do-while and for Loops

10-1-2001

Opening Discussion

What did we talk about last class?

At the end of last class I asked you to
write a loop that would find the sum of
the squares between 1 and n.

int i=1;

int sunme0;

whi | e(i<=n) {

sumt=i *i
}

do-while Loop Syntax

There is another loop construct nearly
identical to the while loop that you use if
you know that the body of the loop should
execute at least once: the do-while loop.

do {
st at ement s;
} while(condition);

It requires all the same “parts” as the
while loop but the condition is not
checked until after it has executed once.




while vs. do-while

A while loop can be made to do anything
you need from a loop as can a do-while
loop. However, both exist in the language
because different ones come in handy at
different times.

If you know that a loop should execute at
least once the do-while structure typically
makes the logic a bit easier and cleaner.

for Loop Syntax

In C++ the for loop simply allows you to
combine initialization and iteration into
the basic loop structure. It has the
following syntax.

for(initialization; condition; iterator) {
statenents;

}

It behaves much like a while loop. You
can declare variables in the initialization.

Comma “Operator”

Notice that in the for loop the semicolons play
the role of separating the initializer from the
condition and the condition from the iterator.
That means if you want to have multiple
expressions in them you have to separate then
with something else.

The comma works as an operator to separate
expressions. The value of the complete
expression is that of the last subexpression in
the comma separated list.




Increment and Decrement

While you have seen these is my
examples before we should take a closer
look at the increment (++) and
decrement (--) operators.

When placed before a variable the
variable is either increased or decreased
by one before the statement executes. If
it is after then it happens after the
statement executes. In most situations it
doesn’'t matter.

Examples

Now we will look at some sample code
that illustrates how the three types of
loops can be constructed and what the
relative strengths of each are.

for - Great for numeric loops because of

compact structure. Makes it harder to forget
things too.

while - General purpose when initilizer or
iterator are complex.

do-while - always executes once.

Minute Essay

Write a for loop that computes x”n where
n is an integer. Remember that */' is not
exponentiation in C++.

Next class we will finish with loops before
we start working on arrays.




