

Path Finding

11/6/2009

Opening Discussion

● Minute Essays
– Word games

– Hangman

– Images like the one on my web page.

● When you leave your room to walk to your first
class on the first day of school, what goes on
in your head? What are you thinking in the
process of planning how to get to class?

Objective

● We have been using the walkToward method
for a long time now. This takes us to a
destination, but it doesn't respect boundaries.

● I want us to be able to make an actor walk to a
destination, but do it without passing through
obstacles.

● As it happens, we will also make it find the
shortest path as well.

Testing Multiple Options

● The biggest difference between what we want
to do now and what we have been doing is
that before we only really had to consider one
option. Technically, we were greedy, always
moving in a direction that took us closer.

● That doesn't work now. We have to consider
multiple options and taking a step in the “right”
direction now doesn't always help.

Recursion

● To do this, we are going to use a technique
called recursion.

● A recursive method is a method that calls
itself.

● Requires that the recursive call be conditional.
Otherwise you have infinite recursion.

● When a method returns, the computer
remembers where it was called from and goes
back. This information is stored on the call
stack.

Recursion for Iteration

● The simplest form of recursion is a recursive
method that just calls itself once.

● These give us iteration. You could do this in
place of loops, but it is less than ideal in Java.

● Let's see how we could make a recursive
method to add a specified number of actors.

Recursing Multiple Options

● The real power of recursion comes from
having a method call itself more than once.

● The call stack remembers where we are so we
can return and try a different option.

● This behavior is difficult to mimic with loops.
● Have to be careful because these can take a

long time to compute if not done intelligently.

Our Approach

● Our path finding algorithm will be recursive. It
will call itself four times, once for each
direction, and return how many steps it takes
to get where we are going if we step in that
direction.

● To prevent the algorithm from running in
circles, we need to keep a 2D array that tells
us where we have been. For optimization, we
will store how many steps it took us to get
there.

Minute Essay

● What questions do you have about today's
topic?

● Remember that projects are due Monday.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9

