Objects and Problem
Solving

9-5-2001

Opening Discussion

Last class period we spent most of the
time going over the syllabus and
discussing what material will be covered
in the class.

Are there any questions that have
occurred to you since last class?

Slides are on the web.

Quote on Debugging

"As soon as we started programming, we
found to our surprise that it wasn't as
easy to get programs right as we had
thought. Debugging had to be discovered.
I can remember the exact instant when I
realized that a large part of my life from
then on was going to be spent in finding
mistakes in my own programs."

Maurice Wilkes discovers debugging, 1949




Blowing up a Balloon

Through this class I am going to use the
example of blowing up a balloon.
The intention is to show you the value of

each step of the process that we will be
discussing.

Objects

This course will focus on the methods and
processes of Object-Oriented Programming. In
object oriented programs the key component is
the object.

An object in a program is very much like an
object in real life, only simplified so that it only
includes the details actually needed for that
program.

Objects have attributes (state information) and
behaviors (what they can do).

Software Lifecycle

The act of creating an application on a
computer is more than just programming.
When a program is large and has many
functions, the programming step can be
one of the smallest parts.

Focussing on the other parts of the
“software lifecycle” makes the process of
writing the code easier and more direct
and can help to insure that the code you
produce works properly.




Analysis

The first step in the software lifecycle is
analysis. This is basically the act of figuring out
what the problem is that you are trying to solve.
This might seem pedantic, but it can often be
one of the most challenging parts of the
problem.

For us this includes determining what objects
are part of the problem.

This part of the process is typically done without
thinking about the computer and the results of it
are often called specifications.

The second step in the software lifecycle
is design. This is where you decide how
the specification that was developed will
actually be made to come alive on a
computer.

In this stage you have to decide what the
attributes and behaviors are of the various
objects and how they will work together.
If you find your analysis was improper it
can be changed.

Implementation

This is the step that most people think
about as programming, when you actually
write code in the chosen language that
brings the design to life.

Over the course of the semester we will
focus on how to do this in C++. While
this step is vital it is in many ways the
easiest and most straightforward to do,
especially if you have a good design.




Testing

Once you have a code that you believe
works you have to determine if it really
does what the specifications asked for.
This is the phase called testing.

During testing you try to code under all
possible conditions and inputs to make

sure that it is stable (doesn't crash) and
performs the task that you want it to.

Good testing requires taking the time to
think of good tests.

Error Handling

Testing can and should be done one piece at a
time with code. Part of the testing in small
pieces of code is what would be called error
handling.

When a small piece of code is not able to
function the way it should for one reason or
another, it should tell the rest of the program
that in some well specified way.

Each part of an algorithm should make sure that
is “getting” something it can work with.

Maintenance

For professional software the end of the
line is not when it goes out the door.
Instead that just ushers in the last step in
the process, maintenance.

This is the process of fixing the bugs that
made it through in house testing and
making modifications as users request
new functions.

Note that that last part basically requires
going all the way back to analysis.




Compilers

Because we do not speak the same
“language” as the machine there is a
significant difference between what we
write as a program and what the
computer understands.

To bridge this gap we use a “compiler”.
On our computer systems the compiler is
the GNU compiler and for C++ is is called
g++.

Value of Object-
Orientation

Object-orientation has many benefits.

The book mentions code reuse where you
only have to write the code once and it can
work in many ways for you.

Also important are encapsulation, separation
of interface and implementation, and general
abstraction. I think that in the real world
these often wind up being more important
than code reuse.

Minute Essay

What are the steps in the software lifecycle
and why is each one important? Is it clear
why you don't want to just “hack” out code?

Set up your CS account before Friday’s
class.

You need to read Chapter 2 by Friday (at
least the first 3 sections). There will be a
quiz at the beginning of class so make sure
you are on time.




