
1

Syntax and Structure of Java

2/27/2008

2

Opening Discussion

■ Let's look at some solutions to the interclass
problem.

■ Do you have any questions about the project?

3

Endless Possibilities

■ Early in the course I stressed how I wanted to
feature creativity. Alice was good tool to let you
create interesting things quickly early on.
Fundamentally it lacks power though.

■ Java provides a basically unlimited scope for
creativity. It is limited only by your motivation.

■ I'd like to show you two projects that I've written in
Java.
 The program you will use for submitting your

assignments. This is short and sweet, but does
something that we really need.

 A data plotting/analysis package that I've worked on
for a while called SwiftVis.

4

Documentation/APIs

■ There are basically two parts to any significant
programming language: the language itself and
the libraries for it.

■ The language describes the syntax and semantics
of how you give instructions in your program. The
library is a collection of code written by others that
you can call on to help you do things.

■ Java has a fairly simple language, but very
extensive libraries. We'll be covering the language
in detail over the rest of the semester. We'll also
see some parts of the libraries.

■ You can (and should) look at the API on-line to
see the possibilities in the libraries.

5

Structure of a Java Program

■ Now that you know where to look for libraries, let's
look at the language. We can do this by going
back and looking at the interclass problem some.

■ A class contains methods, data members, and
potentially other classes.

■ Inside a method we put statements. Basic
statements end with semicolons.
 Variable declarations have type, variable name, and

potentially initialization.
 Assignment statements have variable=expression.
 Method calls are also allowed as statements.
 We'll learn later about control flow statements.

■ Expressions have a type and a value.

6

Comments in Java

■ Just like in Alice, you can put comments in Java.
They are probably more common in Java than in
Alice.

■ Single line comments can be added with //.
■ Multiline comments can be added with /* and */.
■ A comment that starts with /** is interpreted as

being a special Javadoc comment. I'm not going to
force you to learn how to do Javadoc comments,
but they are what was used to create the API.

7

Import Statements

■ Java code, including libraries are arranged into
packages.

■ Your code only sees the package it is in and
java.lang. Other classes must b fully specified or
imported. The import statement tells the Java
compiler to look in a different location if it can't find
something.

■ Eclipse can add import statements for you through
the Ctrl-Alt-M or Ctrl-Alt-O keystrokes.

8

Text Output in Java

■ We saw last time that we can use
System.out.println() to print things.

■ Your book likes System.out.printf(), but you won't
see me use that much.

■ Let's look in the API to see what System.out really
is and what all we can do with it.

■ Now let's write a bit of code to print some things.

9

Text Input in Java

■ The easiest way to do text input in Java is with the
Scanner class. Technically this is java.util.Scanner
so we will normally have an input statement.

■ Let's look at this in the API as well.
■ Now I'm going to write some code that uses both a

Scanner and prints output. It might not all make
sense at this point, but I want to do it for
demonstration purposes.

10

Minute Essay

■ What similarities do you see between Java and
Alice? What things are different?

■ Remember that the project is due Friday.
■ Interclass Problem – Write code that uses input

and output in Java, but isn't right from your book.

