
  

Files/Spreadsheet Processing

10/21/2009



  

Opening Discussion

● Imagine a program that you use frequently. 
Does that program use files? How would the 
functionality of the program change if it 
couldn't use files?

● What do files give our programs that we don't 
have without them?



  

Objectives

● We have a new topic and new goals. We are 
going to see how programming can let you do 
things with tabular data that you might have 
problems doing with standard applications.

● First, we need to learn how to read information 
from a file and put it into our program.

● After that we will work on processing the data.



  

Spreadsheet Scenario

● We have a new scenario that we are going to 
work with called spreadsheet.

● This scenario has a world that shows a grid.
● The grid can be filled with numbers that are 

drawn on the world.
● What we want to do today is fill in the 

readFile() method so that it can read in CSV 
text files.



  

Numbers with Decimals

● The numbers we are dealing with might have 
decimals.

● For that reason, we can't use the int type.
● Instead we will use the double type. Double 

stands for double-precision floating point. 
These aren't real numbers in the mathematical 
sense, they have limited precision.

● Our table uses the Double class which is a 
wrapper for double so it can return null.



  

Reading from File

● We are going to use the java.util.Scanner 
class for reading from files.

● Let's look at the API entry for that.
● To read from a file we will use the constructor 

that takes a java.io.File object.
● Let's look at the API entry for File.
● By default Greenfoot looks for files in the 

directory of the current scenario.



  

Strategy

● Here is what we want to do in readFile() to 
read a CSV file.

● Make a scanner.
● While the scanner has more lines

– Read a line

– Split the line on commas

– For each of the values
● Add it to the table



  

Exceptions

● When things go wrong in Java the code 
throws exceptions. Files can have lots of 
things go wrong.

● Use a try block when you want to try to do 
something that might throw an exception then 
catch that exception.

– try {
● Statements

– } catch(ExceptionType e) {
● Statements

– }



  

The while Loop

● Not everything we repeat in code is well 
modeled by counting. Reading all the lines in 
a file is an example.

● The while loop allows you to repeat something 
as long as a condition is true.

● while(condition) {
– Statements

● }



  

The split Method

● One way to break a string up into parts is with 
the split(String delim) method of the String 
class.

● You pass it the delimiter to split on and it gives 
you back a String[].

● We will use split on the line we read and then 
have a for loop go through the array.



  

Minute Essay

● Do you have any questions about the material 
we covered today?


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

