Nested Loops and Break
Statements

10-1-2001

Opening Discussion

What did we talk about last class?
For loop for integer exponentiation.

doubl e exponent (doubl e x,int n) {
doubl e ret=1.0;
for(int i=0; i<n; i++) {
ret*=x;
}

return ret;

Nested Loops

Loops can be “nested”. This means that
we can put one loop inside of another
loop. There is no limit to how deep the
nesting of loops can go other than how
much you are willing to type.

There is also no restriction on the type of
loops you can nest. Loops can appear in
any place where other statements would
appear.




How Many Times Does it
Execute?

The main effect of nesting loops is that
the code in the inner-most loops can be
executed many, many times. The number
of times grows as the multiple of how
many times each loop in the nesting is
executed.

So if you have an outer loop that will
execute 10 times and it surrounds a loop
that executes 5 times the code in the
inner loop will execute 50 times.

Standard Nested Loop
Example

One standard example of using nested
loops is when you have a set of objects
and you want to do something with every
possible pair of objects.

/1 Assume we have n objects in the set.
for(int i=0; i<n; i++) {

for(int j=i+1; i<n; i++) {
oper at e(obj ect _i, object_j);

}
This executes n*(n-1)/2 times.

Break Statements

You have already seen the break
statement used in the switch construct. It
can also be used with loops.

If a break statement is encountered in a
loop it will automatically jump the
program execution to the end of the loop
and continue program execution from
there.

Lots of breaks is poor programming
practice.




Examples

Print all the primes between 2 and n.
This just takes the code we had written for
the last class and nests it inside an outer
loop.

Alternate approach to student assignment

grades with nested loops.

Loops can save you some typing when
reading in and averaging grades.

Minute Essay

Starting next class we will be moving on to talk
about arrays. What questions do you have
about loops? Arrays will greatly enhance our
ability to write meaningful programs (or at least
allow me to create more complex meaningless
examples). They will also give you more of a
change to exercise the previously covered
constructs of the language. Would you benefit
from me writing simple “drill” problems that you
could program in to test your understanding?

Quiz #3 is Friday. Read 6.1 and 6.2 for it.




