relevant joint.

If a singularity occurs in the image Jacobian, and if there is no other feature that reveals
information about motion about the relevant joint angle, that column in the image Jacobian
becomes zero. In system theory, this is referred to as a mode of the state vector becoming

unobservable. Note that if there is another feature whose incremental motion reveals information
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about the relevant joint angle, the Jacobian does not drop rank, and the mode of the system
remains observable.

Nulls in the image Jacobian can occur for reasons besides the singularities described above.
Features which are self-occluded (see Section 4.5.2) are represented as a constant in the obser-
vation function, and thus cause nulls in the Jacobian. This is another justification for our use

of several redundant features for each joint angle on the arm.

4.4 Assimilation of Feature Tracking Results

In this section, we describe the combination of tracking results from individual features into
a single system feature tracking result. The use of feature tracking results to update object
models was introduced in Section 2.6. In this section, we describe the case where feature
tracking results are available for every feature. In Section 4.5 we describe the modifications
required to account for missing feature measurements. We then describe the use of the system
feature tracking result in the overall object tracking system.

Once z; and Ry have been computed for each feature (in this section, we will denote
individual feature measurements by z,]: and their covariance by R£), the information from the
individual feature trackers must be combined to make observation and covariance vectors for

the system as a whole (denoted as z; and Ry).

To make this combination, we concatenate the means of the individual vectors,

1
Z,

Zp = )
F
Zy,

where there are F' features. If we make the assumption that the additive noise in the feature

measurements is independent, the covariance of z; can be computed by constructing a block-
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diagonal matrix from the individual covariance matrices,

_R,1€(1,1) R} (1,2) --- 0 0o |
R} (2,1) RL(2,2) 0 0
Ry =
0 0 RI(1,1) RE(1,2)
|0 0 - R{(2,1) R{(2,2)]

where the individual R,’: are as described above. Modeling the interactions between the un-
certainties of the individual feature trackers is a nontrivial task [14] and is a topic for future
research. The interactions of the locations of the features are modeled, in that the movement

of each feature plays a role in updating the state estimates X, as described in Chapter 3.

4.5 Treatment of Feature Occlusion

In this section, we describe how the system treats feature occlusion. Feature occlusion
is defined as any situation where a feature is not completely visible from the viewpoint of
the camera. Whether a particular feature is occluded is a function of the camera viewpoint,
the object configuration, and the position of external objects that may obstruct the view of
the object. We differentiate between three types of occlusion and describe the treatment of
each type. Note that in an object-tracking framework, the loss of a feature due to occlusion
causes mistracking only to the extent that the erroneous feature tracking information causes
errors in the state estimate. Since an overconstrained system can compute state estimates with
some missing observations, if a feature which is missing due to occlusion becomes visible it is

automatically reacquired. This is one of the benefits of using object models in object tracking.

4.5.1 Features off-screen

The object geometric model and imaging model can be used to compute the 3D location
of each feature and the location of the projection of that point onto the image plane. If that

projection is outside the finite portion of the image plane actually observed, that feature is
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Figure 4.18 Example of off-screen features.

said to be off-screen. Features determined to be off-screen are marked not visible. Figure 4.18

illustrates a configuration in which the gripper fingers would be determined to be off-screen.

4.5.2 Self-occlusion of features

Self-occlusion is occlusion of a feature by another part of the modeled object. To detect self-
occlusion, the 3D location of each feature point and the location of the projection of that point
onto the image plane is computed as described in Section 4.5.1. During the rendering process,
the depth of the closest object to the image plane at each pixel is recorded in a special buffer
termed the z-buffer. This is a well known method for 3D rendering in computer graphics [104].
To compute self-occlusion, the depth recorded in the zbuffer at each feature projection point
is compared against the computed distance from the image plane for that feature to determine

if the feature is visible at the given configuration. A feature is visible in a given configuration
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Gripper not occluded Gripper self-occluded

Figure 4.19 Example of self-occlusion.

if its depth is equal to that recorded in the appropriate portion of the zbuffer. An example of
a configuration where self-occlusion occurs is shown in Figure 4.19.

If a feature f is found to be not visible due to being off-screen or due to self-occlusion, the
relevant elements of the observation function (hzf (xx) and hzf *1(xy)) are set to a constant. As

seen in Section 3.2, this will cause

on o+t

and results from tracking the nonvisible feature will not be used in the state update. Indeed,

in the interest of performance, tracking is not even performed on nonvisible features.

4.5.3 External occlusion of features

External occlusion is occlusion that cannot be predicted from the object model and es-
timated configuration. This includes features predicted to be visible that are not visible, as
well as features that have some unmodeled object obscuring the visibility of the feature. For

example, if someone walks between the camera and a feature of interest (see Figure 4.20), the
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Gripper not occluded Gripper externally occluded

Figure 4.20 Example of external occlusion.

resulting measurement would be termed ezternally occluded. The system does not have a test
for external occlusion, such as the tests described above.

When a feature is externally occluded, the template will not match any area of the image
very well. Thus, there is not a single well defined peak as shown in Figures 4.7 and 4.8. When
the variance and covariance numbers are estimated as described in Chapter 5, |R| will be large,
indicating high spatial uncertainty on the returned feature location.

Since the covariance of a measurement is used when updating the state estimates, measure-
ments with high uncertainty will be selectively ignored (when compared to measurements with
low uncertainty). Therefore, the assumed dynamic model will be used to a greater extent when

updating the state estimate.
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CHAPTER 5

APPLICATION OF FEATURE TRACKING

In this chapter, we will illustrate the use of feature appearance templates in locating the
most likely position of a feature in an image. Figure 5.1 shows the portion of the tracking
system discussed in this chapter. We will illustrate the use of the sum-of-squared-differences-
surface (SSDS) described in Chapter 4 to compute an estimate of the feature location and the
spatial uncertainty associated with that location.

In Section 4.2.3 we described the creation of templates for individual features. A template
describes the expected appearance of a feature, and we use a different template for each vis-
ible feature. We currently use fixed size rectangular templates (39 x 39 pixels in the current
implementation) and do not attempt to separate the effect of the background from the effect
of the feature of interest. Ideally, some knowledge about the physical size of the feature would
be combined with the imaging model to estimate the size and shape of the feature of interest
in the image, and this knowledge would be used to determine the size and shape of the feature
template.

Using the models described in Section 4.2.1, an optimal estimate for the location in the image
plane of each feature is computed. We define a fixed size rectangular search region (39 x 39
pixels in the current implementation) about this location, and compare the area around each
pixel in the search region to the area around the center pixel of the template, using the SSD
dissimilarity measure as described in Section 4.2.4. A topic for future research would be to

use the models described in Section 4.2.1 and the uncertainties P associated with the state
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Figure 5.1 Portion of tracking system discussed in this chapter.
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vector x (review Chapter 3 for definitions of these terms) to compute the area in the image
containing the majority of the projected probability mass associated with the measurement.
Kosaka and Kak [39] implement an idea similar to this for line tracking in their system. The
result is that the computational effort spent computing SSD measures is concentrated in the
region where the feature is most likely to appear in the image.

In the following sections, we will illustrate the use of the framework described in Chapter 4
for feature tracking. In this chapter, we do not describe the use of the feature tracking results
generated, but concentrate on the feature tracking. Chapter 6 describes the use of feature
tracking results to update state estimates. A context for the feature locations described in
the following sections can be seen in Figure 5.2, which depicts the locations of features on the
arm. We begin in Section 5.1 by showing the feature tracking for a gripper finger, typically
providing enough spatial discrimination to approximate a point feature. In Section 5.2 we show
feature tracking results for a point on an edge of the arm. Since there is an edge at this point,
only one dimension of spatial discrimination is recovered from this feature tracking. Finally, in
Section 5.3 we illustrate a point feature that acts, in certain configurations of the robot, like an

edge feature.

5.1 Point Feature: Gripper Finger

The feature appearance template and search region for this case are shown in Figure 5.3.
Note that since the SSD measure involves the image area surrounding a pixel, a border around
the search region must be retained for each search region.

The results of the feature tracking are shown in Figure 5.3(d)-(f). The cross indicates the
location of the minimum point of the SSD surface. The complete SSDS and the Gaussian
approximation to this surface are shown in Figure 5.3(e)-(f).

A 2D measurement and 2 x 2 covariance measurement are the output of the feature tracking,

and are used directly in the EKF framework described in Chapter 3.
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Figure 5.2 Features tracked in this section.

5.2 Edge Feature

The feature appearance template and search region for this case are shown in Figures 5.4-
5.7. Note that the orientation of the edge in the feature depends on the estimated configuration
of the robot x.

As the estimated configuration of the robot X, changes, the direction of the edge projected
onto the image plane will change. Thus, the direction in which this template discriminates will
change. Note that the system retains full information about the direction of maximum spatial
discrimination for use during state estimate update.

The results of the feature tracking for the edge feature are shown in Figures 5.4-5.7. The
cross in (d) for each figure indicates the minimum point of the SSD surface. The complete

SSDS and the Gaussian approximation to this surface are shown in (e)-(f) for each figure.
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(a) Synthetic image (b) Feature
appearance
template

(c) Input image (d) Search region
tracking result

ou = TATTA, oy = 12.4664

2 = [23 28]

R — 55.9111 20.8417
~20.8417 155.4108

Figure 5.3 Tracking results for gripper feature.
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(a) Synthetic image (b) Feature
appearance
template

(c) Input image (d) Search region
tracking result

(e) SSDS (f) GRV density function

Notes

% = —170
oy = 7.3565, o, = 0.6812

zp = [10 30]"

R 54.1183 0.7824
T 10.7824  0.4641

Figure 5.4 Tracking results for edge feature.
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(a) Synthetic image (b) Feature
appearance
template

¢) Input image d) Search region
p
tracking result

(f) GRV density function

ou = 08159, o, = 11.6058

2p = [38 48]

_ [o0.6657 —2.8128

R= —2.8128 134.6939

Figure 5.6 Tracking results for edge feature.

92



(a) Synthetic image (b) Feature
appearance
template

¢) Input image d) Search region
p
tracking result

(e) SSDS (f) GRV density function

Notes

x; = —35

oy = 71511, o, = 9.0809
2 = [32 28]

_ |51.1386 64.3817

R = 64.3817 82.4623

Figure 5.7 Tracking results for edge feature.
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5.3 Degenerate Point Feature

In this section, we illustrate the usefulness of on-line estimation of template efficacy. The
feature described in this section is a point of high texture in both directions when the surface
that the point is on is approximately parallel to the image plane. When the surface on which the
point is painted is parallel to the image plane, the feature acts like a point feature. However,
since our framework tracks under a wide variety of object configurations, the appearance of
features can change dramatically during tracking. For example, this feature can act like an
edge feature in certain configurations. Figures 5.8 and 5.9 illustrate this feature of the tracking
system. Since R is used in assimilating feature tracking results, information about the quality

of the feature measurement will be used along with the measurement.

5.4 Externally Occluded Point Feature

In this section, we present another illustration of the usefulness of on-line estimation of
template efficacy. This feature has the same template as in Section 5.1, except that the feature
has been occluded by the person in Figure 5.10(a). As described in Section 4.5.3, this mismatch
causes larger values for the variances, and the measurement returned is devalued accordingly.
Since R is used in assimilating feature tracking results, this information about the feature will

be weighted lightly in the state update.
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(a) Synthetic image (b) Feature
appearance
template

(c) Input image (d) Search region
tracking result

(e) SSDS (f) GRV density function

xp =0

0, = 3.0798, 0, = 5.6748
zp = [24 287

9.4854 15.2166

R = 1159166 32.2039

Figure 5.8 Tracking results for nondegenerate point feature.
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(a) Synthetic image (b) Feature
appearance
template

(c) Input image (d) Search region
tracking result

oy = 15383, o, =9.6682

2 = [27 16]7

R — 2.3663 5.0629
~ |5.0629 93.6683

Figure 5.9 Tracking results for degenerate point feature.
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(a) Synthetic image (b) Feature
appearance
template

(c) Input image (d) Search region
tracking result

(f) GRV density function

A0 _
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oy = 13.3954, o, = 10.2426
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_ [179.4363 —9.1616

R= —9.1616 104.9117

Figure 5.10 Tracking results for externally occluded point feature.
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CHAPTER 6

APPLICATION OF KALMAN FILTERING FRAMEWORK

In this chapter, we will apply feature tracking results such as those described in Chapter 5
within the tracking system presented in Chapter 4 to several different object tracking scenarios.
We will begin with some simple examples, thus illustrating the basic behavior and properties of
the framework. Figure 6.1 shows the portion of the tracking system discussed in this chapter.
Some more complicated scenarios will then be examined, illustrating the power and extendibility
of the system.

We begin by presenting and analyzing the system for a one-link arm being observed by a
1D orthogonal sensor. In this case, we assume the simplest dynamic model, that of constant
position motion. Arm movement is tolerated by modeling it as noise wy, injected into the state
vector x; at each time step. We then show the changes in the filter when using an elevated
2D perspective sensor for the same arm. Next, we present a two-link arm being observed by
a 2D perspective sensor, again with a constant position dynamic model, in order to illustrate
the effect of more complicated geometric models on the tracking system. Fourth, we present
the effect of a constant joint space velocity dynamic model on the system, by analyzing the
filter for a one-link arm under this model. Fifth, we examine the major case of interest: an
arm with three degrees of freedom being observed by a 2D perspective sensor, under a constant
joint space velocity dynamic model. Finally, we present an extension to the basic framework,
where the geometric model is incompletely specified. In this case, we track a two-link arm being

observed by a 2D orthogonal sensor, where the link lengths are only approximately known.
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Figure 6.1 Portion of tracking system discussed in this chapter.
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Table 6.1 Models used in Case 1.

Object geometric model 1DOF one-link arm
Dynamic model Constant position
Imaging model 1D orthogonal projection

6.1 Case 1: The Base Case

In this example, illustrated in Figure 6.2, there is a planar one-link arm that can rotate
about one end that is fixed at the origin. The models used in this case are shown in Table 6.1.
The configuration space in this example is 1D. We assume that the robot is embedded in a 2D
workspace, and there is an orthographic projection onto the 1D sensor plane (to the right of the
robot, sufficiently far away that there is no interaction between the arm and the sensor plane,

at least a distance a1).

Stick M easurement

Figure 6.2 Case 1.

6.1.1 System and filter definition

Using the notation outlined in Section 3.2, the (scalar) filter for this problem is as follows.
The derivation of the equations presented in this section can be found in Appendix A. This

system has one parameter, so the state vector has one entry,

Tk = 0. (61)
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With a constant position dynamic model, the prediction equations are

fe(@e) = zk (6.2)
Ofk
1. (6.3)

Using orthogonal projection, the observation equations are

hi(zk) = a1sin(zy) (6.4)
Ol = ajcos(xg)
8.’Ek

We assume for simplicity that the process noise does not vary with the state,
Gi(z) = 1.

Under these assumptions, the filter equations are as follows. Recall that Qy is the covariance
matrix for the system noise and that Ry is the covariance matrix for the observation noise. In

this case, both Q; and Ry are scalar.

Ppp_1=PFPe 1,1+ Qk (6.5)

k-1 = Tp—1jk-1 (6.6)
a1c08(Zx—1)
" atcos? (£5—1) Prk—1 + Ri

Pk,k = Pk,k—l (1 — Kkalcos(.’ik_l)) (68)

6.1.2 Filter analysis

To capture the usefulness of this model for tracking, it is helpful to observe the response
of the filter components to changes in the configuration of the robot. We will investigate the
relative weighting of estimates and observations, then observe the changes in filter components

as the filter converges to an estimate over time.

6.1.2.1 Weighting of predictions and observations

Recall the intuitive interpretation of the Kalman filtering update equations given in Sec-

tion 3.4. In this interpretation, two measurements z; and zo of a random variable z were
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combined to arrive at £, an optimal estimate for z. Weighting factors based on the relative
uncertainty of each measurement were used in the combination. These weighting factors vary
between zero and unity, and determine the relative importance of each measurement in the over-
all estimate. We also presented the analogy between this combination of two measurements and
the measurement update portion of the Kalman filter. In the Kalman filter, a combination of
the observation prediction and the actual observation becomes the new observation estimate.

In this example hy(Zy) is analogous to z1, with uncertainty g—;”’sz %T. Then zj, is analogous
to z9, with uncertainty Rj. The weighting factor for z; becomes

2 2 274
Oz, B a7Cos (:L'k—l)Plc,k—l

021 + 022 B a%cosZ(ik_l)Pk,k—1 + Ry’
which will be referred to as the observation weighting factor, or OWF. The OWF determines
the relative importance of the observation (relative to the prediction) in the filter update and
varies between zero and one in the scalar case. More generally, the OWF can be determined

directly from the Kalman filtering equations as

ohy .
OWF = [8xk (ka—l)] K
The weighting factor for z then becomes
o Ry,

021 + O'§2 N a’%COSQ(ikfl)Pk,kfl + Rk,
which will be referred to as the prediction weighting factor, or PWF. More generally, the PWF

can be determined directly from the Kalman filtering equations as

Ohy, -1

ohy . N
: (Xk|k71)Pk,k71—B (Fgp—1)” +Ry| K.
Xk—-1

Xk—1

PWF =Ry

In the scalar case, these two weighting factors sum to one. In the general case, the weighting
factor matrices sum to the identity matrix.

Figure 6.3 illustrates the weighting behavior of the weighting factor for Case 1 as the
configuration of the arm and measurement uncertainty change. Only the OWF is shown, as

PWF =1— OWF in the scalar case. We see that as the robot nears the singular positions at
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Figure 6.3 Observation weighting factor for Case 1.

—7/2 and 7/2, the OWF reduces, and the filter favors the predictions over the observations.
The extent to which this effect occurs depends on the measurement uncertainty. With very
certain measurements (Ry, low) the singularity affects a small portion of the configuration space.
As measurements decrease in quality (Rj rising) the effect spreads to more configurations. A

cross section of the curve at R = 0.1 is also shown.

6.1.2.2 TUncertainty reduction

A metric for the usefulness of observations is the relative uncertainty in the state vector
just before and just after a measurement. If an observation is doing a very good job of helping
to update the estimate %; of the state vector xj, the uncertainty on the estimate just after
the observation Py, ;, will be significantly lower than the uncertainty just before the observation
Py r—1. Therefore, Figure 6.4 shows the ratio Py /Py —1 for different configurations of the
robot and different observation uncertainties. As in the previous sections, this metric tells
us that observations of the end effector near zero radians are very effective at reducing the
uncertainty in the state estimate, while observations of the end effector near 7/2 are not very

effective at reducing this uncertainty.
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As in the weighting factors, the measurement uncertainty again determines the extent of the
singularity on the uncertainty reduction. As Ry becomes small, little movement away from the
singularity is needed for the measurements to become effective again, and reduce the uncertainty

in the filter significantly. A cross section of the curve at Ry = 0.1 is also shown.

Figure 6.4 Py /P ;—1: Uncertainty reduction from an observation.

Note that the analysis above is for a single observation. Multiple observations, say at times
k1 and k9, would have different uncertainties associated with them, Ry, and Ryg,. This allows
the framework to weight different observations of the same feature differently, as is appropriate

for their respective Ry.

6.1.2.3 Convergence of filter

Often, it is of interest to observe the filter components as they change over time. Figure 6.5
shows the variance and weighting components of this filter over time, when the robot is in
four different configurations. Of particular interest in this figure are the weights. As the
configuration gets closer to the /2 image Jacobian singularity, the weighting favors the previous

estimate more than the observations, as we would expect.
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Figure 6.5 Convergence properties of Case 1.
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Table 6.2 Models used in Case 2.

Object geometric model 1DOF one-link arm
Dynamic model Counstant position
Imaging model Perspective projection, 2D elevated sensor

6.2 Case 2: Elevated 2D Camera

In this section, we present a scenario utilizing the same object model with a slightly more
complex imaging model than in Section 6.1, to illustrate the changes that occur with multiple
observations. This example, illustrated in Figure 6.6, uses the same arm as the previous case.

The models used in this case are shown in Table 6.2. We assume that the robot is embedded in

Figure 6.6 Case 2.

a 2D workspace and that there is a perspective projection onto a 2D sensor plane (to the right
of the robot, at a distance z. from the origin, and at an elevation of z.). For convenience, we
explicitly define the distance d, = \/m . The sensor plane is assumed to be normal to the
ray connecting the center of the sensor to the origin (that is, z; in Figure 6.7 points directly at

the workspace origin).
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Figure 6.7 Camera coordinate frame.

6.2.1 System and filter definition

Using the notation outlined in Section 3.2, the filter for this problem is as follows. The
derivation of the equations presented in this section can be found in Appendix B. This system

has only one kinematic parameter, so the state vector for this case is again a scalar
X = T1.

With a constant position dynamic model, the prediction equations are

fr(zk) =z
Ofr

Under perspective projection, the image plane location (u,v) of a point (z,y,z) in the camera

coordinate system taken by a pinhole camera of focal length f is
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Under this assumption, and assuming a 2D sensor, the observation equations are

Uy
Zp =
Uk
i aysin(z}) i
— )
akxe) f zc(arcos(zy)) v
hy(xg) = | " | = de
RSk ol (x4) N zcalcos(x,lcl) ’
oo (el
L C .

where (u',v!) is defined as the position in the image plane of the distal end of the link. With

these definitions, gz—]’:, referred to as the system Jacobian, is

ome o o

oxp Oz, G—:E}C
ohy, ajcos(zy) a?sin’(z})z,
ozl —z(a1cos(z} B — 1 2
B c(aicos(zy)) +d, f zc(arcos(zy)) vd) d
de d.

ony zearsin(z}) Zexcaisin(z))cos(z)
orl _ 1 B _ 1 2

x, fd, ( mc(algos(wk)) +dc) fd? ( wc(alc;:os(mk)) +dc)

C C

We assume for simplicity that the process noise does not vary with the state,
Gl(a) = 1.
Under these assumptions, the filter equations are as follows

Prp1=PFPp_1p-1+Qx

Trlk—1 = Tk—1|k—1

ohy . T rony . ohy, . T
Ky = Py [—k(xkkl)] H—k(fﬁmkﬂ] P -1 [7:(%191)] + Ry

ail,‘k &vk 0
ohy , .
Prx = [I — Ky [8—35::(%““_1)” P k-1

Tp = Trjp—1 + Ki(ze — D(Zgp—1))
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6.2.2 Filter analysis

We will observe the behavior of the observation weighting matrix and the changes in the co-
variance matrix after an observation, as the configuration of the arm changes. We are assuming
a constant measurement uncertainty for all cases in this section. We begin with a camera at a
6° elevation (10z, = z. in Figure 6.6), then show the changes in the weighting and covariance

matrices as the camera is changed to a 45° elevation (z, = z. in Figure 6.6).

6.2.2.1 Weighting of observations and predictions

In the scalar case above, the OWF determined the weight (between zero and unity) assigned
to an observation in the filter update. The PWF, equal to 1 — OWF in the scalar case,
determined the weight (again between zero and unity) assigned to a prediction in the filter
update. The OWF and PWF weighting matrices have the same interpretation in the vector
case. The diagonal elements of the OWF determine the weight assigned to an observation when
updating the filter’s estimate for that observation. The update of the state estimate is then
determined by inverting the observation function. The off-diagonal elements of the OWF reflect
the weights assigned to other observations when updating an observation estimate. The OWF
and PWF are diagonal matrices. Thus, each row of the OWF determines the weighting assigned
to each observation when updating an element of the filter’s observation estimates. Each column
of the OWF determines the effect of a single observation on each observation estimate in the
filter. Correlations in the observations due to the kinematic and imaging structure of the
object tracking scene determine the off-diagonal weight. If the observations are independent
(for example, the end effectors of two separate arms) the appropriate elements of the OWF and
PWF will be zero.

The weighting of the u observation in the 6° case (see OW F(1,1) in Figure 6.8) is similar
to the behavior of the single measurement weighting factor in the previous case. The changes
are primarily due to the use of perspective projection in this case, instead of orthogonal projec-

tion. With the camera in this location, the measurement error in the v coordinate yields this
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measurement largely ineffective in helping to estimate x1, due to the low viewing angle. Thus,
the weighting assigned to this measurement is fairly low (see OW F(2,2) in Figure 6.8).

As described above, the weighting factor OW F'(1,2) determines the usefulness of the v
measurement in updating the prediction for the u location of the end effector. This is based on
the expected correlation between the v and v measurements, as determined by the observation
model. Likewise, the weighting factor OW F(2,1) (not shown, identical to OW F'(1,2) since the
OWF matrix is symmetric) determines the usefulness of the u measurement in updating the
prediction for the v location of the end effector. Since the correlation between observations can
be negative or positive, the off-diagonal elements of the OWF are not restricted to the zero-one

range, but the full negative one-positive one range.

OWF(1,1) OWF(1,2)
1 1
0.8
0.5
0.6
S
0.4
-05
0.2
0 -1
-2 0 2 -2 0 2
X X
OWF(2,2)
1
0.8
0.6
0.4
0.2
0
-2 0 2

Figure 6.8 Observation weighting factor matrix for Case 2, 6° elevation.

When the viewing angle is changed to 45°, the v observation becomes more important, and

is used more to help estimate 1. The weight OW F(2,2) in Figure 6.9 now ranges between
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zero and 0.8. Due to the observation model, OWF(1,1) is low when OW F'(2,2) is high and

vice versa.

OWF(1,1) OWF(1,2)
1 1
0.8
0.5
0.6
0
0.4
-05
0.2
0 -1
-2 0 2 -2 0 2
X X
OWF(2,2)
1
0.8
0.6
0.4
0.2
0
-2 0 2

Figure 6.9 Observation weighting factor matrix for Case 2, 45° elevation.

6.2.2.2 Uncertainty reduction

In this section, we investigate the reduction in uncertainty due to a single observation.
We investigate Py /Py x—1, the ratio of the uncertainty in the state estimate just before an
observation to the uncertainty just after the observation. Again, the 6° case closely resembles
the 1D sensor case presented in Section 6.1. Near the singularities in the observation function
shown in Figure 6.10 for the u observation at ;1 = —n/2 and z; = 7/2, the uncertainty does
not decrease much due to a single observation.

When the camera is raised to a 45° elevation the observations of the v coordinate of the
end effector begin to help. Since the v coordinate does change with changes in x; near z; =

—m/2 and z; = 7/2, v observations in these regions are used to update the estimate for zi,
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Figure 6.10 Py ;/P} ;_1: Uncertainty reduction from an observation. Case 2, 6° elevation.

Table 6.3 Models used in Case 3.

Object geometric model Two-link arm
Dynamic model Constant position
Imaging model Perspective projection

where in previous cases only the observation prediction was available. The presence of reliable
observations in these regions is evident in Figure 6.11, where there is significant reduction in
uncertainty over the entire configuration space. With multiple observations singular points in
one observation function can be tolerated, provided the state elements being estimated by the
singular observation are observable (in the dynamic systems sense, see Section 4.3 for discussion)

from the nonsingular observations.

6.3 Case 3: More Complex Models

In this section, we present a scenario utilizing a more complex object and imaging model
than in Section 6.1, to further illustrate the use of the framework for tracking. This example,
illustrated in Figure 6.12, uses a two-link planar arm. The models used in this case are shown

in Table 6.3. The configuration space for this robot is the standard 2D space with dimensions
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Figure 6.11 Py /Pj ;_1: Uncertainty reduction from an observation. Case 2, 45° elevation.

consisting of the angles (z1, z2) as depicted in the figure. This configuration space is illustrated
in Figure 6.13. This figure shows a few representative configurations of the arm, as viewed
from directly above the workspace. Due to the increased amount of complexity, this section will
present only the portion of configuration space from (0, 0) to (7/2,7/2). The remaining portion
of configuration space exhibits similar behavior, with analogous singularities. We assume that

the robot is embedded in a 2D workspace and that there is a perspective projection onto a 2D

Figure 6.12 Case 3.
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Figure 6.13 Configuration space for Case 3.

sensor plane (to the right of the robot, at a distance z, from the origin, and at an elevation of

2z¢). The imaging model is the same as for Case 2 above.

6.3.1 System and filter definition

Using the notation outlined in Section 3.2, the filter for this problem is as follows. The
derivation of the equations presented in this section can be found in Appendix C. This system

has two kinematic parameters, so the state vector for this case has two entries

Z1
X =

T2

With a constant position dynamic model, the prediction equations are

fi(xx) = xp,
ofy,
M1
8Xk

Under perspective projection, the image plane location (u,v) of a point (z,y, z) in the camera

coordinate system taken by a pinhole camera of focal length f is



Under this assumption, and assuming a 2D sensor, the observation equations are

Zp —

aysin(z})

f (—xc(m;cOS(x/lc)) +dc>

- - Z.a1c08(x})

fdc (_‘Tc(aljos(xllc)) + dc)

hk(xk)
arsin(z}) 4 agsin(z), + 1)
1 T, .2
— +
f ( ze(arcos(zy) + agcos(zy + 7)) dc)

de

ze(aicos(z}) + agcos(zy, + 71))
fd, (_mc(alcos(‘q"}c) + GZCOS(:EIlc + :Ei)) + dc)

de

where (u!,v!) and (u?,v?) are defined as the position in the image plane of the distal ends of

the first and second links, respectively. With these definitions, gg—:, referred to as the system
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Jacobian, is

ory Ozi
Oh;  Oh}
ah 8$k 3xk
k _
ox,
Ohy Ohy
Ory Oz}
Oy, Ohy
_Bmi Bxi_
B_h}c _ ajcos(z) B a?sin’(x} )z,
ozt —z.(aycos(zk _ 1 2
k f( ( 1d ( k)) +dc> f< xC(al:;OS(xk)) +dc> dc
C C
Ohl
e
k
ohi B zca1sin(z}) 3 Zezcaisin(z))cos(zy)
ozt —z.(aycos(zk _ 1 2
A fdc( ( 1dc (z)) —I—dc) fdg( :u(m;os(xk)) +dc)
C
ohi
o
k
8_}1,?; _ aycos(z},) + agcos(z), + z2)
oz} f —zc(a1cos(zt) + agcos(z) + 22)) td
d. ‘
3 (arcos(z}) + agcos(zy, + z3)) .
_ 1 1 2 2
; ( ze(arcos(zp) —;agcos(mk +a3)) dc) d.
C
on3 _ ascos(xy + z2)
ox? s (—zc(alcos(x,lc) —;agcos(m}c + 12)) i dc)
C

asin(z) 4 agsin(z), + z2)zcasin(zy + z2)

_ , (_g;c(alcos(x}c) + agcos(z;, + 7))

2
4 + dc) de
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Bh% _ zc(alsin(:c}c) + GQSin(iEllc 4+ wz))

ozl fd, (—.’Ec(a'lcos(xllc) Z“ZCOS(:C}C + 2t) + dc)
C

ze(aycos(xy) + agcos(z) + 12))z.(arsin(z}) + agsin(zy + 22))

fa2 (—xc(awos(:v}c) + agcos(z; + 737)) + dc)2

de
ahi _ zc(agsin(w;lc + 35%))
6-’1;% fdc (_‘/EC(GICOS(‘/I"}C) ZGZCOS(.TI%: + .T%)) + dc)
C

B ze(aycos(xy) + ascos(z), + x3))z agsin(zy + z7)

fd? (—zc(alcos(:c,lc) —;agcos(ac,lc + z2)) .\ dc)z
C

We assume for simplicity that the process noise does not vary with the state,
Gj(xx) =L
Under these assumptions, the filter equations are as follows

Prr1=Pr_146-1+Qx

Xklk—1 = Xp—1]k—1
-1

ohy, T l[onhy . ohy . r
Kip=Prp 1 [—Bx: (Xklk—1)] “—[‘)x: (xklk—l):| Prk1 [—8:(],: (Xklk—l)] + Ry,
ohy .
Pir = [I - Ky [—Bx: (Xk|k—1)” Ppr—1

Xpjkp = Xpp—1 + Ki (2 — hg(Xpp—1))

6.3.2 Filter analysis

As in the previous analysis, we will be looking at the OWF weighting matrices and the
uncertainty reduction from a single observation as the configuration of the arm changes. In
this case, we are assuming a constant measurement uncertainty in all cases. We begin with
a camera at a 45° elevation (z, = z. in Figure 6.12), then show the changes in the weighting

matrix as the camera is changed to a 6° elevation (10z, = z. in Figure 6.12).
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6.3.2.1 Weighting of predictions and observations

We first turn our attention to the weighting matrices for the problem. In Figure 6.14 we
illustrate the OWF weighting factor matrix for the 45° elevation case as the configuration

changes. Recall that the diagonal components in this matrix reflect the effect of each observa-

OWF(1,1) OWF(1,2) OWF(1,3) OWEF(1,4)

xX(0) o0 o x(1) xX(0) o0 o x(1)

OWF(2,3) OWF(2,4)

LTI
it

L

W

\:‘:‘ %S

x(0) o0 o x(1)

0 0 x(1)
OWF(4,4)

1
X0 o0 o x(1)

Figure 6.14 Observation weighting factor matrix for 45° camera elevation.
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tion in the update equations, and the off-diagonal components reflect the correlation between
observations.

The weighting near the (0,0) corner of the illustrated portion of configuration space is most
similar to the previous cases. Figure 6.13 shows that in this configuration, the arm is straight
and pointed directly at the camera. The u observations for each link are used to update the filter
estimates (OWF(1,1) and OW F(3,3)), and the v observations are ignored (OW F(2,2) and
OWF(4,4)). Analysis of the off-diagonal elements reveals that there is significant correlation
between the u and v coordinate of each link (between u; and v;, and between ug and v3), but
not between observations from different links.

Next we investigate the changes that occur in the OW F when the camera is moved to a 6°
elevation. The biggest change in the OW F' is the decreased usefulness of the v coordinates of
the elbow and end effector of the arm seen in Figure 6.15 OW F(2,2) and OW F(4,4). Only
in configurations where the appropriate link is almost exactly parallel to the image plane are
the v observations used. This occurs near o = 7/2 for the first link and along a line between

(/2,0) and (0,7/2) for the second link.

6.3.2.2 Uncertainty reduction

Recalling the structure of a covariance matrix Equation (4.2), we now observe in Figure 6.16
the changes in Py due to a single observation. The a priori covariance matrix in this case was
the identity matrix, so this case is analogous to our analysis of the Py /Py y—1 ratio in Case 1.
Recall that an observation in this case includes measurements of the image plane locations of
the elbow and end effector of the two-link arm.

A summary of the uncertainty reduction from a single observation can be seen in Figures
6.16 and 6.17. Recall that |Py| is proportional to the volume of the error ellipsoid in the zg, z1

plane.
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Figure 6.15 Observation weighting factor matrix for 6° camera elevation.
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Figure 6.16 Error covariance matrix for 45° camera elevation.
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Figure 6.17 Error covariance matrix for 6° camera elevation.
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Table 6.4 Models used in Case 4.

Object geometric model 1DOF one-link arm
Dynamic model Constant joint space velocity
Imaging model Orthogonal projection

The variance of z, P,lc’l, has a minimum near (0,7/2). In this configuration, the first link
is pointing at the camera, and the second link is directly orthogonal to the first link. Thus, the
u coordinate of each link gives good information about the value of zy. The maximum for P,lc’1
is at (7/2,0), when the arm is straight and pointing directly orthogonal to the camera.

While the situation in this section is more complex than that presented earlier, the results are
still intuitively satisfying and have a plausible geometric interpretation. This example is even
more useful, since it shows the interactions between different links of the arm, and how these
interactions change with configuration. The framework allows us to capture these interactions,
and use the structure given by the model of the arm, to intelligently interpret the usefulness of

observations.

6.4 Case 4: Use of Dynamic Model

In this section, we present the implementation changes required to utilize a dynamic model
for the scenario described in Section 6.1. In this section, we estimate the value and first time
derivative of 8. The derivation of the equations presented in this section can be found in
Appendix D. The models used in this case are shown in Table 6.4. Hereafter, superscripts will
be used to denote vector or matrix indices, and subscripts will continue to be used to denote

time indices.

T; 0
X = =
m% 0
With a dynamic model, the estimate at time k Equation (6.2) is no longer the previous

estimate. Now, we can adjust by the estimated velocity (multiplied by the elapsed time A), to
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give a presumably more accurate extrapolated estimate

1 2
zy + Az
fr(xx) =
w}
o _ |1 A
Oxy 0 1

In the observation function, we preserve most of Equation (6.4), adding a row to denote that

we cannot observe the velocity:

aysin(zxy)
hy(x;) =
0
ohy, . alcos(wk)
8Xk 0

We again assume for simplicity that the process noise does not vary with the state,

Under these assumptions, the filter equations are as follows

1 A 1 0
Ppr1= Py_15-1 + Qg (6.9)
0 1 A1
[ 11 1,2 2,2 1,2 2,2
_ Py g1 +2AP S,  + AQPk—l,k—l Pyl e T AP L Q
1,2 2,2 2,2
i P e AP Pyl k1
.1 .2
. Ty -1 T Tp_1jp_1A
Xglk—1 = | \ | (6.10)
i L1]k-1
A pLl
K, a1COS(Xk—1) kk—1 (6.11)

P INTY 1,1
atcos” (Xx-1)Ppy 1 + Ry P11€,2

’

1—ajcos(K}) 0
Prr = Pk,kfl (612)

—ajcos(K2) 1
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Table 6.5 Models used in Case 5.

Object geometric model Three-link arm (PUMA kinematics)
Dynamic model Constant joint space velocity
Imaging model Perspective projection

Note that the above equations are essentially matrix versions of Equations (6.5)-(6.8), with
additional terms involving increased uncertainty, and increased predictive power, due to elapsed
time and the dynamic model. Also of note is the gain matrix Ky in Equation (6.11), which

updates the velocity estimate based upon a fraction of the prediction correction.

6.5 Case 5: 3DOF PUMA Robotic Arm

In this section, we present a tracking scenario driving this research, that of a three degree
of freedom robotic arm under perspective projection. In this case, the three degrees of freedom
used to position the tool at any position in the workspace are tracked. The final three degrees
of freedom determine the orientation of the tool about this point in space. The form of the
filter is the same as described above, but the components are more complicated. The position
of the camera in the world coordinate system is known and fixed, given by a homogeneous

transformation matrix Camera. The models used in this case are shown in Table 6.5.

6.5.1 System and filter definition

The filter for this example is a straightforward extension to that described above. The
derivation of the equations presented in this section can be found in Appendix E. The state

vector contains the joint angles and velocities

xp=[q1---q3 G-,
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and the dynamic model is as described in Section 6.4

qr + Aqg
fi(xx) =
qx

8fk I3 A]:3

Xk lor, T4

where I3 is a 3 X 6 identity matrix.

Because many more features are required to track an arm with three degrees of freedom,
the observation function becomes more complex. We will introduce some additional notation to
simplify the function. A feature is described by a vector p, specifying the location of the feature,
and a number, specifying the link to which the coordinate system containing p is specified. We
will describe a point p in some coordinate frame by a four-vector p = [z y z 1], where z, y,
and z are the coordinates of the point. A transformation from the coordinate frame rigidly
attached to link ¢ into that rigidly attached to link 7 4+ 1 will be given by the standard 4 x 4
Denevit-Hartenberg homogeneous transformation matrix [93] A;. We define the function T(f)
to be the cascade of the individual A; matrices from the coordinate system of feature f to
the world coordinate system. For example, if feature f is specified in the coordinate system
attached to link 4, T(f) = A;jA2A3A,. The function PERSPECTIVE () returns the perspective

projection of the point specified.

PERSPECTIVE(Camera A(1)p)T
PERSPECTIVE(Camera A(2)p)T
hy,(xx) = : ’
PERSPECTIVE(Camera A(F — 1)p)T

PERSPECTIVE(Camera A(F)p)T

where there are F' features to be observed. Note that h() is a column vector, and contains the
(u,v) coordinates of each feature. Also note that all A; and thus T() are dependent on q. With

a fully specified geometric model, however, closed form solutions for h(xy) and g—g”:(xk) can be
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Table 6.6 Models used in Case 6.

Object geometric model Two-link arm, unknown link lengths
Dynamic model Constant joint space velocity
Imaging model Perspective projection

found. We again assume for simplicity that the process noise does not vary with the state,

G;C(Xk) =1.

6.6 Case 6: Incomplete Object Model

This section describes the application of a tracking system to a two-link robotic arm with
two degrees of freedom under perspective projection, where the lengths of the two links will be
estimated along with the configuration parameters. The models used in this case are shown in
Table 6.6. A simple augmentation of xj, is all that is required to use the system in this case.

The derivation of the equations presented in this section can be found in Appendix F.

6.6.1 System and filter definition

The state vector in this case contains both the joint angles q of the robot, the velocities
of those angles, and the link lengths a of the robot, xx = [g1 g2 ¢1 ¢2 a1 az]’. Note that
the velocities of the lengths are not estimated, as we assume that the lengths are unknown
constants.

The dynamic model incorporating these assumptions is

ai + Aqy
a2 + AQe
a1
fi(xx) = ,
o
ai

a2
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and the observation function remains the same as in Section 6.3 with the exception that a; and

ao are now variable:

hy,(xy) =

6.7 Extensions to Other Situations

Extending the framework to new situations requires defining assumptions about the object
geometric model and the imaging model, to describe an observation function. In addition,
assumptions about the dynamic model (which may dictate augmenting the state vector) must
be described.

Once closed forms have been described for the observation function hy(xj) and the dynamic
model f(xy), the relevant partial derivatives g—;”;(xk) and g—g:’;(xk) must be derived, so that the
given form of the EKF can be directly implemented. Since this linearization can be done
algebraically, the system need not estimate the derivatives from the observed data, a process

that is well known to be sensitive to noise in the observations.
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CHAPTER 7

RESULTS

In this chapter we illustrate the effectiveness of the tracking system in several situations.
Again, each situation illustrates a particular feature of the tracking system. We begin by
showing tracking results for an arm with three degrees of freedom in several situations, and we
use this case to illustrate the features of the system. We then show results for an arm with two

degrees of freedom and an incomplete geometric model.

7.1 Case 5a: Fixed Feature Set

In this section, we constrain the movement of the arm so that the set of features tracked is
invariant. This simplifies the tracking and allows us to concentrate on the baseline performance
of the system. Note that this is the case assumed by many tracking systems [3], [27], [105].

Figure 7.1(a) illustrates the evolution of the state estimate during tracking, with Fig-
ure 7.1(b) illustrating the uncertainty associated with this estimate. Figure 7.1(c) shows the

expected visibility of each of the features throughout tracking.

7.2 Case 5b: Self-Occlusion of Features

In this section, we illustrate how the system handles self-occlusion of features. An overview

of the theory of this operation is given in Section 4.5.2. For example, in certain configurations
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Figure 7.1 Tracking results for Case ba.
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of the object, the upper arm link of the robot is between the camera and the gripper. In these
configurations, any features on the gripper would be said to be self-occluded.

Figure 7.2(a) illustrates the evolution of the state estimate during tracking, with Fig-
ure 7.2(b) illustrating the uncertainty associated with this estimate. Figure 7.2(c) shows the

expected visibility of each of the features throughout tracking.

7.3 Case 5c: External Occlusion of Features

In this section, we describe the treatment of external occlusion, such as described in Sec-
tion 4.5.3. Recall that external occlusion is defined as occlusion of features that cannot be
predicted from object models, such as a person walking between the camera and the tracked
object.

Figure 7.3(a) illustrates the evolution of the state estimate during tracking, with Fig-
ure 7.3(b) illustrating the uncertainty associated with this estimate. Figure 7.3(c) shows the

expected visibility of each of the features throughout tracking.

7.4 Case 5d: Three DOF PUMA Arm

When the system is in full operation, the features described in the previous sections operate
as appropriate, yielding an object-tracking system that can track features from widely varying
viewpoints and can intelligently deal with the appearance and disappearance of features on
an object. In this section, we illustrate this with a tracking example without the restrictions
imposed above.

Figure 7.4(a) illustrates the evolution of the state estimate during tracking, with Fig-
ure 7.4(b) illustrating the uncertainty associated with this estimate. Figure 7.4(c) shows the

expected visibility of each of the features throughout tracking.
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7.5 Case 6: Two DOF Arm With Unknown Link Lengths

In this case, the geometric model for the arm is not completely known. In particular, the
lengths of the two links of the arm are unknown. The filter equations for this case, and the
general theory behind the tracking, is described in Section 6.6. This section illustrates the

system behavior in this case.

7.5.1 Case 6a: Correct link lengths

In this section, the lengths of the arm are initialized at approximately the correct values
for the object given. Figure 7.5 illustrates the initial conditions of the filter with respect to the
initial conditions of the actual arm, and Figures 7.6 and 7.7 show the tracking behavior of the

system.

Figure 7.5 Initial conditions for Case 6a.

7.5.2 Case 6b: Incorrect link lengths

In this experiment, the lengths of the arm and the initial joint angles are initialized in

substantially incorrect values. Figure 7.8 illustrates the initial conditions of the filter with
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respect to the initial conditions of the actual arm, and Figures 7.9 and 7.10 show the tracking
behavior of the system. In this experiment, the joint angles of the arm do not change for

approximately the first 15 frames of the sequence.

Figure 7.8 Initial conditions for Case 6b.

7.5.3 Case 6¢: Incorrect link lengths, initial motion

In this experiment, the lengths of the arm and the initial joint angles are initialized in
substantially incorrect values. Figure 7.11 illustrates the initial conditions of the filter with
respect to the initial conditions of the actual arm, and Figures 7.12 and 7.13 show the tracking
behavior of the system. In this experiment, the joint angles of the arm are moving from the

first frame.

138



Link Length State

2d-23
70 T T T T T

10 E

0 50 100 150 200 250 300

Link Length Uncertainty
2d-23
8 T T T T T
A sigmaa0™2 o
sigmaal®2 -+

0 50 100 150 200 250 300

Figure 7.9 Tracking results for Case 6b: Link lengths.

139



300

300

Joint State
2d-23

150 200 250
140

100

50
Figure 7.10 Tracking results for Case 6b: Joint angles.

T+ T T T T
+ +++ +
w7t
o+ o+ +++H# IS W
+ +
f=p=] AA/_M/_ +%ﬂ++ * w&
© T +
cc Mm + o+ o Do
E3 P
T4 —+
o € E 4+t
4 0 L DD + o+ & +
K77 +
39 i o o
+$+ o &OO
+ +@
i +tr @v
* ++ &,
1
+ 4T LN
+ o + %@wv
++ (S
1+ oo%
18 L R
Y ¥ &&Jr
* 1+ >
+ + *
+ + +++ O
> +H * %S
- & + 3
=1 i
= T + + 4 3 o
T o + + + ot 66,08
18 29l +r SR Y
a 3T s r o0 &F
Q I+ +
= + g
) 4o+
tF
+ i
= Tl ey © 00 g
+ + F &
k) * A %,
o ++ + +
4 = - +
S i
- 4+ o
+#ﬁr &
o5
+
+
++W1 +
¥
*, T o
++++H M
+
# %,
o T
13 — ++‘I+ 2.
iy + %
#+++
Tt
e
#+++
%
0
#++
+4+ W%my
T e 1 1 [ + +1 <4
™ <~ o~ — ) © < o
v 1 = o S S =) o
< = o = S = S
o o IS o IS o



Figure 7.11 Initial conditions for Case 6c.
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CHAPTER 8

CONCLUSIONS AND FUTURE WORK

8.1 Conclusions

This thesis presents a model-based object-tracking system capable of tracking complex ar-
ticulated objects on the basis of monocular grayscale images of that object as it moves. The
object model at the heart of the system is assumed to be known a priori, and is assumed to
be perfect. In certain cases (see Section 6.6) this restriction can be relaxed by parameterizing
unknown facets of the object model.

We have described the synergy that exists between the object model and the low-level feature
tracking used in the system. The optimal filtering framework exploits the object model to
overconstrain the feature trackers to operate in a manner consistent with the known kinematics
of the object under consideration, so that the inaccurate feature-tracking results are not fatal to
the system. The feature-tracking results are used in turn to optimally update the state vector,
so that the object model is incrementally brought into accordance with observed data. This
system combines the top-down approach of imposing an integral object model on the observed
data with the bottom-up approach of using observed data to modify the assumptions of the
system in a mathematically robust framework.

The use of spatial certainty measures allows the feature-tracking algorithm to convey the
quality of the feature-tracking results to the object-tracking algorithm. Thus, the information

that the feature-tracking algorithm obtains can be used to its maximum effectiveness. A sys-
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tem that only extracts the location of the minimum SSD score will not have this information
available, and will implicitly assign the same confidence to every feature tracking result.
Several features of this tracking system are novel. We have developed a method for generat-
ing feature templates for complex features from widely varying viewpoints [106], a method for
estimating the reliability of feature tracking results during tracking [107], and a characterization
of the use of the object models in considering what point feature motion reveals about object
motion in images [108]. Each of these represents a contribution to the field of computer vision,
and an advance in the state of the art in using object geometric models in tracking complex

articulated objects.

8.2 Future Work

The framework introduced in this thesis is general and flexible, and could be applied in
many situations not covered in this thesis. However, there are many portions of the system
that have not been developed to their full extent and that could benefit from more sophisticated
techniques. In this section, we will investigate some directions these extensions could take, as
well as some novel situations that could benefit from such a general framework.

One aspect of the system that could be extended is the choice for the search area and
template size. Currently, a fixed size rectangular search area and fixed size rectangular template
are used, regardless of the size and expected motion of the feature. Knowledge about the object
geometric model and expected feature motion could be used to define an image region most likely
to contain the feature, for the purpose of using as a search region [39]. Similarly, knowledge
about the relative size of a feature could be used to choose an appropriate template size.

The extension of the observation equations to the case where there are multiple cameras
is straightforward. This would allow better 3D feature localization, and improved accuracy in
tracking. This would be particularly helpful in cases like the PUMA described in Section 6.5
where the workspace is large relative to the feature size. The observation equations could also

be parameterized to allow active vision. For example, the tracking results from the proximal
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three joints of the PUMA could be used to track the position of the wrist of the PUMA. Then
an active camera with a longer focal length could be trained on that spot, and the smaller links
on the distal end of the PUMA could be tracked in this camera.

Some operations described in this thesis could benefit from hardware acceleration. There
is hardware on the market today that could provide the graphics rendering described in Sec-
tion 4.2.3 in real time. The SSD correlation process described in Section 4.2.4 is quite compu-
tationally expensive, but can be done in hardware in real time. In this thesis, all operations
were performed sequentially on a Sparc 10 or Sparc 20 workstation, resulting in a processing
rate of approximately 30 seconds per frame.

This framework is easily adaptable to the case where an optimal object trajectory is known.
This would allow noncontact monitoring in certain situations of articulated object under ex-
ternal control. This has many potential applications in the fields of visual servoing, automated
assembly, augmented reality, and human-computer interaction.

Kalman filtering as a framework for visual tracking has been shown to be a powerful tool
in cases where object models are known. It optimally combines observations from disparate
sources to update object models, making the system robust to feature mistracking and allowing
the use of all information that is available from the feature tracking to be used. This synergy
between object modeling and feature tracking results in increased performance compared to

feature tracking alone.
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APPENDIX A

CASE 1: BASE CASE

This appendix presents an annotated Maple session. This session derives the observation
equation hy(xx) and dynamic model equation fy(xy) for the case presented.

Case 1

1 DOF Arm

Constant Position Dynamic Model

Orthogonal Projection

> with(linalg):
Warning, new definition for norm

Warning, new definition for trace

a := array(1..1, [])

z = array(1..1, [])

A.1 Projection Equations

s is the scale factor for the orthogonal projection

> s :=1: ortho := p -> vector([s*p[1]1]);
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ortho := p — vector([s p1])

Define observation function - mapping from joint angles to image plane coordinates.

> h := proc(x::vector) global a: ortho(vector([a[1]l*sin(x)])): end;

h := proc(z::vector) globala; ortho(vector([a; X sin(z)])) end

A.2 Partial Differentials

> H := diff(h(x)[1],x);

H := a; cos(z)
A.3 Dynamic Model

Define dynamic model

> f :=x -> x;

f=z—zx

A.4 Partial Differentials

> F := diff(f(x),x);
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APPENDIX B

CASE 2: ELEVATED CAMERA

This appendix presents an annotated Maple session. This session derives the observation
equation hy(xy) and dynamic model equation f(xy) for the case presented.

Case la - More Complex Models

One Link Arm

Const Position Dynamic Model

Perspective Projection - 2D sensor plane

B.1 Projection Equations

First, some setup.

> interface(labelling=false): a := ’a’: ¢ := ’c’: x :='x’ : z :=’z":

= 2f2 . d = ’d’:

B.1.1 Transform derivation from end-effector coordinates to base

coordinates

The standard homogeneous transformation matrix for the first link

> A[1] := matrix([[cos(q[1]),-sin(q[1]),0,a[1]*cos(q[1])],
[sin(q[1]),cos(q[1]1),0,a[11*sin(q[11)],

[0,0,1,0],

[0,0,0,111);
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cos(q1) —sin(qi) 0 aqcos(qr)

sin(q1) cos(q1) 0 ajsin(q)
A1 =

B.1.2 Derivation of transform from base coordinates to the camera frame

The full transformation is composed of three individual ones. This first one translates along

the camera Z axis by x[c]

> T_z := matrix([[1,0,0,0],[0,1,0,0]1,[0,0,1,sqrt(x[c] 2+z[c]1"2)],[0,0,0,111);

000 1

The angle between the workspace pia,ne and the camera (bétween the world X axis and the

camera 7 axis)

> alpha := arctan(z[c],x[cl);

a := arctan(z., z.)
After the translation, there is a rotation about the X axis by alpha+Pi/2 to make the Z axis
line up with the world Z axis. Note that we rotate ccw about the X axis, to this is a negative

number.
> R_alpha := matrix([[1,0,0,0],[0,cos(-(alpha+Pi/2)),-sin(-(alpha+Pi/2)),0],
% [0,sin(-(alpha+Pi/2)),cos(-(alpha+Pi/2)),0], [0,0,0,111);
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10 0 0
[ Te_
V%l V%1
R_alpha =
0 ——2e  __%_
v%1 V%1
0 0 0o 1

%1 := z.2 + 2,2
Finally, we rotate about the Z axis by Pi/2 to make the X axes coincide.

> R’_Z = matrix([[o’_i’o’o]’[1’0’()’0]’[03091’0]’[0903091]]);

0 -1 0 O

1 0 0O
R_z .=

0O 010

0 0 01

To transform points from the world frame to the camera frame, left-multiply by this.

> TOc := evalm(T_z&*R_alpha&*R_z);

0 -1 0 0

. Zec O T 0
v%1 v%1

TOc :=

T z,

=< 0 ——= V%1
V%1 NS
0 0 0 1

%1 := z.2 + 2,2
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Just a sanity check.

> evalm(TOc&*vector([x,y,z,11));

20 -z - Zn Z
_ , _ C + C , _ C _ C + (71, 1
YO VR VL V7 ’

%1 := 2.2 + 2,2

B.1.3 Combine and add perspective projection

This is the elbow location, in camera coordinates

> evalm(TOc&*A[1]&*vector([0,0,0,1]));

zcai1cos(q1)  Tcarcos(qr)

Full elbow mapping (into camera coordinates), as procedure

—ay sin(qy), — +Vzl2+ 22,1

> h_elbow := (q) —> vector([-a[1]l*sin(q[1]),
-z[c]l/(x[c]~2+z[c]1~2)~(1/2)*a[1]*cos(q[1]),
-x[c]l/(x[c]~2+z[c]"2)~(1/2)*a[1]*cos(q[1])+(x[c]1"2+z[c]"2)"~(1/2),
11

h_elbow := q — vector ([—al sin(q1), _Zedl cos(g1) Ll cos(g1) + Vz2 + 2.2, 1D

?
/xCQ + ZCQ \ /'TCZ + ZCZ

Given a vector [x,y,,z,1] in camera coordinates compute the projection onto the image plane
(Standard projection equations)

> perspective := proc(p::vector) vector([-1/f*p[1]1/p[3]1,-1/f*p[2]1/p[3]11): end:

ortho := proc(p::vector) vector([-1/f*p[1],-1/f*p[2]]): end:

This is the full mapping from configuration space to image plane space

> #h := (ql) -> vector([perspective(h_elbow(vector([ql])))[1],
# perspective(h_elbow(vector([ql])))[2]11);

h := (q1) -> vector([ortho(h_elbow(vector([ql1])))[1],
ortho(h_elbow(vector([q1]))) [2]11);

h := q1 — vector([ortho(h_elbow(vector([¢?]))):1, ortho(h_elbow(vector([¢1])))2])
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Let’s see what this looks like symbolically

> h(ql1l);

aysin(q1)  zcaq cos(q1)

f ,f\/$c2+z(32

B.2 Partial Differentials

The partials of this function are as follows.
> diff(h(q[11)[1]1,q[1]1); dhldql := unapply(",q[1]):
aq cos(q1)
f
> diff(h(q[11)[2]1,q[1]1); dh2dql := unapply(",q[1]):

_ Zew sin(q1)

Vet

B.3 Dynamic Model

f is defined as the estimate for the state, given the (estimated) current state. We use a
constant position model, with sampling interval D

> f := (xhat) -> xhat;

f = zhat — zhat

B.4 Partial Differentials

> diff(£(q)[1],q[1]); dfidql := unapply(",ql[1],q[2]):
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APPENDIX C

CASE 3: MORE COMPLEX MODELS

This appendix presents an annotated Maple session. This session derives the observation
equation hy(xy) and dynamic model equation f(xy) for the case presented.

Case 2 - More Complex Models

Two Link Arm

Const Position Dynamic Model

Perspective Projection

C.1 Projection Equations

First, some setup.
> interface(labelling=false): a := ’a’: ¢ := ’c’: x :='x’ : z := 'z

= 2f2 . d = ’d’:

C.1.1 Transform derivation from end-effector coordinates to base

coordinates

The standard homogeneous transformation matrix for the first link
> A[1] :=
matrix([[cos(q[1]),-sin(q[1]),0,al1]*cos(q[1])],
[sin(q[1]) ,cos(q[1]),0,al[1]1*sin(q[1])],
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[0,0,1,01 ’
[0,0,0,111);

cos(qi) —sin(qi) 0 aqcos(qr)

sin(q1) cos(q1) 0 aisin(qr)
A1 =

0 0 0 1

The standard homogeneous transformation matrix for the second link
> A[2] :=
matrix([[cos(q[2]),-sin(q[2]),0,a[2]*cos(q[2])],
[sin(q[2]),cos(q[2]),0,a[2]*sin(q[2])],

[0,0,1,01,

[0,0,0,111);

cos(q2) —sin(gz) 0 agcos(ge)

sin(gz) cos(q2) 0 agsin(ge)
A2 =

Combine them.

> A[12] := evalm(A[1]&*A[2]);
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A =
[cos(g1) cos(qz) — sin(q1) sin(gs) , —cos(q1) sin(gz) — sin(gs) cos(z)., 0,
cos(q1) az cos(gz) — sin(g1) az sin(gz) + a1 COS(Ch)]
[sin(a1) cos(gz) + cos(ar) sin(az) , cos(a1) cos(as) — sin(a1) sin(az) , 0,
sin(q1) az cos(gz) + cos(g1) a2 sin(gz) + a1 Siﬂ(ch)]
[0,0,1,0]
[0,0,0,1]
Composite transformation from coordinate frame of end-effector to base

> T20 := map(combine,A[12],trig);

cos(qi +¢2) —sin(q1+¢2) 0 aycos(qi+ g2) + a1 cos(qr)

sin(g1 +¢2) cos(q1 +¢q2) 0 agsin(q; + g2) + a1 sin(qr)
T20 :=

C.1.2 Derivation of transform from base coordinates to the camera frame

The full transformation is composed of three individual ones. This first one translates along

the camera Z axis by x[c]

> T_z := matrix([[1,0,0,0],[0,1,0,0],[0,0,1,sqrt(x[c]"2+z[c]"2)],[0,0,0,11]);

0 0 1 Val2+ 22
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The angle between the workspace plane and the camera (between the world X axis and the

camera Z axis)

> alpha := arctan(z[c],x[cl);

a := arctan(zc, )

After the translation, there is a rotation about the X axis by alpha+Pi/2 to make the Z axis
line up with the world Z axis. Note that we rotate ccw about the X axis, so this is a negative
number.

> R_alpha :=

matrix([[1,0,0,0], [0,cos(-(alpha+Pi/2)),-sin(-(alpha+Pi/2)),0],

[0,sin(-(alpha+Pi/2)) ,cos(-(alpha+Pi/2)),0],

[0,0,0,111);

1 0 0 0
0 % T 0
V%1 V%1
R_alpha =
0 _ T % 4
V%1 V%1
0 0 0 1

%1 = 2.2 + 2.
Finally, we rotate about the Z axis by Pi/2 to make the X axes coincide.

> R_z := matriX([[O,‘i,O,O] s [1:050901 s [0309190] s [090:091]]):
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0 -1 00

1 0 0O
R_z :=

0 010

0 0 0 1

To transform points from the world frame to the camera frame, left-multiply by this.

> TOc := evalm(T_z&*R_alpha&*R_z);

0 -1 0 0
L Ze 0 Te 0
V%1 V%1
TOc :=
Ze Zc
— 0 — v%1
V%1 N
0 0 0 1

%1 1= 1.2 + 2>
Just a sanity check.
>  evalm(TOc&*vector([x,y,z,11));

e T2 e Rc R
—y, — c + c , — c N c + \/(7_1, 1
YOV VR VL V%L

%1 = 1.2 + 2>

C.1.3 Combine and add perspective projection

This is the end-effector location, in camera coordinates

> evalm(TOc&*xT20&*vector ([0,0,0,1]1));
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zc (ag cos(q1 + g2) + a1 cos(q1))

[— ag sin(q; + q2) — a1 sin(q1), — V2 + 2.2 ’
C C

z¢ (a2 cos(q1 + ¢q2) + a1 cos(q1)) 2 2
_ +Vze + 2.5 1

This is the elbow location, in camera coordinates

> evalm(TOc&*A[1]&*vector([0,0,0,11));

_ zcai1cos(qi)  Tca1cos(qi)
—aq Sln(ql), - \c/m y \C/m + m, 1

Full end effector mapping (into camera coordinates), as procedure

> h_endeffector := (q) ->

vector ([-a[2]*sin(q[1]+q[2])-a[1]l*sin(q[1]),

-zlcl/(x[c] 2+z[c]~2) " (1/2)*(a[2]*cos(q[1]+q[2])+al1]*cos(q[1])),
-x[cl/(x[c]"2+z[c]~2)~(1/2)*(a[2]*cos(q[1]+q[2])+a[1]*cos(q[1]))
+(x[c] ~2+z[c]~2)"(1/2),

1D
. . zc (a2 cos(q1 + g2) + a1 cos(q1))
h_endeffector := q — vector | | — azsin(q; + g2) — a1 sin(q1), — ,
If q ([ 2sin(g1 + g2) — a1 sin(q1) PR

\ /xCZ + zCQ

Full elbow mapping (into camera coordinates), as procedure

T (a2 cos(q1 + q2) + a1 cos(q1)) +z.2 + 2,2 1])
C [

> h_elbow := (q) -> vector([-a[1]l*sin(q[1]),
-z[c]/(x[c]"2+z[c]1"~2)"~(1/2)*a[1]*cos(q[1]),
-x[c]/(x[c]~2+z[c]1~2)~(1/2)*al1]*cos(q[11)+(x[c]"2+z[c]1"~2)"(1/2),
1D

Zcaicos(qi)  Toaicos(qgr) 2 2
_ , — + VI + 27, 1
VilZ+ 22 Vel + 22

Given a vector [x,y,,z,1] in camera coordinates compute the projection onto the image plane

h_elbow := q — vector ([—al sin(q1),
(Standard projection equations)

> perspective := proc(p::vector) vector([-1/fxp[1]/p[3],-1/f*xp[2]/p[3]1]): end:

This is the full mapping from configuration space to image plane space
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> h := (q1,q2) -> vector([perspective(h_elbow(vector([ql,q2]))) [1],
perspective (h_elbow(vector([ql,q2])))[2],

perspective (h_endeffector(vector([ql,q2]1))) [1],

perspective (h_endeffector(vector([ql,q2]1))) [2]1]1);

h:= (q1, q2) — vector([perspective(h_elbow(vector([¢!, ¢2])))1,
perspective(h_elbow(vector([¢g1, ¢2])))2, perspective(h_endeffector(vector([¢1, ¢2])))1,
perspective(h_endeffector(vector([¢1, ¢2])))2])
Let’s see what this looks like symbolically

> h(ql[1l,ql[2]);

a sin(qq) zc a1 cos(q1) _—ap sin(q1 + ¢2) — a1 sin(qy)
T a1 cos(qy) ’ T ay cos(qr) ’ z. %2 ’
—_—— %1 %1 (—————~2 %1 — + V%1
f( 1 +v%1) fVRIL( 1 + v%1) f( 1 V1)
z. %2
FV%I (—xﬂ\/z_‘f +V%1)
0

%1 = z.° + 2.

%2 := ag cos(q1 + q2) + a1 cos(q1)

C.2 Partial Differentials

The partials of this function are as follows.

> diff(h(q[1],q[2])[1],q[1]); dhldql := unapply(",ql[1]l,q[2]):

aq cos(q1) B a1?sin(q1)? z.
_Zcar cos(q1) _ Tl cos(q1) 12 V%
f( NG +vV%1) £ N +V%1)2 V%1

%1 := 2.2 + 2,2

> diff(h(ql[1]1,q[2]1)[11,q[2]); dh1dqg2 := unapply(",ql1],ql[2]):
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Y

\%

\%

Y

Y

Y

diff(h(q[1],q[2]1)[2]1,q[1]); dh2dql

zc a1 sin(qy)

:= unapply(",ql[1],q[2]):

2. a12 cos(qy) z.sin(gqy)

T (T s@) |y gy Tearos(a) |

V%1

%1 := x4 2.2

diff (h(q[1],q[2]1)[2],q[2]); dh2dq2 :

0

diff (h(ql1],q[2])[3],q[1]1); dh3dql :

V%1

unapply(",ql[1],q[2]):

unapply(",ql[1],q[2]):

—ag cos(q1 + q2) — a1 cos(qy)

7 (_.'L'c (ag cos(q1 + q2) + a1 cos(q1)) 4 \/%ﬁ)

V%1

(—a2 sin(q1 + q2) — a1 Sin(CI1))2 Zc

z. (az cos(g1 + ¢q2) +

f(=

%1 := 1.2 + 2.2

V%1

diff (h(q[1],q[2]1) [3],q[2]1); dh3dq2

az cos(q1 + ¢2)

a1 cos(q1)) +V%1)2 V%1

:= unapply(",ql[1],q[2]):

f( e (ag cos(q1 + g2) + a1 cos(q1)) T

V%1

n (—agsin(q1 + q2) — a1 s

in(q1)) z. az sin(q1 + ¢2)

f (_wc (az cos(q1 + g2) +
V%1
%1 = ‘/1"62 + ZC2

diff (h(ql1],q[2]) [4],q[1]); dh4dql

2z, (—agsin(q1 + ¢2) — a1 sin(q1))

alcos(ql))Jr\/%ﬁ)? %1

:= unapply(",ql[1],q[2]):

f\/%j(—chZ_oer\/%j)

%1 := z.2 + 2,2

N 2e %02z (—agsin(q1 + g2) — a1 sin(q1))

z %2
1(—== +V%1)?
f%(er %1)

%2 := ag cos(q1 + ¢2) + a1 cos(q1)

diff(h(q[1],q[2]1) [4],q[2]); dh4dq2
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zc a2 8in(q1 + ¢2) Ze %02 xc azsin(qr + ¢2)

B A _:vc%2
FV%L( N

%1 := 2.2 + 2,2

+ V%) f9%1(-f;;§§ + V%)

%2 := a9 cos(q1 + g2) + a1 cos(q1)

C.3 Dynamic Model

f is defined as the estimate for the state, given the (estimated) current state. We use a

constant position model, with sampling interval D

> f := (xhat) -> xhat;

f = zhat — zhat

C.4 Partial Differentials

> diff(£(q) [1],q[11); dfldql :

unapply(",ql[1],q[2]):

1

> diff(£(q)[1],q[2]); df1dq2 := unapply(",ql[1],q[2]):

0

> diff(£(q)[2],q[1]1); df2dql :

unapply(",ql[1],q[2]):

0

> diff(£(q) [2],q[2]); df2dq2 :

unapply(",ql[1],q[2]):
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APPENDIX D

CASE 4: DYNAMIC MODEL

This appendix presents an annotated Maple session. This session derives the observation
equation hy(xy) and dynamic model equation f(xy) for the case presented.

1 DOF Arm - 2D Sensor - Position and Velocity Estimates

We have seen how the EKF can be used as a mechanism for weighting the observations
returned from a tracking system, using information about the configuration of the robot and
imaging system to evaluate the quality of the observations when updating the estimated state
of the system. In this example, we illustrate the use of a dynamic system model. We have a
1 link arm, and an elevated 2D sensor. We will include both q and dq/dt in our state vector,

and use the velocity estimates in computing the predicted observation.

D.1 Projection Equations

First, some setup.
> interface(labelling=false): a := ’a’: ¢ :=’c’: x :='x’ : z :='z":

= 2f2 ;. d = ’d’:

D.1.1 Transform derivation from end-effector coordinates to base

coordinates

The standard homogeneous transformation matrix for the first link
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> A[1] :=
matrix([[cos(q[1]),-sin(q[1]1),0,a[1]*cos(q[11)],
[sin(q[1]),cos(q[1]1),0,al1]*sin(q[11)],
[0,0,1,0],

[0,0,0,111);

cos(q1) —sin(q1) 0 aqcos(q1)

sin(gi) cos(q1) 0 apsin(q)
A1 =

0 0 0 1

Composite transformation from coordinate frame of end-effector to base

> T20 := A[1];
T20 .= A1

D.1.2 Derivation of transform from base coordinates to the camera frame

The full transformation is composed of three individual ones. This first one translates along

the camera Z axis by x[c]

> T_z := matrix([[1,0,0,0],[0,1,0,0]1,[0,0,1,sqrt(x[c] 2+z[c]1"2)],[0,0,0,111);
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The angle between the workspace plane and the camera (between the world X axis and the

camera Z axis)

> alpha := arctan(z[c],x[cl);

a := arctan(zc, )

After the translation, there is a rotation about the X axis by alpha+Pi/2 to make the Z axis
line up with the world Z axis. Note that we rotate ccw about the X axis, so this is a negative
number.

> R_alpha :=

matrix([[1,0,0,0], [0,cos(-(alpha+Pi/2)),-sin(-(alpha+Pi/2)),0],

[0,sin(-(alpha+Pi/2)) ,cos(-(alpha+Pi/2)),0],

[0,0,0,111);

1 0 0 0
0 % T 0
V%1 V%1
R_alpha =
0 _ T % 4
V%1 V%1
0 0 0 1

%1 = 2.2 + 2.
Finally, we rotate about the Z axis by Pi/2 to make the X axes coincide.

> R_z := matriX([[O,‘i,O,O] s [1:050901 s [0309190] s [090:091]]):
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0 -1 00

1 0 0O
R_z :=

0 010

0 0 0 1

To transform points from the world frame to the camera frame, left-multiply by this.

> TOc := evalm(T_z&*R_alpha&*R_z);

0 -1 0 0
L Ze 0 Te 0
V%1 V%1
TOc :=
Ze Zc
— 0 — v%1
V%1 N
0 0 0 1

%1 1= 1.2 + 2>
Just a sanity check.
>  evalm(TOc&*vector([x,y,z,11));

e T2 e Rc R
—y, — c + c , — c N c + \/(7_1, 1
YOV VR VL V%L

%1 = 1.2 + 2>

D.1.3 Combine and add perspective projection

This is the end-effector location in camera coordinates

> evalm(TOc&*xT20&*vector ([0,0,0,1]1));

] zca1cos(qi)  zcaicos(qr) 2 2
—aq sin — — + Vet + 2.5 1
sin(@), ~ s e V2 + 2.2,
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End effector mapping (into camera coordinates) as procedure

> h_endeffector := (q) —>

vector([-a[1]*sin(q[1]), -z[c]l/(x[c]l"2+z[c]~2)"~(1/2)*a[1l*cos(q[1]),
-x[c]/(x[c]~2+z[c]1~2)~(1/2)*al1]*cos(q[11)+(x[c]~2+z[c]"2)"(1/2),
11);

coS coS
h_endeffector := q — vector ([—al sin(q1), _Zd (91) Tt (¢1) +Vx2 + 2.2, ID

)
/:L.CZ + zCZ \ /xCZ + ZCQ

Given a vector [x,y,z,1] in camera coordinates compute the projection onto the image plane

(Standard projection equations)

> perspective := proc(p::vector)
vector ([-1/f*p[1]1/p[3]1,-1/f*p[2]/p[3]11):
end:

This is the full mapping from configuration space to image plane space

> h := (ql) -> vector([perspective(h_endeffector(vector([qll))) [1],
perspective (h_endeffector(vector([q1]))) [2]]1);

h := g1 — vector(

[perspective(h_endeffector(vector([g!])))1, perspective(h_endeffector(vector([g1])))2])

Let’s see what this looks like symbolically

> h(ql1l);

a1 sin(qq) 2 a1 cos(q1)
e aicos(qi) ’ _ zca1cos(qr) A
f( g +vV%1) fFV%I1( —Ja +v%1)

%1 := z.2 + 2,2

D.2 Partial Differentials

The partials of this function are as follows.

> diff(h(q[1]1)[1]1,q[1]); dhldql := unapply(",ql[1],q[2]):
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ay cos(q1) B a1?sin(q1)? z.

f (T cosla) “i/‘;_j(ql) V) p (T cosla) “i/f;_sl(ql) VTR VT

%1 := 2.2 + 2,2

> diff(h(q[1]1)[2]1,q[1]); dh2dql := unapply(",ql[1],ql[2]):

B zc a1 8in(q1) _ zear® cos(q) zesin(gr)
71 _ZTcay COS(ql) %1 %1 _Zca COS(QI) %1)2
J"\/O(i,—%1 + v%1) f0(7f—%1 + vV%1)

%1 1= x> + 2.2

> diff(h(q[1])[1],q[2]); dhldg2 := unapply(",ql1],ql[2]):

0

> diff(h(ql[1]1)[2]1,q[2]); dh2dq2 := unapply(",ql[1],ql[2]):

D.3 Dynamic Model

f is defined as the estimate for the state, given the (estimated) current state. We use a
constant velocity model, with sampling interval D

> f := (xhatl,xhat2) -> vector([xhatl + Deltax*xhat2,xhat2]);

f = (zhatl, zhat2) — vector([zhatl + A zhat2, zhat2))

D.4 Partial Differentials

> diff(£(q[1],q[21) [1],q[1]); dfidql :

unapply(",q[1],q[2]):

1

> diff(£(q[1],q[21) [1],q[2]); dfidq2 :

unapply(",q[1],q[2]):

A
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> diff(£(q[1],ql[2])[2],q[1]); df2dql := unapply(",ql[1],q[2]):

0

> diff(£(ql1],ql[2])[2],q[2]); df2dq2 := unapply(",ql[1],q[2]):

D.5 Definition of Tracking Filter

partial f / partial x is a matrix of partials

> A := xhat -> matrix([ [ dfidql(xhat[1],xhat[2]), dfidq2(xhat[1],xhat[2]) ],
[ df2dql(xhat[1],xhat[2]), df2dq2(xhat[1],xhat[2]) ] 1):

Check the mapping

> A(xhat);

1 A

0 1
partial h / partial x is a matrix of partials
> H := xhat -> matrix([ [ dhildql(xhat[1],xhat[2]), dhldq2(xhat[1],xhat[2])],

[ dh2dql(xhat[1],xhat[2]), dhldq2(xhat[1],xhat[2])] 1):

Check the mapping

> H(xhat);
a1 cos(zhat1) a1? sin(zhat)? z, 0
f 72 f %2° V%1
zcaysin(zhat)  z.a1? cos(zhat1) z. sin(zhat1)
_ _ 2 0
F V%1 %2 %1 %2 i

%1 := 2.2 + 2.2

z. a1 cos(zhatq)
2:=— v 71
% V%1 V%
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Covariance before this step
> P_kmikml := I(2):
Time Update - Covariance

> P_kkml := proc (xhat::vector) global H,A;
evalm(A(xhat) &* P_kmikml &* linalg[transpose] (A(xhat))):

end:

Time Update - State

Here is where the big win from using system dynamics comes. Some real time, D, has
elapsed. We are now compensating for the time since we last observed, to when we take the
next observation. Thus the linearizations below (f;H) are done about a more accurate point.
Also, if you have a local observation, it can be done about a more accurate point.

The only real difference, if we use higher-order prediction models, is that f takes more
information into account. The other entries involved in computing f are usually zerod out in h
(stating that they can not be observed).

> xhat_kkml := f(xhat[1],xhat[2]):

Observation Update - Gain K_{k}

> Kk := proc(xhat_kkml::vector,Rk) global H,P_kkml; local Hk,Hkt;

Hk := H(xhat_kkml):

Hkt := linalg[transpose] (Hk):

evalm(Hkt &+ linalg[inverse] (Hk &* P_kkml &* Hkt + Rk)):

end:

Observation Update - Covariance P_{k k}

> Pkk := (xhat_kkmi,Rk) -> evalm( P_kkml &* (I(1) - Kk(xhat_kkmil,Rk)&+*H(xhat_kkmi))):

Observation Update - State Here, zk is the observation back from the (physical) system.

> xhat_kk := xhat_kkml + Kk&*(zk - h(xhat_kkml)):

Increment k by one, and iterate the filter.
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APPENDIX E

CASE 5: 3DOF PUMA ROBOTIC ARM

This appendix presents an annotated Maple session. This session derives the observation
equation hy(xy) and dynamic model equation fi(xy) for the case presented. In the interest of
space, the equations for the partial derivitives of these functions are omitted.

Case 4 - 3DOF PUMA arm

Constant Velocity Motion Model

Perspective Projection Imaging Model

> digits := 8: # to match C ’double precision’

> with(linalg): interface(labelling=false): readlib(C):

These vectors are the DH parameters of the arm. (Here, it’s the PUMA).

> a := array(1..6,[0,431.8,-20.32,0,0,0]):

d := array(1..6,[0,149.09,0,433.07,0,56.25]):
alpha := array(1..6,[-Pi/2,0,Pi/2,-Pi/2,Pi/2,0]):
#fx := 1000: £y :

1185:

#cameraheight := 0000:

#cameradepth := 5000:

cameradepth := ’cameradepth’: cameraheight := ’cameraheight’:

fx := ’focallengthx’: fy:=’focallengthy’:
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E.1 Projection Equations

This is the standard homogeneous transformation, given the DH parameters (see, e.g. Spong

P65-66)
> A := proc(theta::array,i::integer) global a,d,alpha;
array(1l..4,1..4,[
[cos(thetal[i]l), -sin(thetalil)*cos(alphalil),
sin(thetal[il)*sin(alphal[i]), alil*cos(thetalil)],
[sin(theta[i]), cos(thetal[il])*cos(alphali]),
-cos(thetali]l)*sin(alphalil), alil*sin(thetal[il)],
[0, sin(alphalil), cos(alphalil), d[il],
[0, 0, 0, 111);
end:

Given a vector [x,y,,z,1] in camera coordinates compute the projection onto the image plane.
> perspective := proc(p::vector) vector([fx*p[1]/p[3],fy*p[2]/p[3]1]1): end:
Define the transformation from the world coordinates to the camera coordinates.

Here, the camera is at +5000 on the y-axis, with 4+z of the camera pointing at the z0 axis,

at height 1000
> camera := matrix([[-1,0,0,0],[0,0,-1,cameraheight],[0,-1,0,cameradepth],[0,0,0,1

11);

0 0 —1 cameraheight

camera =

0 —1 0 cameradepth

0 0 0 1

Define mapping from end-effector coordinates to image plane coordinates.
> H3 := (q,p) -> perspective(evalm(camera&*A(q,1)&*A(q,2)&*A(q,3)&*p)):

> H2 := (q,p) -> perspective(evalm(camera&*A(q,1)&*A(q,2)&*p)):
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> H1 := (q,p) -> perspective(evalm(camera&*A(q,1)&*p)):

> HO :

(q,p) —-> perspective(evalm(camera&*p)):

This defines a few positions in workspace and configuration space

> q := array(1..6): p := array(l..4): straightarm := array([-1040,-20,150,1]):

# straight arm in upright state (in ql frame) q_left := array([-Pi,-Pi,Pi/2,0,0,0]):
g_center := array([-Pi/2,-Pi,Pi/2,0,0,0]): gq_right := array([0,-Pi,Pi/2,0,0,0]):
location in the image of a point in coordinate system 0 (slightly boring)

> HO(q,p);

focallengthz pq focallengthy (—ps + cameraheight py4)
—py + cameradepth py’ —p2 + cameradepth py

location in the image of a point in coordinate system 1

> Hi(q,p);
focallengthz (—cos(q1) p1 + sin(q1) p3) focallengthy (p2 + cameraheight py)
—sin(q1) p1 — cos(q1) p3 + cameradepth py’ —sin(q1) p1 — cos(q1) ps + cameradepth py

location in the image of a point in coordinate system 2

> H2(q,p);

[focallengthév(—COS(ql) cos(gz) p1 + cos(q1) sin(gz) p2 + sin(q1) p3

+ (—431.8 cos(q1) cos(g2) + 149.09 sin(g1)) p4) /(—sin(ql) cos(qo) p1 + sin(q1) sin(ge) p2

—cos(q1) ps + (—431.8sin(q1) cos(g2) — 149.09 cos(q1) + cameradepth) py), focallengthy
(sin(g2) p1 + cos(qz2) p2 + (431.8sin(q2) + cameraheight) ps) /(—sin(ql) cos(gz) p1

+ sin(q1) sin(g) p2 — cos(q1) pa
+ (—431.8sin(q1) cos(g2) — 149.09 cos(q1) + cameradepth)p4)]

location in the image of a point in coordinate system 3

> H3(q,p);
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[focallength$((—COS(Q1) cos(gz) cos(gs) + cos(q1) sin(gz) sin(g3)) p1 + sin(q1) p2
+ (—cos(q1) cos(gz) sin(g3) — cos(g1) sin(gz) cos(g3)) ps + (20.32 cos(g1) cos(gz) cos(gs)
—20.32 cos(q1) sin(ge) sin(gs) — 431.8 cos(q1) cos(gz) + 149.09 sin(q1))ps) / (
(—sin(g1) cos(gz) cos(gs) + sin(q1) sin(gz) sin(gs)) p1 — cos(g1) p2
+ (—sin(q1) cos(gz) sin(gs) — sin(q1) sin(g2) cos(gs)) ps + (20.32sin(g1) cos(g2) cos(gs)
— 20.32sin(qy) sin(gz) sin(gs) — 431.8 sin(qy) cos(gz) — 149.09 cos(q1) + cameradepth)ps
), focallengthy ((sin(g2) cos(g3) + cos(q2) sin(g3)) p1 + (sin(ga) sin(gs) — cos(ga) cos(g3)) p3
+ (—20.32sin(go) cos(g3) — 20.32 cos(g2) sin(gs) + 431.8sin(gs) + cameraheight) pa) /(
(—sin(q1) cos(ge) cos(gs) + sin(g1) sin(gz) sin(gs)) p1 — cos(q1) p2

(g3)) p3 + (20.32sin(g1) cos(q2) cos(g3)

— 20.32sin(qy) sin(gz) sin(gs) — 431.8 sin(qy) cos(gz) — 149.09 cos(q1) + cameradepth)ps

)

E.2 Dynamic Model

+ (—sin(q1) cos(g2) sin(gs) — sin(gy) sin(g2) cos

f is defined as the estimate for the state, given the (estimated) current state. We use a
constant velocity model, with sampling interval D xhatl and xhat2 are the joint angle estimates
and joint angle velocities, respectivily

> f := (xhatl,xhat2) -> vector([xhatl + Delta*xhat2,xhat2]);

f = (zhatl, zhat2) — vector([zhatl + A zhat?2, zhat2))

E.3 Partial Differentials

> diff(£(q[1],q[2]1)[1],q[1]); dfildql :

unapply(",q[1],q[2]):

1

> diff(£f(q[1]1,q[2]1)[1],q[2]); dfidq2 :

unapply(",ql[1],q[2]):

A
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> diff(£(q[1],q[2]1) [2],q[1]); df2dql := unapply(",q[1],q[2]):

0

> diff(£(q[1],q[2]1) [2],q[2]); df2dq2 := unapply(",q[1],q[2]):
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APPENDIX F

CASE 6: INCOMPLETE OBJECT MODEL

This appendix presents an annotated Maple session. This session derives the observation
equation hy(xy) and dynamic model equation fi(xy) for the case presented. In the interest of
space, the equations for the partial derivitives of these functions are omitted.

Case 6 - Incomplete Motion Model

2DOF Arm

Unknown Link Lengths

Constant Position Motion Model

> digits := 8: # to match C ’double precision’

> with(linalg): interface(labelling=false): readlib(C):

These vectors are the DH parameters of the arm. (Here, it’s a 2d planar arm).

> a := array(1..2):

d := array(1..2,[0,0]):

alpha := array(1..6,[0,0]):

scalex := 1: scaley := 1:

#camerax := 512/2: cameray := 485/2: cameradepth := 0:
camerax := ’camerax’: cameray := ’cameray’: cameradepth :=

’cameradepth’:
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F.1 Projection Equations

This is the standard homogeneous transformation, given the DH parameters (see, e.g. Spong

P65-66)
> A := proc(theta::array,a::array,i::integer) global d,alpha;
array(1l..4,1..4,[
[cos(thetal[i]l), -sin(thetalil)*cos(alphalil),
sin(thetal[il)*sin(alphal[i]), al[il*cos(thetalil)],
[sin(thetal[i]), cos(thetal[i])*cos(alphal[i]),
-cos(thetalil) *sin(alphalil), al[il*sin(thetalil)],
[0, sin(alphalil), cos(alphalil), d[il],
[0, 0, 0, 111);
end:

Given a vector [x,y,,z,1] in camera coordinates compute the projection onto the image plane.

> perspective := proc(p::vector) vector([fxxp[1]/p[3],fy*p[2]1/p[3]1]1): end:

ortho := proc(p::vector) vector([scalex*p[1],scaley*p[2]]): end:

Define the transformation from the world coordinates to the camera coordinates.

> camera := matrix([[1,0,0,camerax],[0,1,0,cameray],[0,0,1,cameradepth],[0,0,0,1]]
);
1 00 camerax
010 cameray
camera :=

0 0 1 cameradepth

000 1

Define mapping from end-effector coordinates to image plane-coordinates.

> H2 := (x,p) —-> ortho(evalm(camera&*
A(array([x[1],x[2]1]) ,array([x[3],x[4]1]),1)&=*
A(array([x[1],x[2]11) ,array([x[3]1,x[41]),2)&*p)):
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> H1 := (x,p) -> ortho(evalm(camera&* A(array([x[1],x[2]]),array([x[3],x[4]1]1),1)&*p)):

> HO :

(x,p) -> ortho(evalm(camera&* p)):

This defines a few positions in workspace and configuration space

> x := array([thetal[1],thetal[2],al[1],a[2]]): p := array(l..4): pl[4] := 1:

x := array(l..4): p := array(l..4):

location in the image of a point in coordinate system 0 (slightly boring)

> HO(x,p);

[p1 + cameraz py, p2 + cameray p4

location in the image of a point in coordinate system 1

> Hi(x,p);

[cos(ml) p1 — sin(z1) p2 + (z3 cos(z1) + cameraz) py,
sin(z1) p1 + cos(z1) p2 + (z3sin(z1) + cameray) p4]
location in the image of a point in cs 2

> H2(x,p);

[(cos(ml) cos(ze) — sin(z1) sin(x2)) p1 + (—cos(x1) sin(ze) — sin(z1) cos(z2)) po
+ (cos(z1) x4 cos(xz2) — sin(x1) x4 sin(z2) + x3 cos(z1) + camerazx) py,
(sin(z1) cos(z2) + cos(z1) sin(z2)) p1 + (cos(z1) cos(z2) — sin(z1) sin(zs)) po

+ (sin(z1) x4 cos(z2) + cos(z1) z4 sin(z2) + z3sin(z1) + cameray) p4]

F.2 Dynamic Model

f is defined as the estimate for the state, given the (estimated) current state. We use a
constant velocity model, with sampling interval D xhat1l and xhat2 are the joint angle estimates
and joint angle velocities, respectivily

> f := (xhatl,xhat2) -> vector([xhatl + Delta*xhat2,xhat2]);

f = (zhat1, zhat2) — vector([zhat! + A zhat2, zthat2])
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F.3 Partial Differentials

> diff(£f(q[1]1,q[2]1)[1],q[1]); dfidql :

unapply(",ql1],q[2]):

1

> diff(f(ql1],ql[2]1)[1],q[2]); dfidq2 := unapply(",ql[1],q[2]):

A

> diff(f(ql1],ql[2])[2],q[1]); df2dql := unapply(",ql[1],q[2]):

0

> diff(£(ql[1],q[2])[2],q[2]); df2dq2 := unapply(",ql[1],q[2]):
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