Faster Sort Algorithms

10-12-2001

Opening Discussion

What did we talk about last class?

Most of you were able to trace a sort
function properly though some of you said
you traced a min sort when you actually
traced an insertion sort.

Today’s material is advanced and
therefore somewhat optional. I will field
any questions you want to ask for as long
as you ask them (or look at two more
sorts).

Divide and Conquer

One of the standard methods of
approaching problems in CS is the divide
and conquer method. This is where a
problem is first split into smaller parts and
then each of the parts is tackled by itself.
We saw this yesterday in the binary
search. Today we will look at two sort
methods that do this as well.




Merge Sort

The idea behind merge sort is to break
the array into two pieces and then sort
each one separately then “merge” then
back together.

We recursively break the array down until
we get to single elements. We merge
those back together in proper order as we
“pop” back up the recursion stack.

Overview of Merge Sort

Checks if there is only one element and if
so just return.

Recurses on two halves and assumes
those halves are properly sorted when
they return.

Merges the two halves together by
running down the arrays. And returns.
Recurses down log(n) times and does
O(n) work each time.

Quicksort

The problem with merge sort is that it
can't merge efficiently in a single array. It
needs a second array to work with.
Quicksort corrects that.

Quicksort picks a “pivot” element and
does one pass through the array making
sure all elements are on the “right” side of
the pivot (depending on whether they are
greater or less than it).




More Quicksort

It then calls itself recursively on the part
of the array below the pivot and on the
part above it.

The recursion terminates when it gets
called with only one element.

Quicksort does O(n) work for each call.
With good pivots quicksort recurses log(n)
times. However, it has a worst case
performance where it recurses O(n) times.

Minute Essay

Today’s methods are “faster” than those we
discussed last time. Compare n2 to n*log(n) for
n values of 10, 1000, and 1000000. Assume a
base 10 log (base 2 is more accurate but the
difference is just a factor of a bit over 3).
Assignment #3 is due Monday when we will
discuss strings and multidimensional arrays.

I'll be giving a talk on planet formation
tomorrow at 4pm in the science lecture hall.




