Searching and Sorting
Arrays/Lists

10-10-2001

Opening Discussion

What did we talk about last class?

The delete algorithm we looked at has an
average order of O(n). That is to say it is
linear. The input size is the length of the
list. How many operations it has to
perform to do a delete scales as the
length of the list.

Today we will start talking about
searching and sorting. We did a search
yesterday. How would you sort an array?

Searching Unsorted Data

We have seen this before, we looked at
the findElement function yesterday that
searched a list for an element.

When data isn't sorted you have to, on
average, look at half of the items in a list
or array before you find what you want.
That implies the search is O(n). The
number of things you have to compare to
grows proportional to the number of
things on the list or in the array.




Sorting

There are many reasons to want to sort data.
One is that we can typically search sorted data
more quickly. We'll talk about that later, today
we will look at 3 O(n2) sorting algorithms.

The basic process of sorting is easy, line
everything up in order so that smaller elements
all come before (or after) the larger elements.
Can you think of methods/algorithms that you
might use to sort data?

Bubble Sort

In this method you run through the array
several times. Each time you look at
adjacent elements and switch them if they
are in the wrong order.

You do this n-1 times or until no changes
are made (later is a flagged bubble sort).
It is called a bubble sort because
elements slowly shift through like bubbles
rising in water.

Min/Max Sort

In this method you go through the array
and find either the minimum value then
move it to the beginning. The next time
through you do the same thing but skip
over the previous smallest element.

You can obviously alter this to use
maximum or to find both.

You have to keep track of WHERE the
minimum was, not just what it is.




Insertion Sort

Insertion sort bears some resemblance to
a min/max sort in that you slowly build a
sorted section of the array at its front. In
this case though you always pick the
“next” item in the array to insert into its
proper place in the sorted part of the
array.

After putting each item in it moves to the
next and figures out where it goes.

Searching Sorted Data

When you are dealing with an array, once
it is sorted you can search through it
more quickly. This is because you know
the ordering and arrays allow you
“random access”. That means you can
read any location in constant time.

In a binary search you narrow down the
section you are looking in by a factor of 2
at each step and can find data in O(log n)
time.

Binary Search

This is best described recursively. You
have a “window” that you are looking at.
You know the item is between a start and
end location. Look at the middle if the
window. If it is greater than what you are
searching for you cut your window down
to the region between start and middle.
Otherwise your new window is between
middle and end.




Minute Essay

Given the following array, trace through
what one of the sorts we discussed would
do to sort it properly. Sort it from
smallest to largest and make sure to
indicate what sort you are doing. You
only have to show major steps though all
swaps would be helpful. A=[7,3,10,2]

On Friday we will look at more efficient
(and more complex) sorting algorithms.




