
1

Loop Basics and while

Loops

9-28-2001

Opening Discussion

❚ What did we discuss last class?

❚ One of the concepts introduced last class

was how to use recursion to create
looping logic in a program. Starting today

we will look at the more customary
method of having loops in programs.

❚ There are three methods of implementing
loops in C++. Can you name one?

Other Notes

❚ On assignment #2 you probably NEED to
do a design. A good solution to it will

involve multiple functions and will exercise
quite a few of the things we talked about

with function calls, variables, and

arguments. You need to THINK about
how you will do things before you try to

write it.

❚ Reading from a file in assignment #2.

(You’re only going to fake it.)

2

while Loops

❚ The simplest loop construct in C++ is the
while loop. It has the following syntax.

❚ When a while loop is reached during

execution, the computer executes the

code inside until the condition is false at
the end of the block.

❚ Let’s look at two examples.

whi l e(conditional) {
statements;

}

Conditionals in Loops

❚ Conditions in while loops are boolean
expressions just like those we saw for if

statements. In the if statements the
conditional determined whether a section

of code would be executed or not. In a

while loop it determines how many times
it will be executed.

Initializing

❚ Before you get to a while loop you typically

need to do something it initialize the state of the

system. This generally means that you need to
have declared and put values into the variables

that you are using in the conditional expression.

❚ In a loop that counts from 0 to n-1 this would
involve having n set up and declaring a counter

variable that starts at 0. This can be viewed at

setting the loop preconditions.

3

Iterator

❚ A loop also needs to do something that

“advances” it to the next case it is going to
process. Without this the state of the

conditional will never change and you have an
infinite loop.

❚ In a counting type loop the iterator will

increment or decrement the counter variable by

some value. Not every loop is a counter loop
and other iterators could be reading from an

input source or moving through a linked data
structure.

Processing

❚ The code in the block of the while loop
that isn’t part of the iterator does

whatever type of processing is intended
for that loop.

❚ Let’s look closely at what type of
processing was done in the two examples

that we have been using.

Loop Invariants

❚ When trying to write correct loops it can be very

helpful to isolate sets of statements that are
true through the entire execution of the loop.

The most helpful sets of statements are the
ones that are most closely related to what the

loop should be doing.

❚ Good invariants can actually allow you to do

proofs of correctness where you show that a
loops will terminate and will perform the

calculation you are interested in.

4

Minute Essay

❚ Write a loop that calculates the sum of
the squares of all the numbers between 1

and n, where n is a local integer variable.

❚ Next week we will continue with our

discussion of loops. Remember that

assignment #2 is due on Monday. I need
printed versions of your design and your

code plus an electronic copy of the code
via e-mail. Please don’t use lpr for

printing.

