Recursion and Testing

9-26-2001

Opening Discussion

What did we talk about last class?

In the last two classes we covered all of
the conditional structures in C++. Now
we are going to turn to some applications.
The first application is recursion. From
the reading, what is recursion?

We will also talk some about testing. How
do conditionals effect the testing that we

need to perform on a program or piece of
code?

Recursion

A recursive function is a function that calls itself.
While this is a very simple and straightforward
definition, it is a remarkably powerful concept in
computer programming and computer science in
general. In some languages recursion is the
accepted method of getting code to execute
multiple times.

Recursion requires conditionals because you
have to be able to return without recursing for
the program to ever exit.




A Simple Loop with
Recursion

One thing you want to be able todo in a
program is have a section of code execute
a variable number of times depending on
the inputs to the program.

Recursion can do this by having a function
call itself when it has finished. It does
this repeatedly until some condition is
met.

Let's look at a simple example of this.

Recursion in the
Assignment

In the second assignment you are asked
to go through the process of reading in
grade data for multiple students using
recursion.

This means you will want a function that
reads in the data (or calls other functions
to read in the data) which calls itself
repeatedly until the first name it reads in
is “quit”. (firstName=="quit")

More Complex Recursion

The use of recursion is more significant
when a function calls itself multiple times.

In this case it is not just a fancy way of
doing a loop, it uses the natural stack
structures of function calls to help simplify
processes that aren't linear in nature.

In this class we will use recursion to help
break problems into parts. It can also be
useful for walking through “trees”.




Testing with Conditionals

It is impossible to prove that a program is
correct in general. That doesn't mean we
shouldn't try to make them correct.
Instead we try testing them in specific
ways.

All branches - Whenever there is a branch in

the program you want to go down all possible
branches.

All paths - This is the impossible goal of going
down all combination of branches.

Sample Code

Now lets take a second to look at a
sample program that uses recursion to
see how it works and what we need to do
to test it.

Minute Essay

What did we talk about today? This is our
last day of talking about conditionals as a
main topic. Next class we will begin
discussing loops. Are there any topics
that you have questions about that you
would like for me to address briefly on
Friday that deal with conditionals?
Remember to start reading chapter 5 on

loops and you should probably be working
on assignment 2 before Friday.




